Answer:
Let's do this step by step
Since there are 72 apples, the pears are 3 times as much. So multiply by 3
[tex]72 * 3=216[/tex]
So there would be 216 pears.
Now for Kiwis
They are 2 times as much, Multiply by 2
[tex]72 *2=144[/tex]
All together with the kiwi and the pears are
[tex]216+144=360[/tex]
And all the fruits together it would be
432
Hope this helps
Answer by
Fishylikeswater
The number of pears, apples and kiwis Peggy has is 216, 72 and 144 respectively.
How many pears does she have?Number of apples = 72 apples
Number of kiwis = 2 × 72
= 144 kiwis
Number of pears = 72 × 3
= 216 pears
Therefore, Peggy has 144 kiwis
Read more on Algebra:
https://brainly.com/question/4344214
#SPJ2
solve this...question
Answer: 5. P = (-4, 6) R = (-4, -4)
6. (a) a = 4, b = 3 (b) BC = 8 (c) B = (3, 4)
7. (a) m = 4, n = 6 (b) PQ = (-2, 6) (c) SR = (2, -6)
Step-by-step explanation:
5. The distance from Q (4, 0) to A (0, 3) is 4 left and up 3.
So the distance from A to P is 4 left (0 - 4) and up 3 (3 + 3)
--> P = (-4, 6)
Similarly, the distance from Q (4, 0) to B (0, -2) is 4 left and down 2.
So the distance from A to P is 4 left (0 - 4) and down 2 (-2 - 2)
--> P = (-4, -4)
6. Follow the same steps as #5 (above) to get the following coordinates:
A = (-3, 4) B = (3, 4)
D = (-3,-4) C = (3, -4)
a) a = 4, b = 3
b) BC = 2(4) = 8
c) B = (3,4)
7. Follow the same steps as #5 (above) to get the following coordinates:
P = (-4, 6) Q = (0, 6)
S = (0, -6) R = (4, -6)
a) m = 4, n = 6
b) midpoint PQ = (-2, 6)
c) midpoint SR = (2, -6)
The perimeter of a rectangular field that measures 2 feet by 18 inches is _________ ft. A. 40 B. 7 C. 84 D. 6
Answer:
B. 7
Step-by-step explanation:
Which relation is not a function?
a) y = 1x + 7
by=- 4(x + 3)2 + 10
c) -2y = - 3x + 9
d) x2 + y2 = 25
Answer:
x^2+y^2=25
Step-by-step explanation:
x^2+y^2=25 graphs a circle. A relation is a function if every x only has one y value. This is not true in a circle.
Answer:
d) x^2 + y^2 = 25.
Step-by-step explanation:
D is the equation of a circle so it fails the vertical line test for a function. If a relation is a function then any vertical line passing through it's graph will only intersect it once. This is not true of a circle.
Round $535 998 to the nearest HUNDRED
Answer: 536,000
Step-by-step explanation:
Answer:
536 000
Step-by-step explanation:
because it izz what it izz
in the function y+3=(1/3x)^2, what effect does the number 1/3 have on the graph, as compared to the graph of y=x^2
Answer:
I think the answer is it stretches the graph horizontally by a factor of 3.
Step-by-step explanation:
Answer: it stretches the graph horizontally by a factor of 3
Step-by-step explanation: I got it correct on a-pex
Help me asap i really need this
Answer:
3
Step-by-step explanation:
6/2
I hope this is right :)
A: What are the solutions to the quadratic equation 9x2 + 64 = 0?
B: What is the factored form of the quadratic expression 9x2 +64?
Select one answer for question A, and select one answer for question B.
B: (3x + 81)(x - 1)
B: (x-8)(3x-8)
B:(3x8)(3x + 8)
B: (3x - 81)(3x + 81)
Ax = or x = -1
A:x =
A: x = i orx = -
O A x = 1
Answer:
B: (3x + 81)(x - 1)
Step-by-step explanation:
describe the solution to the system of equations graphed below.
