Answer:
{1,5}
Step-by-step explanation:
The intersection of the sets are all of the numbers that appear in both sets. In this case, the only numbers that appear in both are 1 and 5.
Answer:
{ 1,5}
Step-by-step explanation:
The intersection is what the two sets have in common
{1, 5, 10, 15}∩ {1, 3, 5, 7}
= { 1,5}
Find the length of UC
Answer: 25 units
Step-by-step explanation:
Simply do 40(UN)-15(CN) to get 25(UC)
Hope it helps <3
Answer:
25Option D is the correct option
Solution,
Here,
UN = 40
CN = 15
Now,
UN = UC + CN
plugging the values,
40 = UC + 15
-UC = 15 - 40
-UC = -25
The difference sign (-) will be cancelled in both sides:
UC = 25
hope this helps...
Good luck on your assignment..
A right triangle is shown. The length of the hypotenuse is 4 centimeters and the lengths of the other 2 sides are congruent. The hypotenuse of a 45°-45°-90° triangle measures 4 cm. What is the length of one leg of the triangle? 2 cm 2 StartRoot 2 EndRoot cm 4 cm 4 StartRoot 2 EndRoot cm
Answer:
The leg measures 2 I believe
Step-by-step explanation:
Since the squares of the legs equal C ([tex]A^{2} +B^{2} = C^{2}[/tex]) the square root of 16 would be 4.
The Pythagorean theorem is a basic relationship between the three sides of a right triangle. The length of one leg of the triangle is 2√2 cm.
What is the Pythagoras theorem?The Pythagorean theorem, sometimes known as Pythagoras' theorem, is a basic relationship between the three sides of a right triangle in Euclidean geometry. The size of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides, according to this rule.
[tex]\rm (Hypotenuse)^2 =(Perpendicular)^2 + (Base)^2[/tex]
Let the length of the perpendicular be x.
Given the length of the hypotenuse is 4 centimeters, while the length of the other two sides is the same, therefore, the length of the other two sides is x. Therefore, using the Pythagorus theorem we can write,
[tex]\rm (Hypotenuse)^2 =(Perpendicular)^2 + (Base)^2[/tex]
[tex]4^2 = x^2+x^2\\\\16=2x^2\\\\8=x^2\\\\x= 2\sqrt2[/tex]
Hence, the length of one leg of the triangle is 2√2 cm.
Learn more about Pythagoras Theorem:
https://brainly.com/question/14461977
#SPJ2
If 16 student drove to school out of a class of 21, what percentage drove to school
Your answer would be 76.2% to the nearest tenth.
We can find this by first dividing 16 by 21 to get 0.7619. which is the proportion as a decimal. To convert this into a percentage, we need to multiply it by 100 to get 76.19% = 76.2% to the nearest tenth.
I hope this helps! Let me know if you have any questions :)
if p+4/p-4, what is the value of p
Answer:
p = 2
Step-by-step explanation:
p + 4/p - 4
multiplying through by p,
p×p + 4/p ×p - 4×p
p² + 4 - 4p = 0
p² - 4p + 4 = 0
factorizing,
p(p - 2) -2(p - 2) =0
(p -2)(p -2) =0
p-2 =0
p=2
Given a triangle with: a =
150, A = 75°, and C = 30°
Using the law of sines gives: c = 0
Answer:
[tex] c = 77.6 [/tex]
Step-by-step explanation:
You may have entered the measure of a side as the measure of an angle.
[tex] \dfrac{\sin A}{a} = \dfrac{\sin C}{c} [/tex]
[tex] \dfrac{\sin 75^\circ}{150} = \dfrac{\sin 30^\circ}{c} [/tex]
[tex] c\sin 75^\circ = 150 \sin 30^\circ [/tex]
[tex] c = \dfrac{150 \sin 30^\circ}{\sin 75^\circ} [/tex]
[tex] c = 77.6 [/tex]
You are correct. Good job!
