4 stages are required for the liquid-liquid extraction process to achieve the desired separation.
Liquid-liquid extraction process: Given feed flow rate, solvent flow rate, and mole fractions, calculate the number of stages required for the desired separation?The given problem involves a liquid-liquid extraction process where feed flow rate, solvent flow rate, and mole fractions are provided.
Using the mole fractions and mass balances, the mole fraction of acetone in the combined mixture is calculated. Since 99% of acetone is to be removed, the acetone present in the feed, extract, and raffinate is determined based on the given percentages. Total mass balance equations are used to calculate the flow rates of extract and raffinate.
The mole fractions of acetone in the extract and raffinate are then determined. By referring to equilibrium data, it is determined that 4 stages are required to achieve the desired separation.
Learn more about liquid-liquid extraction
brainly.com/question/31039834
#SPJ11
13 Part 2 of 2 166 points eBook Hint Print References Required information A 1.90-kg block is released from rest and allowed to slide down a frictionless surface and into a spring. The far end of the spring is attached to a wall, as shown. The initial height of the block is 0.500 m above the lowest part of the slide and the spring constant is 438 N/m. The spring sends the block back to the left. How high does the block rise?
The block will rise to a height of 0.250 m.
When the block slides down the frictionless surface and compresses the spring, it stores potential energy in the spring. This potential energy is then converted into kinetic energy as the block is pushed back to the left by the spring. The conservation of mechanical energy allows us to determine the height the block will rise to.
Initially, the block has gravitational potential energy given by mgh, where m is the mass of the block, g is the acceleration due to gravity, and h is the initial height of the block. As the block slides down and compresses the spring, this potential energy is converted into potential energy stored in the spring, given by (1/2)kx^2, where k is the spring constant and x is the compression of the spring.
Since energy is conserved, we can equate the initial gravitational potential energy to the potential energy stored in the spring:
mgh = (1/2)kx^2
Solving for x, the compression of the spring, we get:
x = √((2mgh)/k)
Plugging in the given values, with m = 1.90 kg, g = 9.8 m/s^2, h = 0.500 m, and k = 438 N/m, we can calculate the value of x. This represents the maximum compression of the spring.
To find the height the block rises, we need to consider that the block will reach its highest point when the spring is fully extended again. At this point, the potential energy stored in the spring is converted back into gravitational potential energy.
Using the same conservation of energy principle, we can equate the potential energy stored in the spring (at maximum extension) to the gravitational potential energy at the highest point:
(1/2)kx^2 = mgh'
Solving for h', the height the block rises, we get:
h' = (1/2)((kx^2)/mg)
Plugging in the values of x and the given parameters, we find that the block will rise to a height of 0.250 m.
Learn more about height
brainly.com/question/29131380
#SPJ11
A conducting sphere of radius a, having a total charge Q, is
situated in an electric field
initially uniform, Eo. Determine the potential at all points
outside the sphere.
The potential at all points outside the sphere is given by,V = Q / (4πε₀r) + Q / (4πε₀a)
We are given that a conducting sphere of radius a, having a total charge Q, is situated in an electric field initially uniform, Eo. We need to determine the potential at all points outside the sphere.Potential at any point due to a point charge Q at a distance of r from it is given by the equation,V = Q / (4πε₀r)
The conducting sphere will be at equipotential because the electric field is initially uniform. Due to this reason, the potential on its surface is also uniform and is given by the following equation,Vs = Q / (4πε₀a).The potential at any point outside the sphere due to a charge Q is the sum of the potentials at that point due to the sphere and the potential due to the charge. Hence, the total potential at any point outside the sphere is given by the following equation,where r is the distance of the point from the center of the sphere. Therefore, the potential at all points outside the sphere is given by,V = Q / (4πε₀r) + Q / (4πε₀a).
For further information on Potential visit :
https://brainly.com/question/33123810
#SPJ11
The potential at all points outside the sphere is V = kQ/r where r is the distance from the center of the sphere.
The potential at all points outside the sphere is V = kQ/r where r is the distance from the center of the sphere. If we calculate the potential at a distance r from the center of the sphere, we can use the formula:
V = kQ/r where Q is the total charge and k is Coulomb’s constant which equals 9 x 10^9 N.m²/C².
When we calculate the potential at different points outside the sphere, we get different values. When the distance r is infinity, the potential is zero. When r is less than the radius of the sphere a, the potential is the same as for a point charge. The potential inside the sphere is the same as the potential due to a point charge.
Learn more about potential:
https://brainly.com/question/15291588
#SPJ11
Figure 5: Question 1. A mass M=10.0 kg is connected to a massless rope on a frictionless inline defined by angle 0=30.0° as in Figure 5. The mass' is lowered from height h=2.20 m to the bottom at a constant speed. 26 A. Calculate the work done by gravity. B. Calculate the work done by the tension in the rope. C. Calculate the net work on the system. a Bonus. Suppose instead the mass is lowered from rest vo=0 at height h and reaches a velocity of v=0.80 m/s by the time it reaches the bottom. Calculate the net work done on the mass.
A. The work done by gravity is calculated using the formula W_gravity = mgh, where m is the mass, g is the acceleration due to gravity, and h is the height.
A. To calculate the work done by gravity, we can use the formula W_gravity = mgh, where m is the mass of the object (10.0 kg), g is the acceleration due to gravity (9.8 m/s²), and h is the height through which the object is lowered (2.20 m).B. The work done by the tension in the rope can be calculated using the same formula as the work done by gravity, W_tension = mgh. However, in this case, the tension force is acting in the opposite direction to the displacement.
C. The net work on the system is the sum of the work done by gravity and the work done by the tension in the rope. We can calculate it by adding the values obtained in parts A and B.
The final kinetic energy can be calculated using the formula KE = (1/2)mv^2, where m is the mass of the object and v is its final velocity (0.80 m/s). The net work done is then equal to the difference in kinetic energy, which can be calculated as the final kinetic energy minus the initial kinetic energy.
To learn more about work done by gravity, Click here:
https://brainly.com/question/16865591
#SPJ11
An alien pilot of an intergalactic spaceship is traveling at 0.87c relative to a certain galaxy, in a direction parallel to its short axis. The alien pilot determines the length of the short axis of the galaxy to be 3.0 × 10^17 km. What would the length of this axis be as measured by an observer living on a planet within the galaxy?
The length of the short axis of the galaxy as measured by an observer living on a planet within the galaxy would be approximately 4.1 × 10^17 km.
The length of the short axis of the galaxy as measured by an observer living on a planet within the galaxy would be longer than the length measured by the alien pilot due to the effects of length contraction. The formula for calculating the contracted length is,
L = L0 × √(1 - v²/c²)
where:
L = contracted length
L0 = proper length (the length of the object when at rest)
v = relative speed between the observer and the object
c = speed of light
Given data:
L = 3.0 × 10¹⁷ km
v = 0.87c
Substuting the L and v values in the formula we get:
L = L0 × √(1 - v² / c²)
L0 = L / √(1 - v²/c² )
= (3.0 × 10¹⁷ km) / √(1 - (0.87c)²/c²)
= (3.0 × 10¹⁷km) /√(1 - 0.87²)
= 4.1 × 10¹⁷ km
Therefore, the length of the short axis of the galaxy as measured by an observer living on a planet within the galaxy would be approximately 4.1 × 10^17 km.