Answer:
Step-by-step explanation:
The answer is B, the solution to your equation is at (2,1). Your solution is where the two lines meet.
Answer:
The second option.
Step-by-step explanation:
When two lines intersect, they usually intersect at just one point (unless they are parallel, where they never intersect; or no solutions when they infinitely intersect).
According to the graph provided, the lines are intersecting at one point: (2, 1).
So, your answer will be the second option!
Hope this helps!
The farmer loaded 2/5 of the boxes onto the truck. He needed to load 345 more boxes of tomatoes onto the truck. How many boxes of tomatoes de he have to load altogether?
Answer:
575 boxes
Step-by-step explanation:
Let the total number of boxes = x
The farmer already loaded [tex]\dfrac25[/tex] of the boxes onto the truck.
Therefore, the remainder [tex]=1-\dfrac25=\dfrac35[/tex]
Since he needed to load 345 more boxes of tomatoes onto the truck.
[tex]\dfrac35 \times x =345\\3x=345\times5\\x=(345\times5) \div 3\\x=575[/tex]
The farmer had 575 boxes of tomatoes to load altogether.
Of a squirrel's hidden nuts, for every 555 that get found, there are 333 that do not get found. A squirrel hid 404040 nuts all together. How many of the nuts do not get found?
Answer:
151515 not found
Step-by-step explanation:
For every 555 nuts found, 333 are not. This gives a total of 888.
555 + 333 = 888
Divide the total number of nuts by this number.
404040/888 = 455
Multiply the number that get found and the number that don't by the number calculated above.
555 × 455 = 252525
333 × 455 = 151515
252525 nuts will be found and 151515 will not.
Answer:
15
Step-by-step explanation:
Find the coefficient of x^2 in the expression of (x - 7)^5. a. -3430 b. -3034 c. 3034 d. 3430
Answer:
let me know when you have the anwser
Step-by-step explanation:
Which graph represents the solution set of the system of linear inequalities below?
Answer:
C
Step-by-step explanation:
First you find which line is which.
The one with 5x in it is the steepest one, and we have to be above it due to the >.
The one with 2x in it is the least steep, and we have to be below it due to the <.
Graph C satisfies both these restrictions.
Complete the table for different values of X in the polynomial expression -7x^2+32x+240. Then, determine the optimal price that the taco truck should sell it’s tacos for. Assume whole dollar amounts for the tacos.
Answer:
$6
Step-by-step explanation:
Tico’s taco truck is trying to determine the best price at which to sell tacos, the only item on the menu, to maximize profits. The taco trucks owner decided to adjust the price per taco and record data on the number of tacos sold each day with each new price. When the taco truck charges $4 for a taco, it sells an average of 60 tacos in one day. With every $1 increase in the price of a taco, the number of tacos sold per day decreases by 7.
The owner can calculate the daily revenue using the polynomial expression (-7x²+32x+240),
where x is the number of $1 increases in the taco price. In this activity, you’ll interpret and manipulate this expression and the scenario it represents.
x is number of $1 increments above the initial price of $4. (x=0 means a price of $4, x=1 means a price of $5, etc.)
The revenue is -7x²+32x+240. The average number of tacos sold is the revenue divided by the price.
For example, if x = 0, then the taco price is $4, the revenue is $240, and the number of tacos sold is 60.
If x = 1, then the taco price is $5, the revenue is $265, and the number of tacos sold is 53.
Each time x increases by 1, the number of tacos sold decreases by 7.
Continuing:
[tex]\left[\begin{array}{cccc}Value\ of\ x&Taco\ Price\ (\$)&Average\ Number\ of\ Tacos\ Sold&Daily\ Revenue\ (\$)\\0&4&60&240\\1&5&53&265\\2&6&46&276\\3&7&39&273\\4&8&32&256\\5&9&25&225\\6&10&18&180\end{array}\right][/tex]
The optimal price is $6. At this price, the revenue is a maximum at $276.