The slope of the line passing through the points (7, 5) and (21, 15) is
Answer:
5/7
Step-by-step explanation:
We are given two points so we can find the slope by using
m = (y2-y1)/(x2-x1)
= (15-5)/(21-7)
=10/14
5/7
A survey was taken of students in math classes to find
out how many hours per day students spend on social
media. The survey results for the first-, second-, and
third-period classes are as follows:
First period: 2, 4, 3, 1, 0, 2, 1, 3, 1, 4, 9, 2, 4, 3,0
Second period: 3, 2, 3, 1, 3, 4, 2, 4, 3, 1, 0, 2, 3, 1, 2
Third period: 4, 5, 3, 4, 2, 3, 4, 1, 8, 2, 3, 1, 0, 2, 1, 3
Which is the best measure of center for second period
and why?
Simon swapped of 2/5
his 40 marbles for 9 of
Saqib's. How many has
Simon got now?
Answer:
33
Step-by-step explanation:
2/5x40=16
40-16=24
24+9=33
33 marbles
2/5 is .4
Multiply .4 by 40 to get 16
Subtract 16 from 40 to get 24
Add 9 to 24 to get 33
Hope it helps <3
(If it does, please mark brainliest, only need 1 more to get rank up :) )
2{ 3[9 + 4(7 -5) - 4]}
Answer:
2{3[9+4(7-5)-4]}
2{3[9+4(2)-4]}
2{3[13(2)-4]}
2{3[26-4]}
2{3[22]}
2{66}
132
Step-by-step explanation:
The lengths of adult males' hands are normally distributed with mean 190 mm and standard deviation is 7.4 mm. Suppose that 45 individuals are randomly chosen. Round all answers to 4 where possible.
What is the distribution of ¯xx¯? ¯xx¯ ~ N(,)
For the group of 45, find the probability that the average hand length is less than 189.
Find the third quartile for the average adult male hand length for this sample size.
For part b), is the assumption that the distribution is normal necessary?
Answer:
a. The distribution of the sample means is normal with mean 190 mm and standard deviation 1.1031 mm.
b. The probability that the average hand length is less than 189 is P(M<189)=0.1823.
c. The third quartile for the average adult male hand length for this sample size is M_75=190.7440.
d. The assumption of normality is not necessary as the sampling distribution will tend to have a bell shaped independently of the population distribution.
Step-by-step explanation:
We have a normal distribution, with mean 190 and standard deviation 7.4.
We take samples of size n=45 from this population.
Then, the sample means will have a distribution with the following parameters:
[tex]\mu_s=\mu=190\\\\ \sigma_s=\dfrac{\sigma}{\sqrt{n}}=\dfrac{7.4}{\sqrt{45}}=\dfrac{7.4}{6.7082}=1.1031[/tex]
The probability that the sample mean is less than 189 can be calculated as:
[tex]z=\dfrac{M-\mu}{\sigma/\sqrt{n}}=\dfrac{189-190}{7.4/\sqrt{45}}=\dfrac{-1}{1.1031}=-0.9065\\\\\\P(M<189)=P(z<-0.9065)=0.1823[/tex]
The third quartile represents the value of the sample where 75% of the data is to the left of this value. It means that:
[tex]P(M<M^*)=0.75[/tex]
The third quartile corresponds to a z-value of z*=0.6745.
[tex]P(z<z^*)=0.75[/tex]
Then, we can calculate the sample mean for the third quartile as:
[tex]M=\mu_s+z^*\sigma_s=190+0.6745\cdot 1.1031=190+0.7440=190.7440[/tex]
The assumption of normality is not necessary as the sampling distribution will tend to have a bell shaped independently of the population distribution.
Find the area of the irregular figure. Round to the nearest hundredth.
Answer:
23.14
Step-by-step explanation:
Solve for the area of the figure by dividing it up into parts. You can divide into a half-circle and a triangle
Half-Circle
The diameter is 6. This means that the radius is 3. Use the formula for area of a circle. Divide the answer by two since you only have a half-circle.
A = πr²
A = π(3)²
A = 9π
A = 28.274
28.274/2 = 14.137
Triangle
The base is 3 and the height 6. Use the formula for area of a triangle.