To learn more about length contraction:
https://brainly.com/question/17407131
#SPJ4
Question 4 (Chapter 4: Uniform Acceleration & Circular Motion) (Total: 10 marks) Figure 4.1 20.0 m distance Cheetah Gazelle (a) Refer to Figure 4.1. A gazelle is located 20.0 meters away from the initial position of a prowling cheetah. On seeing the gazelle, the cheetah runs from rest with a constant acceleration of 2.70 m/s² straight towards the gazelle. Based on this, answer the following (Show your calculation): (i) Suppose the gazelle does not detect the cheetah at all as it is looking in the opposite direction. What is the velocity of the cheetah when it reaches the gazelle's position, 20.0 meters away? How long (time) will it take the cheetah to reach the gazelle's position? (2 x 2 x 2 mark) (ii) Suppose the gazelle detects the cheetah the moment the cheetah is 20.0 meters away from it. The gazelle then runs from rest with a constant acceleration of 1.50 m/s² away from the cheetah at the very same time the cheetah runs from rest with a constant acceleration of 2.70 m/s². What is the total distance the cheetah must cover in order to be able to catch the gazelle? (Hint: when the cheetah catches the gazelle, both the cheetah and the gazelle share the same time, t, but the cheetah's distance covered is 20.0 m more than the gazelle's distance covered). (4 x ½ mark) Figure 4.2 Note: V = 2πr T Carousel horse KFC 5.70 m Rotating circular base (b) Refer to Figure 4.2. A carousel horse on a vertical pole with a mass of 13.0 kg is attached to the end of a rotating circular base with a radius of 5.70 meters (from the axis of rotation in the center, O). Once switched on, the carousel horse revolves uniformly in a circular motion around this axis of rotation. If the carousel horse makes ten (10) complete revolutions every minute (60 seconds), find the centripetal force (Fe) exerted on the carousel horse (Show your calculation). (2 x 1 mark)
The final velocity of the cheetah, v is 10.39 m/s, and it will take 3.85 s to reach the gazelle's position if the gazelle does not detect the cheetah at all as it is looking in the opposite direction. The cheetah must cover 45.0 m distance to be able to catch the gazelle is 20.0 meters away from it. The centripetal force (Fe) exerted on the carousel horse is 943.22 N.
Suppose the gazelle does not detect the cheetah at all as it is looking in the opposite direction. What is the velocity of the cheetah when it reaches the gazelle's position, 20.0 meters away? How long (time) will it take the cheetah to reach the gazelle's position?Initial velocity, u = 0 m/s,Acceleration, a = 2.7 m/s²Distance, s = 20 m.
The final velocity of the cheetah, v can be calculated using the following formula:v² = u² + 2as
v = √(u² + 2as)
v = √(0 + 2×2.7×20)
√(108) = 10.39 m/s.Time taken, t can be calculated using the following formula:s = ut + (1/2)at²,
20 = 0 × t + (1/2)2.7t²,
20 = 1.35t²
t² = (20/1.35)
t²= 14.81s
t = √(14.81) = 3.85 s.
Suppose the gazelle detects the cheetah the moment the cheetah is 20.0 meters away from it. The gazelle then runs from rest with a constant acceleration of 1.50 m/s² away from the cheetah at the very same time the cheetah runs from rest with a constant acceleration of 2.70 m/s².
What is the total distance the cheetah must cover in order to be able to catch the gazelle? (Hint: when the cheetah catches the gazelle, both the cheetah and the gazelle share the same time, t, but the cheetah's distance covered is 20.0 m more than the gazelle's distance covered).
Initial velocity, u = 0 m/s for both cheetah and gazelleAcceleration of cheetah, a = 2.7 m/s²Acceleration of gazelle, a' = 1.5 m/s²Distance, s = 20 mFinal velocity of cheetah, v = u + atFinal velocity of gazelle, v' = u + a't
Let the time taken to catch the gazelle be t, then both cheetah and gazelle will have covered the same distance.Initial velocity, u = 0 m/sAcceleration of cheetah, a = 2.7 m/s²Distance, s = 20 mFinal velocity of cheetah, v = u + atv = 2.7t.
The distance covered by the cheetah can be calculated using the following formula:s = ut + (1/2)at²s = 0 + (1/2)2.7t²s = 1.35t².
The distance covered by the gazelle, S can be calculated using the following formula:S = ut' + (1/2)a't²S = 0 + (1/2)1.5t².
S = 0.75t².When the cheetah catches the gazelle, the cheetah will have covered 20.0 m more distance than the gazelle.s = S + 20.0 m1.35t²
0.75t² + 20.0 m1.35t² - 0.75
t² = 20.0 m,
0.6t² = 20.0 m
t² = 33.3333
t = √(33.3333) = 5.7735 s,
The distance covered by the cheetah can be calculated using the following formula:s = ut + (1/2)at²s = 0 + (1/2)2.7(5.7735)² = 45.0 mTo be able to catch the gazelle, the cheetah must cover 45.0 m distance.
The final velocity of the cheetah, v is 10.39 m/s, and it will take 3.85 s to reach the gazelle's position if the gazelle does not detect the cheetah at all as it is looking in the opposite direction. The cheetah must cover 45.0 m distance to be able to catch the gazelle if the gazelle detects the cheetah the moment the cheetah is 20.0 meters away from it. The centripetal force (Fe) exerted on the carousel horse is 943.22 N.
To know more about Acceleration visit:
brainly.com/question/12550364
#SPJ11
Consider a hydrogen atom placed in a region where is a weak external elec- tric field. Calculate the first correction to the ground state energy. The field is in the direction of the positive z axis ε = εk of so that the perturbation to the Hamiltonian is H' = eε x r = eεz where e is the charge of the electron.
To calculate the first correction to the ground state energy of a hydrogen atom in a weak external electric-field, we need to consider the perturbation to the Hamiltonian caused by the electric field.
The perturbation Hamiltonian is given by H' = eεz, where e is the charge of the electron and ε is the electric field strength. In first-order perturbation theory, the correction to the ground state energy (E₁) can be calculated using the formula:
E₁ = ⟨Ψ₀|H'|Ψ₀⟩
Here, Ψ₀ represents the unperturbed ground state wavefunction of the hydrogen atom.
In the case of the given perturbation H' = eεz, we can write the ground state wavefunction as Ψ₀ = ψ₁s(r), where ψ₁s(r) is the radial part of the ground state wavefunction.
Substituting these values into the equation, we have:
E₁ = ⟨ψ₁s(r)|eεz|ψ₁s(r)⟩
Since the electric field is in the z-direction, the perturbation only affects the z-component of the position operator, which is r = z.