John couldn't recall the Serial number on his expensive bicycle. He remembered that
there were 6 different digits, none used more than once, but couldn't remember what
digits were used. He decided to write down all of the possible 6 digit numbers from 0 to 9. How many different possibilities will he have to create?
Answer:
151,200
Step-by-step explanation:
The possible set of numbers will be 151200
What is permutation?A permutation is an arrangement of objects in a definite order.
Given that, John want to find his bicycle's number, so he decided to write down all the possible 6-digit numbers from 0 to 9.
Here, we will use permutation to find the possible numbers,
Formula =
ⁿPₓ = n! / (n-x)!
Therefore,
¹⁰P₆ = 10! / (10-6)!
= 10! / 4!
= 10 × 9 × 8 × 7 × 6 × 5 = 151200
Hence, the possible set of numbers will be 151200
Learn more about permutation, click;
https://brainly.com/question/1216161
#SPJ2
A school contains 357 boys and 323 girls.
If a student is chosen at random, what is the probability that is a girl?
Correct your answer to 2 decimal places.
Answer:
19/40
Step-by-step explanation:
just divide the number of girls by the total number of students.
323/680 = 19/40 or 0.48
i need the answer right now
Bettina is measuring the food for her farm animals. She has 265 grams of corn, 500 grams of hay, and 495 grams of oats. What is the total weight in kilograms?
Answer
260 kilograms
Step-by-step explanation:
the correct answer is 260 kg
Answer: 12.6 kg
Step-by-step explanation: add the amounts of food for her farm, and just search for how many kg are in 1,260 grams
The mean per capita income is 19,292 dollars per annum with a variance of 540,225. What is the probability that the sample mean would be less than 19269 dollars if a sample of 499 persons is randomly selected? Round your answer to four decimal places.
Answer:
The probability is 0.2423.
Step-by-step explanation:
Given mean per capita = 19292 dollars
Given the variance = 540225
Now find the probability that the sample mean will be less than 19269 dollar when the sample is 499.
Below is the calculation:
[tex]\bar{X} \sim N(\mu =19292, \ \sigma = \frac{\sqrt{540225}}{\sqrt{499}}) \\\bar{X} \sim N(\mu =19292, \ \sigma = 32.90) \\\text{therefore the probability is:} \\P (\bar{X}< 19269) \\\text{Convert it to standard normal variable.} \\P(Z< \frac{19269-19292}{32.90}) \\P(Z< - 0.6990) \\\text{Now getting the probability from standard normal table}\\P(Z< -0.6990) = 0.2423[/tex]
Which of these systems of linear equations has no solution?
2 x + 8 y = 15. 4 x + 16 y = 30.
2 x minus y = 18. 4 x + 2 y = 38.
4 x + 7 y = 17. 8 x minus 14 y = 36.
4 x minus 3 y = 16. 8 x minus 6 y = 34.
Answer:
4 x minus 3 y = 16. 8 x minus 6 y = 34 has no solution
Step-by-step explanation:
Examine the system
2 x + 8 y = 15
4 x + 16 y = 30
We see that these equations are identical except for a factor of 2, and thus recognize that this system has infinitely many solutions.
Next, look at the system
2 x minus y = 18
4 x + 2 y = 38
If we divide the second equation by 2, we get the system
2x - y = 18
2x + y = 19
Combining these two equations, we get 4x = 37, which has a solution.
Third, analyze the system
4 x + 7 y = 17 => 8x + 14y = 34
8 x minus 14 y = 36 => 8x - 14y = 36, or 16x = 70, which has a solution
Finally, analyze the system
4 x minus 3 y = 16 => -8x + 6y = -32
8 x minus 6 y = 34 => 8x - 6y = 34
If we combine these two equations, we get 0 + 0 = 2, which is, of course, impossible. This system has no solution.
Answer:
4 x minus 3 y = 16. 8 x minus 6 y = 34 has no solution. the 4th option.
Step-by-step explanation:
Can someone please help me I really need help please help me
Answer:
18.87 square cm.