A = 1/2bh
A = 1/2(6)(3)
A = 3(3)
A = 9
Add the two areas together.
14.137 + 9 = 23.137 ≈ 23.14
The area is 23.14.
Answer:
23 sq. unitsStep-by-step explanation:
The figure consists of a semi circle and a triangle
Area of the figure = Area of semi circle + Area of triangle
Area of semi circle is 1/2πr²
where r is the radius
radius = diameter/2
radius = 6/2 = 3
Area of semi circle is
1/2π(3)²
1/2×9π
14.14 sq. units
Area of a triangle is 1/2×b×h
h is the height
b is the base
h is 6
b is 3
Area of triangle is
1/2×3×6
9 sq. units
Area of figure is
14.14 + 9
= 23.14
Which is 23 sq. units to the nearest hundredth
Hope this helps you.
I got the answer but I really don’t know if it’s correct or not, please help this is due today
A metal alloy is 27% copper. Another metal alloy is 52% copper. How much of each should be used to make 22 g of an alloy that is 36.09% copper?
Answer:
14.0008 grams of 27% and 7.9992 grams of 52%
Step-by-step explanation:
We know that in the end we want 22 grams of 36.09% copper, meaning in the end we want 36.09% of the 22 grams to be copper. This means we can multiply 36.09% by 22 to see how much copper we want in the end.
To find out how much of each alloy to use, we can multiply the percentage of copper in the alloy be a variable x, which will be how much of that alloy we use. For the other alloy, we can multiply the percentage by (22-x) grams as we know in the end we want 22 grams and if x+y=22, than y would equal 22-x, and in this case this simplifies it to only use a single variable.
Now finally, making the equation we get 27x+52(22-x)=36.09(22). We can solve this and get 27x+1144-52x=793.98, then combine like terms and get -25x+1144=793.98. Next you have to subtract 1144 from both sides to get -25x=-350.02. Dividing both sides by -25 we get x=14.0008. This is how many grams of 27% copper was used. Now we can subtract this from 22 to get how much 52% copper was used, and we get 22-14.0008=7.9992 grams of 52% copper.
Heather is writing a quadratic function that represents a parabola that touches but does not cross the x-axis at x = –6. Which function could Heather be writing? f(x) = x2 + 36x + 12 f(x) = x2 – 36x – 12 f(x) = –x2 + 12x + 36 f(x) = –x2 – 12x – 36
Answer:
f(x) = –x^2 – 12x – 36
Step-by-step explanation:
The parent function, x^2, touches the x-axis at x=0. Translating it 6 units left replaces x with x-(-6) = x+6, so the function is ...
f(x) = (x+6)^2 = x^2 +12x +36
Reflecting the graph across the x-axis doesn't change the x-intercept, so Heather could be writing ...
f(x) = -x^2 -12x -36
It's D.
I have to have at least 20 characters.
which point is a solution to the inequality shown in the graph? (3,2) (-3,-6)
The point that is a solution to the inequality shown in the graph is:
A. (0,5).
Which points are solutions to the inequality?The points that are on the region shaded in blue are solutions to the inequality.
(3,2) and (-3,-6) are on the dashed line, hence they are not solutions. Point (5,0) is to the right of the line, hence it is not a solution, and point (0,5) is a solution, meaning that option A is correct.
More can be learned about inequalities at https://brainly.com/question/25235995
#SPJ1
The owner of a fish market has an assistant who has determined that the weights of catfish are normally distributed, with mean of 3.2 pounds and standard deviation of 0.8 pound. If a sample of 4 fish is taken. What is the probability that the sample means will be more than 3.4 pounds?