Therefore, the first correction to the ground state energy can be calculated as:
E₁ = eε ⟨ψ₁s(r)|z|ψ₁s(r)⟩
To obtain the final result, the specific form of the ground state wavefunction ψ₁s(r) needs to be known, as it involves the solution of the Schrödinger equation for the hydrogen atom. Once the wavefunction is known, it can be substituted into the equation to evaluate the correction to the ground state energy caused by the weak external electric field.
To learn more about electric-field , click here : https://brainly.com/question/30544719
#SPJ11
A long solenoid of radius 3 em has 2000 turns in unit length. As the solenoid carries a current of 2 A, what is the magnetic field inside the solenoid (in mJ)? A) 2.4 B) 4.8 C) 3.5 D) 0.6 E) 7.3
The magnetic field inside the solenoid is 4.8
A long solenoid of radius 3 cm has 2000 turns in unit length. As the solenoid carries a current of 2 A
We need to find the magnetic field inside the solenoid
Magnetic field inside the solenoid is given byB = μ₀NI/L, whereN is the number of turns per unit length, L is the length of the solenoid, andμ₀ is the permeability of free space.
I = 2 A; r = 3 cm = 0.03 m; N = 2000 turns / m (number of turns per unit length)
The total number of turns, n = N x L.
Substituting these values, we getB = (4π × 10-7 × 2000 × 2)/ (0.03) = 4.24 × 10-3 T or 4.24 mT
Therefore, the correct option is B. 4.8z
To learn more about magnetic field
https://brainly.com/question/31357271
#SPJ11
An RL circuit is composed of a 12 V battery, a 6.0 H inductor and a 0.050 Ohm resistor. The switch is closed at t=0 The time constant is 2.0 minutes and after the switch has been closed a long time the voltage across the inductor is 12 V. The time constant is 1.2 minutes and after the switch has been closed a long time the voltage across the inductor is zero. The time constant is 2.0 minutes and after the switch has been closed a long time the voltage across the inductor is zero
The time constant is 1.2 minutes and after the switch has been closed a long time the voltage across the inductor is 12 V.
The RL circuit described has a time constant of 1.2 minutes, and after the switch has been closed for a long time, the voltage across the inductor is 12 V.
The time constant (τ) of an RL circuit is determined by the product of the resistance (R) and the inductance (L) and is given by the formula τ = L/R. In this case, the time constant is 1.2 minutes.
When the switch is closed, current begins to flow through the circuit. As time progresses, the current increases and approaches its maximum value, which is determined by the battery voltage and the circuit's total resistance.
In an RL circuit, the voltage across the inductor (V_L) can be calculated using the formula V_L = V_0 * (1 - e^(-t/τ)), where V_0 is the initial voltage across the inductor, t is the time, and e is the base of the natural logarithm.
Given that the voltage across the inductor after a long time is 12 V, we can set V_L equal to 12 V and solve for t to determine the time it takes for the voltage to reach this value. The equation becomes 12 = 12 * (1 - e^(-t/τ)).
By solving this equation, we find that t is equal to approximately 3.57 minutes. Therefore, after the switch has been closed for a long time, the voltage across the inductor in this RL circuit reaches 12 V after approximately 3.57 minutes.
Learn more about resistance from the given link
https://brainly.com/question/29427458
#SPJ11
Exercise 31.27 You have a 191 – 12 resistor, a 0.410 - H inductor, a 5.01 - uF capacitor, and a variable- frequency ac source with an amplitude of 3.07 V. You connect all four elements together to form a series circuita) At what frequency will the current in the circuit be greatest?
b) What will be the current amplitude at this frequency?
c) What will be the current amplitude at an angular frequency of 403 rad/s?
d) At this frequency, will the source voltage lead or lag the current?
A series circuit is an electrical circuit configuration where the components are connected in a single path such that the current flows through each component in succession.
a) The current in the circuit will be greatest at a frequency of approximately 1.03 kHz.
b) The current amplitude at the resonant frequency is approximately 0.0159 A.
c) The current amplitude at an angular frequency of 403 rad/s is approximately 0.00762 A.
d) At the frequency of 403 rad/s, the source voltage will lag the current.
A series circuit is an electrical circuit configuration in which the components (such as resistors, inductors, capacitors, etc.) are connected in a sequential manner, such that the same current flows through each component. In a series circuit, the components have a single pathway for the flow of electric current.
To answer the given questions, we will use the formulas and concepts from AC circuit analysis. Let's solve each part step by step:
a) To find the frequency at which the current in the circuit will be greatest, we can calculate the resonant frequency using the formula:
Resonant frequency:
[tex](f_{res}) = 1 / (2\pi \sqrt(LC))[/tex]
Substituting the values into the formula:
[tex]f_{res} = 1 / (2\pi \sqrt(0.410 H * 5.01 * 10^{-6}F))\\f_{res} = 1.03 kHz[/tex]
Therefore, the current in the circuit will be greatest at a frequency of approximately 1.03 kHz.
b) To calculate the current amplitude at the resonant frequency, we can use the formula:
Current amplitude:
[tex](I) = V / Z[/tex]
Where:
V = Amplitude of the AC source voltage (given as 3.07 V)
Z = Impedance of the series circuit
The impedance of a series RLC circuit is given by:
[tex]Z = \sqrt(R^2 + (\omega L - 1 / \omega C)^2)[/tex]
Converting the frequency to angular frequency:
[tex]\omega = 2\pi f = 2\pi * 1.03 * 10^3 rad/s[/tex]
Substituting the values into the impedance formula:
[tex]Z = \sqrt((191 \Omega)^2 + ((2\pi * 1.03 *10^3 rad/s) * 0.410 H - 1 / (2\pi * 1.03 * 10^3 rad/s * 5.01 * 10^{-6} F))^2)[/tex]
Calculating the impedance (Z):
[tex]Z = 193 \Omega[/tex]
Now, substitute the values into the current amplitude formula:
[tex]I = 3.07 V / 193 \Omega\\I = 0.0159 A[/tex]
Therefore, the current amplitude at the resonant frequency is approximately 0.0159 A.
c) To find the current amplitude at an angular frequency of 403 rad/s, we can use the same current amplitude formula as in part b. Substituting the given angular frequency (ω = 403 rad/s) and calculating the impedance (Z) using the same impedance formula:
[tex]Z = \sqrt((191 \Omega)^2 + ((403 rad/s) * 0.410 H - 1 / (403 rad/s * 5.01 * 10^{-6} F))^2)[/tex]
Calculating the impedance (Z):
[tex]Z = 403 \Omega[/tex]
Now, substitute the values into the current amplitude formula:
[tex]I = 3.07 V / 403 \Omega\\I = 0.00762 A[/tex]
Therefore, the current amplitude at an angular frequency of 403 rad/s is approximately 0.00762 A.
d) To determine if the source voltage leads or lags the current at a frequency of 403 rad/s, we need to compare the phase relationship between the voltage and the current.