Step-by-step explanation:
The area of the rectangle will be (4 + 4) * 4, since the length of the rectangle would be the diameter of the circle, and the width of the rectangle would be the radius. (4 + 4) * 4 = 8 * 4 = 32 square cm.
Then, we can calculate the area of the semicircle. The area of a circle is pi * r^2, so the area of a semicircle will be half of that. pi * (4^2) / 2 = pi * 16 / 2 = 8pi. 8 * 3.14159265 = 25.1327412 square cm.
The shaded area of the middle of the shape will then be 32 - 25.1327412 = 6.8672588 square cm.
The two triangles will have the same area. Their bases will be 14 minus the diameter of the circle, then divide that by 2 to get each separate base. 14 - 8 = 6 / 2 = 3. The heights of the triangles will be the radius of the circle, or 4 cm.
1/2 * 3 * 4 = 1/2 * 12 = 12/2 = 6. That is the area of one triangle, so the area of both triangles would be 6 * 2 = 12 square cm.
6.8672588 + 12 = 18.8672588, or 18.87 square cm.
Hope this helps!
Answer:
(44 - 8(pi)) cm^2 Exact area
18,9 cm^2 Approximate area
Step-by-step explanation:
The shaded area is the area of the trapezoid minus the area of the semicircle.
area of trapezoid = (b1 + b2)h/2
area of semicircle = (pi)(r^2)/2
The triangles at both sides are right triangles. Each of the horizontal legs has length (14 cm - 8 cm)/2 = 3 cm. Each of the vertical legs is congruent to the radius of the semicircle.
b1 = lower base = 14 cm
b2 = upper base = 14 cm - 3 cm - 3 cm = 8 cm
shaded area = (b1 + b2)h/2 - (pi)(r^2)/2
= (14 cm + 8 cm)(4 cm)/2 - (pi)(4 cm)^2 / 2
= 44 cm^2 - 8(pi) cm^2
= (44 - 8(pi)) cm^2 Exact area
= 18.9 cm^2 Approximate area
Find the equation of the given parabola in vertex and standard form. Describe in words all transformations that have been applied to the graph of y=x^2 to obtain the given graph of the transformed function
Answer: [tex]a)\ \text{Vertex}:y=-\dfrac{3}{2}(x+1)^2+6[/tex]
[tex]b)\ \text{Standard}:y=-\dfrac{3}{2}x^2-3x=\dfrac{9}{2}[/tex]
c) Transformations: reflection over the x-axis,
vertical stretch by a factor of 3/2,
horizontal shift 1 unit to the left,
vertical shift 6 units up
Step-by-step explanation:
Intercept form: y = a(x - p)(x - q)
Vertex form: y = a(x - h)² + k
Standard form: y = ax² + bx + c
We can see that the new vertex is (-1, 6). Use the Intercept form to find the vertical stretch: y = a(x - p)(x - q) where p, q are the intercepts.
p = -3, q = 1, (x, y) = (-1, 6)
a(-1 + 3)(-1 -1) = 6
a (2)(-2) = 6
a = -6/4
a = -3/2
a) Input a = -3/2 and vertex (h, k) = (-1, 6) into the Vertex form to get:
[tex]y=-\dfrac{3}{2}(x+1)^2+6[/tex]
b) Input a = -3/2 into the Intercept form and expand to get the Standard form:
[tex]y=-\dfrac{3}{2}(x+3)(x-1)\\\\\\y=-\dfrac{3}{2}(x^2+2x-3)\\\\\\y=-\dfrac{3}{2}x^2-3x+\dfrac{9}{2}[/tex]
c) Use the Vertex form to identify the transformations:
[tex]y=-\dfrac{3}{2}(x+1)^2+6[/tex]
a is negative: reflection over the x-axis|a| = 3/2: vertical stretch by a factor of 3/2h = -1: horizontal shift left 1 unitk = +6: vertical shift up 6 units3. Write an exponential equation for each coin that will give the coin's value, V, at any time, t. Use
the formula:
Vt) = P(1 + r) where V(t) is the value of the coin in t years, Please HELP! help on number three
Answer:
Coin A : [tex]V(t)=25(1.07)^t[/tex]
Coin B : [tex]V(t)=40(1.05)^t[/tex]
Step-by-step explanation:
Consider the given formula is
[tex]V(t)=P(1+r)^t[/tex]
where, P is current value, V(t) is the value of the coin in t years, and r is annual appreciation rate.