Answer:
[tex]P(\bar X>3.4) = 0.385[/tex]
Step-by-step explanation:
Relevant Data provided according to the question is as follows
[tex]\mu[/tex] = 3.2
[tex]\sigma[/tex] = 0.8
n = 4
According to the given scenario the calculation of probability that the sample means will be more than 3.4 pounds is shown below:-
[tex]z = \frac{\bar X - \mu}{\frac{a}{\sqrt{n} } }[/tex]
[tex]P(\bar X>3.4) = 1 - P(\bar X\leq 3.4)[/tex]
[tex]= 1 - P \frac{\bar X - \sigma}{\frac{a}{\sqrt{n} } } \leq \frac{3.4 - \sigma}{\frac{a}\sqrt{n} }[/tex]
Now, we will solve the formula to reach the probability that is
[tex]= 1 - P \frac{\bar X - 3.2}{\frac{0.8}{\sqrt{4} } } \leq \frac{3.4 - 3.2}{\frac{0.8}\sqrt{4} }[/tex]
[tex]= 1 - P (Z \leq \frac{0.2}{0.4})[/tex]
[tex]= 1 - P (Z \leq 0.5})[/tex]
[tex]= 1 - \phi (0.5)[/tex]
= 1 - 0.6915
= 0.385
Therefore the correct answer is
[tex]P(\bar X>3.4) = 0.385[/tex]
So, for computing the probability we simply applied the above formula.
Answer:
its 21
Step-by-step explanation:
its not 21 i really dont know
Figure B is a scaled copy of Figure A.
What is the scale factor from Figure A to Figure B?
Please answer fast!!!!
Answer:
4
Step-by-step explanation:
We are told that figure B is a scaled copy of B, which means figure A was enlarged by a certain scale factor to get a similar figure as A, now referred to as figure B.
The scale factor = ratio of any two corresponding sides of both similar figures.
Thus,
Scale factor of the similar figures given = 40/10 = 4.
This means that, figure A was scaled up by 4 times its original size to get figure B. Each side of figure B is 4 × the corresponding side in figure A.
Scale factor = 4
Approximating square roots
Go to le
Without using a calculator, choose the statement that best describes the value of 215.
Choose 1 answer:
The value of 215 is between 13 and 13.5.
The value of 215 is between 13.5 and 14.
The value of 215 is between 14 and 1.5.
The value of v 215 is between 14.5 and 15.
Step-by-step explanation:
We know that
14^2=196, and
15^2=225
so we know that sqrt(215) is between 14 and 15.
How do we know if it is between 14.5 and 15?
we need to know the value of 14.5^2, which we can calculate in the head as follows:
The square of all numbers ending in 5 such as 15 can be calculated by breaking up the 5 and the preceding digit(s),
The preceding digit is 1. We multiply 1 by the next integer, 2 to get 2.
Attach 25 to 2 gives us 225 (as we saw above.
Example, 145*145 = 14*15 | 25 = 210 | 25 = 21025
so
14.5^2 = 210.25, which gives the more precise answer that
14.5^2 < 215 < 15^2, or
14.5 < sqrt(215) < 15 (fourth choice)
Since the third choice says sqrt(215) is between 14 and 1.5 (not 15), so the third choice is incorrect.
Note: if we eliminated the third choice, i.e. discard the likelihood of typo in the question, the only one left is the fourth choice.
At the Arctic weather station, a warning light turns on if the outside temperature is below -25 degrees Fahrenheit. Which inequality models this situation?
Answer:
T < -25
Step-by-step explanation:
Was correct on TTM
A superintendent of a school district conducted a survey to find out the level of job satisfaction among teachers. Out of 53 teachers who replied to the survey, 13 claim they are satisfied with their job.
z equals fraction numerator p with hat on top minus p over denominator square root of begin display style fraction numerator p q over denominator n end fraction end style end root end fraction
The superintendent wishes to construct a significance test for her data. She find that the proportion of satisfied teachers nationally is 18.4%.
What is the z-statistic for this data? Answer choices are rounded to the hundredths place.
a. 2.90
b. 1.15
c. 1.24
d. 0.61
Answer:
b. 1.15
Step-by-step explanation:
The z statistics is given by:
[tex]Z = \frac{X - p}{s}[/tex]
In which X is the found proportion, p is the expected proportion, and s, which is the standard error is [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Out of 53 teachers who replied to the survey, 13 claim they are satisfied with their job.
This means that [tex]X = \frac{13}{53} = 0.2453[/tex]
She find that the proportion of satisfied teachers nationally is 18.4%.