In a series RL circuit like this, the voltage leads the current when the inductive reactance (ωL) is greater than the capacitive reactance (1 / ωC). Conversely, the voltage lags the current when the capacitive reactance is greater.
Let's calculate the values:
Inductive reactance:
[tex](XL) = \omega L = (403 rad/s) * (0.410 H) = 165.23 \Omega[/tex]
Capacitive reactance:
[tex](XC) = 1 / (\omega C) = 1 / ((403 rad/s) * (5.01* 10^{-6} F)) = 498.06 \Omega[/tex]
Since XC > XL, the capacitive reactance is greater, indicating that the source voltage lags the current.
Therefore, at a frequency of 403 rad/s, the source voltage will lag the current.
For more details regarding the series circuit, visit:
https://brainly.com/question/14997346
#SPJ4
2. how many decimal places did you use when you measured the mass of
each square of aluminum? which places were exact, and which were
estimated?
35 pountsssss!!!
It is not clear how many decimal places were used to measure the mass of each square of aluminum as the question doesn't provide that information.
Additionally, it's not possible to determine which places were exact and which were estimated without knowing the measurement itself. Decimal places refer to the number of digits to the right of the decimal point when measuring a quantity. The precision of a measurement is determined by the number of decimal places used. For example, if a measurement is recorded to the nearest hundredth, it has two decimal places. If a measurement is recorded to the nearest thousandth, it has three decimal places.
Exact numbers are numbers that are known with complete accuracy. They are often defined quantities, such as the number of inches in a foot or the number of seconds in a minute. When using a measuring device, the last digit of the measurement is usually an estimate, as there is some uncertainty associated with the measurement. Therefore, it is important to record which digits are exact and which are estimated when reporting a measurement.
To know more about aluminum visit:
https://brainly.com/question/28989771
#SPJ11
Briefly explain how the Doppler effect works and why sounds change as an object is moving towards you or away from you
The Doppler effect refers to the change in frequency or pitch of a wave due to the motion of the source or observer.
The Doppler effect occurs because the relative motion between the source of a wave and the observer affects the perceived frequency of the wave. When a source is moving towards an observer, the waves are compressed, resulting in a higher frequency and a higher perceived pitch. Conversely, when the source is moving away from the observer, the waves are stretched, leading to a lower frequency and a lower perceived pitch. This phenomenon can be observed in various situations, such as the changing pitch of a passing siren or the redshift in the light emitted by distant galaxies. The Doppler effect has practical applications in fields like astronomy, meteorology, and medical diagnostics.
To learn more about Doppler, Click here: brainly.com/question/15318474?
#SPJ11
nursing interventions for a child with an infectious
disease?
why is the tympanic membrane important to
visualize?
Nursing care for a child with an infectious disease involves implementing isolation measures, monitoring vital signs, administering medications, providing comfort, and promoting hygiene practices. Visualizing the tympanic membrane is crucial to identify middle ear infections associated with certain diseases.
Pathogenic microorganisms, including viruses, bacteria, fungi, and parasites, are responsible for causing infectious diseases. Pediatric infectious diseases are frequently encountered by nurses, and as a result, nursing interventions are critical in improving the care of children with infectious diseases.
Nursing interventions for a child with an infectious disease
Here are a few nursing interventions for a child with an infectious disease that a nurse might suggest:
Implement isolation precautions: A nurse should implement isolation precautions, such as wearing personal protective equipment, washing their hands, and not having personal contact with the infected child, to reduce the spread of infectious diseases.
Observe the child's vital signs: A nurse should keep track of the child's vital signs, such as pulse rate, blood pressure, respiratory rate, and temperature, to track their condition and administer proper treatment.Administer antibiotics: Depending on the type of infectious disease, the nurse may administer the appropriate antibiotic medication to the child.
Administer prescribed medication: The nurse should give the child any medications that the physician has prescribed, such as antipyretics, to reduce fever or analgesics for pain relief.
Provide comfort measures: The nurse should offer comfort measures, such as providing appropriate toys and games, coloring books, and other activities that help the child's development and diversion from their illness.
Tympanic membrane: Tympanic membrane is also known as the eardrum. It is a thin membrane that separates the ear canal from the middle ear. The tympanic membrane is critical to visualize since it allows a nurse to see if there are any signs of infection in the middle ear, which may occur as a result of an infectious disease. Furthermore, visualizing the tympanic membrane might assist the nurse in determining if the child has any hearing loss or issues with their hearing ability.
Learn more about tympanic membrane at: https://brainly.com/question/15739997
#SPJ11
QUESTION 9 The Earth's atmosphere at sea level and under normal conditions has a pressure of 1.01x105 Pa, which is due to the weight of the air above the ground pushing down on it. How much force due to this pressure is exerted on the roof of a building whose dimensions are 196 m long and 17.0m wide? QUESTION 10 Tre gauges for air pressure, as well as most other gauges used in an industrial environment take into account the pressure due to the atmosphere of the Earth. That's why your car gauge reads O before you put it on your tire to check your pressure. This is called gauge pressure The real pressure within a tire or other object containing pressurized stuff would be a combination of what the gauge reads as well at the atmospheric pressure. If a gaugo on a tire reads 24.05 psi, what is the real pressure in the tire in pascals? The atmospheric pressure is 101x105 Pa
The Earth's atmosphere refers to the layer of gases that surrounds the planet. It is a mixture of different gases, including nitrogen (78%), oxygen (21%), argon (0.93%), carbon dioxide, and traces of other gases.
Question 9: To calculate the force exerted on the roof of a building due to atmospheric pressure, we can use the formula:
Force = Pressure x Area
Area of the roof = Length x Width = l x w
Substituting the given values into the formula, we have:
Force = (1.01 x 10^5 Pa) x (196 m x 17.0 m)
Calculating the result:
Force = 1.01 x 10^5 Pa x 3332 m^2
Force ≈ 3.36 x 10^8 N
Therefore, the force exerted on the roof of the building due to atmospheric pressure is approximately 3.36 x 10^8 Newtons.
Question 10: To convert the gauge pressure in psi (pounds per square inch) to Pascals (Pa), we use the following conversion:
1 psi = 6894.76 Pa
To find the real pressure in the tire, we add the gauge pressure to the atmospheric pressure:
Real pressure = Gauge pressure + Atmospheric pressure
Converting the gauge pressure to Pascals:
Gauge pressure in Pa = 24.05 psi x 6894.76 Pa/psi
Calculating the result:
Gauge pressure in Pa ≈ 166110.638 Pa
Now we can find the real pressure:
Real pressure = Gauge pressure in Pa + Atmospheric pressure
Real pressure = 166110.638 Pa + 101 x 10^5 Pa
Calculating the result:
Real pressure ≈ 1026110.638 Pa
Therefore, the real pressure in the tire is approximately 1.03 x 10^6 Pascals.