For coin A, current value is 25 dollars and annual appreciation rate is 7%.
[tex]V(t)=25(1+0.07)^t[/tex]
[tex]V(t)=25(1.07)^t[/tex]
For coin B, current value is 40 dollars and annual appreciation rate is 5%.
[tex]V(t)=40(1+0.05)^t[/tex]
[tex]V(t)=40(1.05)^t[/tex]
Therefore, the required equations for coin A and B are [tex]V(t)=25(1.07)^t[/tex] and [tex]V(t)=40(1.05)^t[/tex] respectively.
show that the straight line x+y does not intersect the curve x^2-8x+y^2-12y+6=0 if k^2-20k+8>0
Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar. Penelope has $1,459.75 in her bank account. To pay her bills, she writes 4 checks in the amounts of $200.25, $359.45, $125, and $299.35. Then she deposits $375 into her account. Penelope’s account balance after she pays her bills and makes the deposit is $ .
Answer:
$850.7
Step-by-step explanation:
Penelope has $1459.75 in her account.
She pays different amount that are given above.
i.e.
=1459.75-200.25-359.45-125-299.35
=475.7
Then she deposit $375
Now,
=475.7+375
=850.7
So, She has $850.7 in her account after she pays her bills and makes deposits.
Answer:
$805.7 OwO
Step-by-step explanation:
I need help with this question please help
Answer:
6, 10, 8 is the correct answer.
Step-by-step explanation:
Given that, the recursive function:
[tex]a_n=a_{n-1}-(a_{n-2}-4)[/tex]
6th term, [tex]a_{6} =0[/tex]
5th term, [tex]a_{5} =-2[/tex]
To find:
First three terms of the sequence = ?
Solution:
Putting n = 6 in the recursive function:
[tex]a_6=a_{5}-(a_{4}-4)\\\Rightarrow 0=-2-(a_{4}-4)\\\Rightarrow 2=-(a_{4}-4)\\\Rightarrow -2=(a_{4}-4)\\\Rightarrow -2+4=a_{4}\\\Rightarrow a_{4}=2[/tex]
Putting n = 5 in the recursive function:
[tex]a_5=a_{4}-(a_{3}-4)\\\Rightarrow -2=2-(a_{3}-4)\\\Rightarrow -2-2=-(a_{3}-4)\\\Rightarrow 4=(a_{3}-4)\\\Rightarrow a_{3}=8[/tex]
Putting n = 4 in the recursive function:
[tex]a_4=a_{3}-(a_{2}-4)\\\Rightarrow 2=8-(a_{2}-4)\\\Rightarrow 2-8=-(a_{2}-4)\\\Rightarrow 6=(a_{2}-4)\\\Rightarrow a_{2}=10[/tex]
Putting n = 3 in the recursive function:
[tex]a_3=a_{2}-(a_{1}-4)\\\Rightarrow 8=10-(a_{1}-4)\\\Rightarrow 8-10=-(a_{1}-4)\\\Rightarrow -2=-(a_{1}-4)\\\Rightarrow 2=a_{1}-4\\\Rightarrow a_{1}=4+2\\\Rightarrow a_{1}=6[/tex]
So, first, second and third terms are 6, 10, 8.
two cars are traveling down the highway with the same speed if the first car increases its speed by 1km/hr and the other car decreases its speed by 10km/hr,then the first car will cover the same distance in 2hrs as the second car in 3 hrs, what is the speed of the cars
Answer:
Their speed is 32 km/h.