This means that [tex]p = 0.184[/tex]
Standard error:
p = 0.184, n = 53.
So
[tex]s = \sqrt{\frac{0.184*0.816}{53}} = 0.0532[/tex]
Z-statistic:
[tex]Z = \frac{X - p}{s}[/tex]
[tex]Z = \frac{0.2453 - 0.184}{0.0532}[/tex]
[tex]Z = 1.15[/tex]
The correct answer is:
b. 1.15
expand the linear expression 4(10x -4)
Answer:
40x - 16
Step-by-step explanation:
(see attached for reference)
By utilizing the distributive property:
4(10x -4)
= (10x)(4) -4 (4)
= 40x - 16
Answer:
4x10x= 40x -4x4=-16 40xtimes-4<-----------thats your answer
Step-by-step explanation:
4
The equation of a circle is x2 + y2 + x + Dy+ E= 0. If the radius of the circle is decreased without changing the coordinates of the center point, how are the coefficients CD,
and E affected?
O A CD, and E are unchanged.
Answer:
Step-by-step explanation:
in x²+y²+2gx+2fy+c=0
center=(-g,-f)
radius=√((-g)²+(-f)²-c)
if center is not changed ,then c will change .
Here only coefficients of E will change.
The Marine Corps is ordering hats for all the new recruits for the entire next year. Since they do not know the exact hat sizes they will use statistics to calculate the necessary numbers. This is the data from a sample of the previous recruits: 7.2, 6.8, 6, 6.9, 7.8, 6.2, 6.4, 7.2, 7.4, 6.8, 6.7, 6, 6.4, 7, 7, 7.6, 7.6, 6, 6.8, 6.4 a. Display the data in a line plot and stem-and-leaf plot. (These plots don’t need to be pretty; just make sure I can make sense of your plots.) Describe what the plots tell you about the data. b. Find the mean, median, mode, and range. c. Is it appropriate to use a normal distribution to model this data? d. Suppose that the Marine Corps does know that the heights of new recruits are approximately normally distributed with a mean of 70.5 inches and a standard deviation of 1.5 inches. Use the mean and standard deviation to fit the new recruit heights to a normal distribution and estimate the following percentages. d1. What percent of new recruits would be taller than 72 inches? d2. What percent of new recruits would be shorter than 67.5 inches? d3. What percent of new recruits would be between 69 and 72 inches? d4. Between what two heights would capture 95% of new recruits?? By using statistics are the numbers changed to whole numbers?
Answer:
60-|||
61-
62-||
62
64-|||
65
66
67-|
68-|||
69-|
70-||
71
72-||
73
74-||
75
76-||
77
78-|
This is a stem and leaf plot.
mean is 138.2/20=6.91
median of 20 is half way between 10th and 11th or an ordered plot. The 10th and the 11th are both 6.8, so that is the median.
6.4 and 6.8 are modes, but they are so minimal I would say there isn't a clear mode.
The range is 1.8, the largest-the smallest
This is not a normal distribution.
z=(x-mean) sd
a.(72-70.5)/1.5=1 so z>1 is the probability or 0.1587.
b.shorter than 67.5 inches is (67.5-70.5)/1.5 or z < = -2, and probability is 0.0228.
c.Between 69 and 72 inches is +/- 1 sd or 0.6826.
95% is 1.96 sd s on either side or +/- 1.96*1.5=+/- 2.94 interval on either side of 70.5
(67.56, 73.44)units in inches
Step-by-step explanation:
I need help urgent plz someone help me solved this problem! Can someone plz help I’m giving you 10 points! I need help plz help me! Will mark you as brainiest!