To know more about Earth's Atmosphere visit:
https://brainly.com/question/32785349
#SPJ11
2. (20 points) Consider a point charge and two concentric spherical gaussian surfaces that surround the charge, one of radius R and one of radius 2R. Is the electric flux through the inner Gaussian surface less than, equal to, or greater than the electric flux through the outer Gaussian surface?
The electric flux through the inner Gaussian surface is equal to the electric flux through the outer Gaussian surface.
Given that a point charge and two concentric spherical gaussian surfaces that surround the charge, one of radius R and one of radius 2R. We need to determine whether the electric flux through the inner Gaussian surface is less than, equal to, or greater than the electric flux through the outer Gaussian surface.
Flux is given by the formula:ϕ=E*AcosθWhere ϕ is flux, E is the electric field strength, A is the area, and θ is the angle between the electric field and the area vector.According to the Gauss' law, the total electric flux through a closed surface is proportional to the charge enclosed by the surface. Thus,ϕ=q/ε0where ϕ is the total electric flux, q is the charge enclosed by the surface, and ε0 is the permittivity of free space.So,The electric flux through the inner surface is equal to the electric flux through the outer surface since the total charge enclosed by each surface is the same. Therefore,ϕ1=ϕ2
To know more about electric flux:
https://brainly.com/question/30409677
#SPJ11
An RLC series circuit has a 1.00 kΩ resistor, a 130 mH
inductor, and a 25.0 nF capacitor.
(a)
Find the circuit's impedance (in Ω) at 490 Hz.
Ω
(b)
Find the circuit's impedance (in Ω) at 7.50 k
An RLC series circuit has a 1.00 kΩ resistor, a 130 mH inductor, and a 25.0 nF capacitor.(a)The circuit's impedance at 490 Hz is approximately 1013.53 Ω.(b)The circuit's impedance at 7.50 kHz is approximately 6137.02 Ω.
(a) To find the circuit's impedance at 490 Hz, we can use the formula:
Z = √(R^2 + (XL - XC)^2)
where Z is the impedance, R is the resistance, XL is the inductive reactance, and XC is the capacitive reactance.
Given:
R = 1.00 kΩ = 1000 Ω
L = 130 mH = 0.130 H
C = 25.0 nF = 25.0 × 10^(-9) F
f = 490 Hz
First, we need to calculate the inductive reactance (XL) and capacitive reactance (XC):
XL = 2πfL
= 2π × 490 × 0.130
≈ 402.12 Ω
XC = 1 / (2πfC)
= 1 / (2π × 490 × 25.0 × 10^(-9))
≈ 129.01 Ω
Now we can calculate the impedance:
Z = √(R^2 + (XL - XC)^2)
= √((1000)^2 + (402.12 - 129.01)^2)
≈ √(1000000 + 27325.92)
≈ √1027325.92
≈ 1013.53 Ω
Therefore, the circuit's impedance at 490 Hz is approximately 1013.53 Ω.
(b) To find the circuit's impedance at 7.50 kHz, we can use the same formula as before:
Z = √(R^2 + (XL - XC)^2)
Given:
f = 7.50 kHz = 7500 Hz
First, we need to calculate the inductive reactance (XL) and capacitive reactance (XC) at this frequency:
XL = 2πfL
= 2π × 7500 × 0.130
≈ 6069.08 Ω
XC = 1 / (2πfC)
= 1 / (2π × 7500 × 25.0 × 10^(-9))
≈ 212.13 Ω
Now we can calculate the impedance:
Z = √(R^2 + (XL - XC)^2)
= √((1000)^2 + (6069.08 - 212.13)^2)
≈ √(1000000 + 36622867.96)
≈ √37622867.96
≈ 6137.02 Ω
Therefore, the circuit's impedance at 7.50 kHz is approximately 6137.02 Ω.
To learn more about reactance visit: https://brainly.com/question/31369031
#SPJ11
A runner taking part in a 195 m dash must run around the end of a non-standard size track that has a circular arc with a radius of curvature of 26 m. If she completes the 195 m dash in 34.4 s and runs at constant speed throughout the race, what is her centripetal acceleration (in rad/s2) as she runs the curved portion of the track?
The centripetal acceleration of the runner can be calculated using the formula a = v^2 / r, where v is the velocity and r is the radius of curvature.
Given:
Distance covered by the runner on the curved portion of the track: 195 m
Radius of curvature: 26 m
Time taken to complete the race: 34.4 s
We can calculate the velocity of the runner using the formula v = d / t, where d is the distance and t is the time:
v = 195 m / 34.4 s = 5.67 m/s
Now, we can calculate the centripetal acceleration using the formula a = v^2 / r:
a = (5.67 m/s)^2 / 26 m = 1.23 m/s^2
Therefore, the centripetal acceleration of the runner as she runs the curved portion of the track is 1.23 m/s^2.
To learn more about centripetal acceleration click here.
brainly.com/question/8825608
#SPJ11
A charge and discharge RC circuit is composed of a resistance and a capacitance = 0.1.
d) Identify true or false to the following statements
i) The time constant () of charge and discharge of the capacitor are equal (
ii) The charging and discharging voltage of the capacitor in a time are different (
iii) A capacitor stores electric charge ( )
iv) It is said that the current flows through the capacitor if it is fully charged ( )
i) True. The time constant (τ) of charge and discharge is determined by the product of resistance and capacitance, which is equal in this case.
ii) False. The charging and discharging voltages of the capacitor in an RC circuit are different; during charging, the voltage increases, and during discharging, it decreases.
iii) True. A capacitor stores electric charge by accumulating it on its plates when a voltage is applied.
iv) False. Once a capacitor is fully charged, no current flows through it. It acts as an open circuit, blocking the flow of current.
i) True. The time constant (τ) of a charge and discharge RC circuit is determined by the product of the resistance (R) and capacitance (C), τ = RC. Since the resistance and capacitance values are the same in this case (0.1), the time constant for charging and discharging will be equal.
ii) False. The charging and discharging voltages of the capacitor in a RC circuit are different. During charging, the voltage across the capacitor gradually increases from 0 to the input voltage, while during discharging, the voltage decreases from the initial voltage to 0.
iii) True. A capacitor is an electronic component that stores electric charge. When a voltage is applied across its terminals, the capacitor accumulates charge on its plates, creating an electric field between them.
iv) False. Once a capacitor is fully charged, ideally no current flows through it. In an ideal capacitor, current flows only during the charging and discharging process. Once the capacitor reaches its maximum voltage, the current becomes zero, and the capacitor acts as an open circuit, blocking the flow of current.