Step-by-step explanation:
Since they're at the same speed, we can assign a variable to their speed called "x". When the first car increases its speed by 1 km/h, its new speed is "x + 1", while the other car decreases its speed by 10 km/h, so its new speed is "x - 10". The distance's formula can be expressed as below:
[tex]\text{distance} = \text{speed}*\text{time}\\[/tex]
With the modifications to their speed, the distance the first car covers in 2 h and the distance the second car covers in 3 h is shown below:
[tex]\text{distance}_{car1} = (x + 1)*2 \\\text{distance}_{car1} = 2*x + 2[/tex]
[tex]\text{distance}_{car2} = \text{speed}*\text{time}\\\text{distance}_{car2} = (x - 10)*3\\\text{distance}_{car2} = 3*x - 30[/tex]
Since the distance covered by them must be the same, we can find the value of x that makes the expressions equal.
[tex]2*x + 2 = 3*x - 30\\2*x - 3*x = -30 -2\\-x = -32\\x = 32[/tex]
Their speed is 32 km/h.
y = 5x + 2 3x = –y + 10 What is the solution to the system of equations
Answer:
x = 1 , y = 7
Step-by-step explanation:
Solve the following system:
{y = 5 x + 2 | (equation 1)
3 x = 10 - y | (equation 2)
Express the system in standard form:
{-(5 x) + y = 2 | (equation 1)
3 x + y = 10 | (equation 2)
Add 3/5 × (equation 1) to equation 2:
{-(5 x) + y = 2 | (equation 1)
0 x+(8 y)/5 = 56/5 | (equation 2)
Multiply equation 2 by 5/8:
{-(5 x) + y = 2 | (equation 1)
0 x+y = 7 | (equation 2)
Subtract equation 2 from equation 1:
{-(5 x)+0 y = -5 | (equation 1)
0 x+y = 7 | (equation 2)
Divide equation 1 by -5:
{x+0 y = 1 | (equation 1)
0 x+y = 7 | (equation 2)
Collect results:
Answer: {x = 1 , y = 7
Answer:
D) (1,7)
Step-by-step explanation:
just took the test
The width of a rectangle is 38 centimeters. The perimeter is at least 692 centimeters. Write an inequality that represents all possible values for the length of the rectangle. Then solve the inequality.
Answer:
See bolded / underlined / italicized below -
Step-by-step explanation:
This is a great question!
If x were the length of this rectangle, then we could conclude the following,
2( 38 ) + 2( x ) > 692,
As you can see there is a greater than sign present, as the perimeter is at least 692 centimeters. In this case the perimeter is given to be at least 692 centimeters, but can also be calculated through double the width and double the length together. And of course we are given the width to be 38 cm -
2( 38 ) + 2x > 692,
76 + 2x > 692,
2x > 616,
x > 308
Solution = Length should be at least 308 cm
( The attachment below is not drawn to scale )
Please help me, tysm if you do :)
The length of a rectangle is 2 cm less than three times the width. The perimeter of the rectangle is 92 cm. Find the dimensions of the rectangle. A. 11, 31 cm
B. 12, 34 cm
C. 12, 38 cm
D. 13, 37 cm
Answer:
B.12.32
Step-by-step explanation:
Let y be the widht of this triangle and x the length of itFrom the first information we can write :
3y-x=2
from the second one :
2y+2x= 92
so our equation are :
3y-x=22y+2x= 92Multiply the first one by 2 then add it to the second one to get rid of x :
6y-2x= 42y+2x+6y-2x= 92+4 8y = 96 y= 12 replace y by 12 to calculate the value of x x= 34The solution for the following system of linear equation 3m-2n=13 is (2,-1) true or false
Answer:
Not True
Step-by-step explanation:
>_<
[tex]\text{To find your answer, plug in the values to the equation and solve:}\\\\3(2)-2(-1)=13\\\\\text{Solve:}\\\\3(2)-2(-1)=13\\\\6+2=13\\\\8=13\\\\\text{8 does not equal 13, therefore making the equation FALSE}\\\\\boxed{\text{False}}[/tex]