Step-by-step explanation:
Log T = 11.8 + 1.5.M (with T is the amount of energy released by the earthquake, Log refers to the logarithm to the base 10)
-->T = [tex]10^{11.8 +1.5*6.5}[/tex] ≈3.458 *[tex]10^{21}[/tex]
Answer: 2.00 x 10¹⁰⁹
Step-by-step explanation:
log T = 11.8 + 1.5M
Given: M = 6.5
log T = 11.8 + 1.5(6.5)
log T = 11.8 + 9.75
log T = 21.55
T = 10²¹⁻⁵⁵
T = 1.995 x 10¹⁰⁹
T = 2.00 x 10¹⁰⁹ rounded to the nearest hundredth
Prepare the journal entries on December 31, 2019, for the 40 extended contracts (the first year of the revised 3-year contract).
This is not the complete question, the complete question is:
P18-1 (LO2,3) (Allocate Transaction Price, Upfront Fees)
Tablet Tailors sells tablet PCs combined with Internet service, which permits the tablet to connect to the Internet anywhere and set up a Wi-Fi hot spot. It offers two bundles with the following terms.
1. Tablet Bundle A sells a tablet with 3 years of Internet service. The price for the tablet and a 3-year Internet connection service contract is $500. The standalone selling price of the tablet is $250 (the cost to Tablet Tailors is $175). Tablet Tailors sells the Internet access service independently for an upfront payment of $300. On January 2, 2017, Tablet Tailors signed 100 contracts, receiving a total of $50,000 in cash.
2. After 2 years of the 3-year contract, Tablet Tailors offers a modified contract and extension incentive. The extended contract services are similar to those provided in the first 2 years of the contract. Signing the extension and paying $90 (which equals the standalone selling of the revised Internet service package) extends access for 2 more years of Internet connection. Forty Tablet Bundle A customers sign up for this offer.
INSTRUCTION
a) Prepare the journal entries when the contract is signed on January 2, 2019, for the 40 extended contracts. Assume the modification does not result in a separate performance obligation.
b) Prepare the journal entries on December 31, 2019, for the 40 extended contracts (the first year of the revised 3-year contract).
Answer:
Step-by-step explanation:
(A)
Date Particulars Debit Credit
2-Jan-19 Cash 3600
Unearned Service Revenue 3600
40 * 90 = 3600
services in the extended period are the same as the services that were provided in the original contract period. As they are not distinct hence the modifications will be considered as part of the original contract.
(B)
Date Particulars Debit Credit
31-Dec-19 Unearned Service Revenue 2413
Service revenue 2413
internet = 300, price = 550, connection service = 500
(300/550) * 500 = 273
so
Original internet service contract = 40 * 273 = 10,920
Revenue recognized in 1st two years = 10,920 * 2/3 = 7280
Remaining service at original rates = 10920 - 7280 = 3640
Extended service = 3600
3640 + 3600 = $7240
7240 / 3 = $2413
The additive inverse of x/y is
Answer
The additive inverse is
-x/-y
That is equal to x/y
hope this may help you
Evaluate the expression.........
Answer:
9
Step-by-step explanation:
p^2 -4p +4
Let p = -1
(-1)^1 -4(-1) +4
1 +4+4
9
What is the complete factorization of x^2+4x-45?
Answer:(x-5)(x+9)
Step-by-step explanation:
You want two numbers that can give you -45 in multiplication and two numbers that can add to 4 and that is -5 and 9.
Answer: (x - 5)(x + 9)
If you have to solve, x=5 or x= -9
Step-by-step explanation: You need two numbers that multiply to be 45.
(could be 3 × 15 or 5 × 9) . The difference between the two factors needs to be 4, the coefficient of the middle term.
9 - 5 =4, so use those. -45 has a negative sign, so one of the factors must be + and the other - Since the 4 has the + sign, the larger factor has to be + so the difference will be positive.
So (x -5)(x + 9) are your factors. You can FOIL to be sure
x × x += x² . x × 9 = 9x . -5 × x = -5x . -5 × 9 = -45 .
Combine the x terms: 9x -5x = +4x
The two triangles are similar. What is the value of x? Enter your answer in the box. x =
Answer:
the value of x=12
Step-by-step explanation:
d) the answer is d on edg.
How many multiples of 4, that are smaller than 1,000, do not contain any of the digits 6, 7, 8, 9 or 0?
Answer:
44
Step-by-step explanation:
11×4
hope it helped!