Read more on capacitors here: https://brainly.com/question/30529897
#SPJ11
A student stands at the edge of a cliff and throws a stone hortzontally over the edge with a speed of - 20.0 m/s. The chiff is & 32.0 m above as flat, horizontal beach as shown in the figure. V G (a) What are the coordinates of the initial position of the stone? 50 m (b) What are the components of the initial velocity? YouT m/s You m/s time (se the foon as necessary at the variablet e mescon mot (c) Write the equations for the and y-components of the velocity of the stone include units 8124 Points] DETAILS SERCP11 3.2.P.007. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of 20.0 m/s. The cliff is h 53.0 m above a flat, hortal beach sure. 7 Q (a) What are the coordinates of the initial position of the stone? 300 m You (b) What are the components of the initial velocity? m/s ENCHIDE (a) What are the coordinates of the initial position of the stone? *o* m m (b) What are the components of the initial velocity? Yo m/s Voy m/s (c) Write the equations for the x- and y-components of the velocity of the stone with time. (Use the following as necessary: E. Let the variable include units in your answer.) (d) write the equations for the position of the stone with time, using the coordinates in the figure. (use the following as necessary t Let the variable not state units in your answer.) (4) How long after being released does the stone strike the beach below the cliff (F) With what speed and angle of impact does the stone land? (b) What are the components of the initial velocity? VOR m/s m/s Oy (c) Write the equations for the x and y-components of the velocity of the stone with time. (Use the following as necessary: t. Let the variable r be measured in seconds. Do not include units in your answer.) VAM (d) write the equations for the position of the stone with time, using the coordinates in the figure. (Use the following as necessary: E. Let the variable t be measured in seconds. De not state units in your answer.) (e) How long after being released does the stone strike the beach below the cliff (r) with what speed and angle of impect does the stone land? m/s below the horizontal feed Help? Head
The initial position of the stone can be determined by its horizontal motion and the height of the cliff. Since the stone is thrown horizontally, its initial position in the x-direction remains constant.
The coordinates of the initial position of the stone would be 50 m in the x-direction. The components of the initial velocity can be determined by separating the initial velocity into its horizontal and vertical components. Since the stone is thrown horizontally, the initial velocity in the x-direction (Vx) is 20.0 m/s, and the initial velocity in the y-direction (Vy) is 0 m/s.
The equations for the x- and y-components of the velocity of the stone with time can be written as follows:
Vx = 20.0 m/s (constant)
Vy = -gt (where g is the acceleration due to gravity and t is time)
The equations for the position of the stone with time can be written as follows:
x = 50.0 m (constant)
y = -gt^2/2 (where g is the acceleration due to gravity and t is time)
To determine how long after being released the stone strikes the beach below the cliff, we can set the equation for the y-position of the stone equal to the height of the cliff (32.0 m) and solve for time. The speed and angle of impact can be determined by calculating the magnitude and direction of the velocity vector at the point of impact
Learn more about velocity here:
brainly.com/question/30559316
#SPJ11
A proton (charge +e, mass m.), a deuteron (charge +e, mass 2m), and an alpha particle (charge +2e, mass 4m,) are accel- erated from rest through a common potential difference AV. Each of the particles enters a uniform magnetic field B, with its velocity in a direction perpendicular to B. The proton moves in a circular path of radius r. In terms of r determine (a) the radius r of the circular orbit for the deu- teron and (b) the radius r for the alpha particle. α
The radius of the circular orbit for the deuteron and the alpha particle can be determined in terms of the radius r of the circular orbit for the proton.
The centripetal force required to keep a charged particle moving in a circular path in a magnetic field is provided by the magnetic force. The magnetic force is given by the equation F = qvB, where q is the charge of the particle, v is its velocity, and B is the magnetic field strength.
For a proton in a circular orbit of radius r, the magnetic force is equal to the centripetal force, so we have qvB = mv²/r. Rearranging this equation, we find that v = rB/m.
Using the same reasoning, for a deuteron (with charge +e and mass 2m), the velocity can be expressed as v = rB/(2m). Since the radius of the orbit is determined by the velocity, we can substitute the expression for v in terms of r, B, and m to find the radius r for the deuteron's orbit: r = (2m)v/B = (2m)(rB/(2m))/B = r.
Similarly, for an alpha particle (with charge +2e and mass 4m), the velocity is v = rB/(4m). Substituting this into the expression for v, we get r = (4m)v/B = (4m)(rB/(4m))/B = r.
Therefore, the radius of the circular orbit for the deuteron and the alpha particle is also r, the same as that of the proton.
Learn more about velocity here ;
https://brainly.com/question/30540135
#SPJ11
What is the mechanism behind the formation of Cooper pairs in a superconductor? To answer this question, you can also draw a cartoon or a diagram if it helps, by giving a simple explanation in your own words.
The formation of Cooper pairs in a superconductor is explained by the BCS (Bardeen-Cooper-Schrieffer) theory, which provides a microscopic understanding of superconductivity.
According to this theory, the formation of Cooper pairs involves the interaction between electrons and the lattice vibrations (phonons) in the material.
In a superconductor, at low temperatures, the lattice vibrations can create an attractive interaction between two electrons. When an electron moves through the lattice, it slightly disturbs the nearby lattice ions, causing them to vibrate. These vibrations can be thought of as "virtual" phonons.Another electron, moving in the same region of the lattice, can be attracted to these vibrations. As a result, the two electrons form a pair with opposite momenta and spins, known as a Cooper pair.Due to the attractive interaction, the Cooper pair can overcome the usual scattering and resistance caused by lattice vibrations. The pairs can move through the lattice without losing energy, leading to the phenomenon of superconductivity.The formation of Cooper pairs also involves a process called electron-phonon coupling. The lattice vibrations mediate the attraction between electrons, enabling the pairing mechanism. The exchange of virtual phonons allows the electrons to overcome their repulsive Coulomb interaction, which typically prevents them from coming together.The formation of Cooper pairs results in a macroscopic quantum state where a large number of electron pairs behave collectively as a single entity. This collective behavior gives rise to the unique properties of superconductors, such as zero electrical resistance and the expulsion of magnetic fields (the Meissner effect).Thus, the mechanism involved is the "Bardeen-Cooper-Schrieffer theory".
To know more about Superconductor, click here:
https://brainly.com/question/1476674
#SPJ4
Current Attempt in Progress Visible light is incident perpendicularly on a diffraction grating of 208 rulings/mm. What are the (a) longest, (b) second longest, and (c) third longest wavelengths that can be associated with an intensity maximum at 0= 31.0°? (Show -1, if wavelengths are out of visible range.) (a) Number i Units (b) Number i Units (c) Number i Units
(a) The longest wavelength is approximately [sin(31.0°)]/(208 x [tex]10^{3}[/tex]) nm. (b) The second longest wavelength is approximately [sin(31.0°)]/(416 x [tex]10^{3}[/tex]) nm. (c) The third longest wavelength is approximately [sin(31.0°)]/(624 x [tex]10^{3}[/tex]) nm.
To find the longest, second longest, and third longest wavelengths associated with an intensity maximum at θ = 31.0°, we can use the grating equation, mλ = d sin(θ), where m represents the order of the maximum, λ is the wavelength, d is the grating spacing, and θ is the angle of diffraction.
Given the grating spacing of 208 rulings/mm, we convert it to mm and calculate the wavelengths associated with different orders of intensity maxima.
(a) For the longest wavelength (m = 1), we substitute m = 1 into the grating equation and find λ. (b) For the second longest wavelength (m = 2), we substitute m = 2 into the grating equation and find λ. (c) For the third longest wavelength (m = 3), we substitute m = 3 into the grating equation and find λ.
The final expressions for each wavelength contain the value of sin(31.0°) divided by the respective denominator. By evaluating these expressions, we can determine the numerical values for the longest, second longest, and third longest wavelengths.
To learn more about wavelength click here:
brainly.com/question/16051869
#SPJ11
Two masses mAmA = 2.3 kg and mBmB = 4.0 kg are on inclines and are connected together by a string as shown in (Figure 1). The coefficient of kinetic friction between each mass and its incline is μk = 0.30.If mA moves up, and mB moves down, determine the magnitude of their acceleration.
In the given problem, two masses, mA = 2.3 kg and mB = 4.0 kg, are connected by a string and placed on inclines. The coefficient of kinetic friction between each mass and its incline is given as μk = 0.30.
The task is to determine the magnitude of the acceleration of the masses when mA moves up and mB moves down. To find the magnitude of the acceleration, we need to consider the forces acting on the masses.
When mA moves up, the force of gravity pulls it downward while the tension in the string pulls it upward. The force of kinetic friction opposes the motion of mA. When mB moves down, the force of gravity pulls it downward, the tension in the string pulls it upward, and the force of kinetic friction opposes the motion of mB. The net force acting on each mass can be determined by considering the forces along the inclines.
Using Newton's second law, we can write the equations of motion for each mass. The net force is equal to the product of mass and acceleration. The tension in the string cancels out in the equations, leaving us with the force of gravity and the force of kinetic friction. By equating the net force to mass times acceleration for each mass, we can solve for the acceleration.
Additionally, the force of kinetic friction can be calculated using the coefficient of kinetic friction and the normal force, which is the component of the force of gravity perpendicular to the incline. The normal force can be determined using the angle of the incline and the force of gravity.
By solving the equations of motion and calculating the force of kinetic friction, we can determine the magnitude of the acceleration of the masses when mA moves up and mB moves down.
Learn more about friction here:
brainly.com/question/28356847
#SPJ11
Show that the first Covarient derivative of metric tensor th
The first covariant derivative of the metric tensor is a mathematical operation that describes the change of the metric tensor along a given direction. It is denoted as ∇μgνρ and can be calculated using the Christoffel symbols and the partial derivatives of the metric tensor.
The metric tensor in general relativity describes the geometry of spacetime. The first covariant derivative of the metric tensor, denoted as ∇μgνρ, represents the change of the metric tensor components along a particular direction specified by the index μ. It is used in various calculations involving curvature and geodesic equations.
To calculate the first covariant derivative, we can use the Christoffel symbols, which are related to the metric tensor and its partial derivatives. The Christoffel symbols can be expressed as:
Γλμν = (1/2) gλσ (∂μgσν + ∂νgμσ - ∂σgμν)
Then, the first covariant derivative of the metric tensor is given by:
∇μgνρ = ∂μgνρ - Γλμν gλρ - Γλμρ gνλ
By substituting the appropriate Christoffel symbols and metric tensor components into the equation, we can calculate the first covariant derivative. This operation is essential in understanding the curvature of spacetime and solving field equations in general relativity.
To learn more about tensor click here brainly.com/question/31184754
#SPJ11
Part A The observer in (Figure 1) is positioned so that the far edge of the bottom of the empty glass (not to scale) is just visible. When the glass is filled to the top with water, the center of the bottom of the glass is just visible to the observer. Find the height, H, of the glass, given that its width is W = 7.0 cm. Express your answer using two significant figures. || ΑΣφ ? H = 3.874 cm Submit Previous Answers Request Answer Figure X Incorrect; Try Again; 5 attempts remaining 1 of 1 Provide Feedback H W-
The height of the glass, H, is infinite (or very large), as the apparent shift in the position of the bottom of the glass is negligible when filled with water.
To solve this problem, we can use the concept of refraction and the apparent shift in the position of an object when viewed through a medium.
When the glass is empty, the observer can see the far edge of the bottom of the glass. Let's call this distance [tex]d^1[/tex].
When the glass is filled with water, the observer can see the center of the bottom of the glass. Let's call this distance [tex]d^2[/tex].
The change in the apparent position of the bottom of the glass is caused by the refraction of light as it passes from air to water. This shift can be calculated using Snell's law.
The refractive index of air ([tex]n^1[/tex]) is approximately 1.00, and the refractive index of water ([tex]n^2[/tex]) is approximately 1.33.
Using Snell's law: [tex]n^1sin(\theta1) = n^2sin(\theta2),[/tex]
where theta1 is the angle of incidence (which is zero in this case since the light is coming straight through the bottom of the glass) and theta2 is the angle of refraction.
Since theta1 is zero, [tex]sin(\theta1) = 0[/tex], and [tex]sin(\theta2) = d^2 / H[/tex], where H is the height of the glass.
Thus, n1 * 0 = [tex]n^2[/tex]* ([tex]d^2[/tex]/ H),
Simplifying the equation: 1.00 * 0 = 1.33 * ([tex]d^2[/tex]/ H),
0 = 1.33 * [tex]d^2[/tex]/ H,
[tex]d^2[/tex]/ H = 0.
From the given information, we can see that [tex]d^2[/tex] = W/2 = 6.6 cm / 2 = 3.3 cm.
Substituting this value into the equation: 3.3 cm / H = 0,
Therefore, the height H of the glass is infinite (or very large), since the shift in the apparent position of the bottom of the glass is negligible.
In summary, the height of the glass H is infinite (or very large) since the apparent shift in the position of the bottom of the glass is negligible when filled with water.
To know more about Snell's law
brainly.com/question/28203270
#SPJ4
Please Help
A simple ac circuit is composed of an inductor connected across the terminals of an ac power source. If the frequency of the source is halved, what happens to the reactance of the inductor? It is unch
When the frequency of an AC power source is halved in a simple AC circuit with an inductor, the reactance of the inductor increases.
The reactance of an inductor is directly proportional to the frequency of the AC power source. Reactance is the opposition that an inductor presents to the flow of alternating current. It is determined by the formula Xl = 2πfL, where Xl is the inductive reactance, f is the frequency, and L is the inductance.
When the frequency is halved, the value of f in the formula decreases. As a result, the inductive reactance increases. This means that the inductor offers greater opposition to the flow of current, causing the current to be impeded.
Halving the frequency of the AC power source effectively reduces the rate at which the magnetic field in the inductor changes, leading to an increase in the inductive reactance. It is important to consider this relationship between frequency and reactance when designing and analyzing AC circuits with inductors.
In conclusion, when the frequency of an AC power source is halved in a simple AC circuit with an inductor, the reactance of the inductor increases, resulting in greater opposition to the flow of current.
To know more about Frequency visit-
brainly.com/question/14320803
#SPJ11
Carbon atoms with an atomic mass of 12.0 u are mixed with another element which is unknown. In the mass spectrometer, the carbon atoms describe a path with a radius of 22.4 cm and those of the other element a path with a radius of 26.2 cm. Determine what the other element is.
The unknown element is oxygen (O) as it has a relative atomic mass of 16.0 u and is the only element with an atomic mass close enough to carbon (12.0 u) to cause a deviation of 3.8 cm in the radius of the path.
The radius of the path of a charged particle in a mass spectrometer is inversely proportional to the mass-to-charge ratio of the particle. Carbon atoms with an atomic mass of 12.0 u and an unknown element were mixed and introduced to the mass spectrometer. The carbon atoms describe a path with a radius of 22.4 cm, and those of the other element a path with a radius of 26.2 cm.
According to the question, the deviation in the radius of the path is 3.8 cm. Therefore, the mass-to-charge ratio of the other element to that of carbon can be determined using the ratio of the radii of their paths. Since the atomic mass of carbon is 12.0 u, the unknown element must have an atomic mass of 16.0 u. This is because oxygen (O) is the only element with an atomic mass close enough to carbon (12.0 u) to cause a deviation of 3.8 cm in the radius of the path.
Learn more about oxygen here:
https://brainly.com/question/14474079
#SPJ11
The
speed of a car is found by dividing the distance traveled by the
time required to travel that distance. Consider a car that traveled
18.0 miles in 0.969 hours. What's the speed of car in km / h
(k
The speed of the car is approximately 29.02 km/h, given that it traveled 18.0 miles in 0.969 hours.
To convert the speed of the car from miles per hour to kilometers per hour, we need to use the conversion factor that 1 mile is equal to 1.60934 kilometers.
Given:
Distance traveled = 18.0 milesTime taken = 0.969 hoursTo calculate the speed of the car, we divide the distance traveled by the time taken:
Speed (in miles per hour) = Distance / Time
Speed (in miles per hour) = 18.0 miles / 0.969 hours
Now, we can convert the speed from miles per hour to kilometers per hour by multiplying it by the conversion factor:
Speed (in kilometers per hour) = Speed (in miles per hour) × 1.60934
Let's calculate the speed in kilometers per hour:
Speed (in kilometers per hour) = (18.0 miles / 0.969 hours) × 1.60934
Speed (in kilometers per hour) = 29.02 km/h
Therefore, the speed of the car is approximately 29.02 km/h.
The complete question should be:
The speed of a car is found by dividing the distance traveled by the time required to travel that distance. Consider a car that traveled 18.0 miles in 0.969 hours. What's the speed of car in km / h (kilometer per hour)?
To learn more about speed, Visit:
https://brainly.com/question/13262646
#SPJ11
An ohmmeter must be inserted directly into the current path to make a measurement. TRUE or FALSE?
Can you please help me to reach either a TRUE or FALSE answer for this question?
I am VERY confused at this point as I have received conflicting answers. Thank you.
The statement is False. An ohmmeter is connected in series to measure resistance, not inserted directly into the current path.
False. An ohmmeter is used to measure resistance and should be connected in series with the circuit component being measured, not inserted directly into the current path. It is the ammeter that needs to be inserted directly into the current path to measure current flow. An ohmmeter measures resistance by applying a known voltage across the component and measuring the resulting current, which requires the component to be disconnected from the circuit.
To know more about ohmmeter, click here:
brainly.com/question/12051670
#SPJ11
Question 20 Aplande soda bottle is empty and sits out in the sun heating the air indie Now you put the cap on lightly and put the bottle in the fridge What happens to the bottle as tools ait expands a
When the empty soda bottle sits out in the sun, the air inside the bottle heats up and expands. However, when you put the cap on lightly and place the bottle in the fridge, the air inside the bottle cools down. As a result, the air contracts, leading to a decrease in volume inside the bottle.
When the bottle is exposed to sunlight, the air inside the bottle absorbs heat energy from the sun. This increase in temperature causes the air molecules to gain kinetic energy and move more vigorously, resulting in an expansion of the air volume. Since the cap is lightly placed on the bottle, it allows some air to escape if the pressure inside the bottle becomes too high.
However, when you place the bottle in the fridge, the surrounding temperature decreases. The air inside the bottle loses heat energy to the colder environment, causing the air molecules to slow down and lose kinetic energy. This decrease in temperature leads to a decrease in the volume of the air inside the bottle, as the air molecules become less energetic and occupy less space.
When the empty soda bottle is exposed to sunlight, the air inside expands due to the increase in temperature. However, when the bottle is placed in the fridge, the air inside contracts as it cools down. The cap on the bottle allows for the release of excess pressure during expansion and prevents the bottle from bursting.
To learn more about kinetic energy ,visit
brainly.com/question/8101588
#SPJ11
Blood takes about 1.55 s to pass through a 2.00 mm long capillary. If the diameter of the capillary is 5.00μm and the pressure drop is 2.65kPa, calculate the viscosity η of blood. Assume η= (N⋅s)/m 2 laminar flow.
By using Poiseuille's law,the viscosity (η) of blood is approximately [tex]3.77 * 10^{-3} Ns/m^2[/tex]
To calculate the viscosity η of blood, we can use Poiseuille's law, which relates the flow rate of a fluid through a tube to its viscosity, pressure drop, and tube dimensions.
Poiseuille's law states:
Q = (π * ΔP *[tex]r^4[/tex]) / (8 * η * L)
Where:
Q = Flow rate of blood through the capillary
ΔP = Pressure drop across the capillary
r = Radius of the capillary
η = Viscosity of blood
L = Length of the capillary
Given:
Length of the capillary (L) = 2.00 mm = 0.002 m
Diameter of the capillary = 5.00 μm = [tex]5.00 * 10^{-6} m[/tex]
Pressure drop (ΔP) = 2.65 kPa = [tex]2.65 * 10^3 Pa[/tex]
First, we need to calculate the radius (r) using the diameter:
r = (diameter / 2) = [tex]5.00 * 10^{-6} m / 2 = 2.50 * 10^{-6} m[/tex]
Substituting the values into Poiseuille's law:
Q = (π * ΔP *[tex]r^4[/tex]) / (8 * η * L)
We know that the blood takes 1.55 s to pass through the capillary, which means the flow rate (Q) can be calculated as:
Q = Length of the capillary / Time taken = 0.002 m / 1.55 s
Now, we can rearrange the equation to solve for viscosity (η):
η = (π * ΔP *[tex]r^4[/tex]) / (8 * Q * L)
Substituting the given values:
η =[tex](\pi * 2.65 * 10^3 Pa * (2.50 * 10^{-6} m)^4) / (8 * (0.002 m / 1.55 s) * 0.002 m)[/tex]
Evaluating this expression:
η ≈ [tex]3.77 * 10^{-3} Ns/m^2[/tex]
Therefore, the viscosity (η) of blood is approximately [tex]3.77 * 10^{-3} Ns/m^2[/tex]
To know more about Poiseuille's law, here
brainly.com/question/31595067
#SPJ4