Mr. Taylor filled out a bracket for the NCAA National Tournament. Based on his knowledge of college basketball, he has a 0.54 probability of guessing any one game correctly. (a) What is the probability Mr. Taylor will pick all 32 of the first round games correctly

Answers

Answer 1

Answer:

The probability is [tex]2.7327 \times 10^{-9}[/tex]

Step-by-step explanation:

The probability of guessing correctly, P = 0.54

Probability of not guessing correctly, q = 1 – P  

q = 1 – 0.54 = 0.46

Number of trials, n = 32

Now calculate the probability that Mr. Taylor will pick 32 correctly in first round of the game.

Below is the calculation using binomial distribution.

[tex]Probability = \left ( _{k}^{n}\textrm{} \right )P^{k}(1-P)^{(n-k)} \\= \left ( _{32}^{32}\textrm{} \right )0.54^{32}(0.46)^{(32-32)} \\= 0.54^{32} \\= 2.7327 \times 10^{-9}[/tex]


Related Questions

The amount of pollutants that are found in waterways near large cities is normally distributed with mean 8.5 ppm and standard deviation 1.4 ppm. 18 randomly selected large cities are studied. Round all answers to two decimal places.
A. xBar~ N( ____) (____)
B. For the 18 cities, find the probability that the average amount of pollutants is more than 9 ppm.
C. What is the probability that one randomly selected city's waterway will have more than 9 ppm pollutants?
D. Find the IQR for the average of 18 cities.Q1 =
Q3 =
IQR:
2. X ~ N(30,10). Suppose that you form random samples with sample size 4 from this distribution. Let xBar be the random variable of averages. Let ΣX be the random variable of sums. Round all answers to two decimal places.
A. xBar~ N(___) (____)
B. P(xBar<30) =
C. Find the 95th percentile for the xBar distribution.
D. P(xBar > 36)=
E. Q3 for the xBar distribution =

Answers

Answer:

1)

A) [tex]\frac{}{X}[/tex] ~ N(8.5;0.108)

B) P([tex]\frac{}{X}[/tex] > 9)= 0.0552

C) P(X> 9)= 0.36317

D) IQR= 0.4422

2)

A) [tex]\frac{}{X}[/tex] ~ N(30;2.5)

B) P( [tex]\frac{}{X}[/tex]<30)= 0.50

C) P₉₅= 32.60

D) P( [tex]\frac{}{X}[/tex]>36)= 0

E) Q₃: 31.0586

Step-by-step explanation:

Hello!

1)

The variable of interest is

X: pollutants found in waterways near a large city. (ppm)

This variable has a normal distribution:

X~N(μ;σ²)

μ= 8.5 ppm

σ= 1.4 ppm

A sample of 18 large cities were studied.

A) The sample mean is also a random variable and it has the same distribution as the population of origin with exception that it's variance is affected by the sample size:

[tex]\frac{}{X}[/tex] ~ N(μ;σ²/n)

The population mean is the same as the mean of the variable

μ= 8.5 ppm

The standard deviation is

σ/√n= 1.4/√18= 0.329= 0.33 ⇒σ²/n= 0.33²= 0.108

So: [tex]\frac{}{X}[/tex] ~ N(8.5;0.108)

B)

P([tex]\frac{}{X}[/tex] > 9)= 1 - P([tex]\frac{}{X}[/tex] ≤ 9)

To calculate this probability you have to standardize the value of the sample mean and then use the Z-tables to reach the corresponding value of probability.

Z= [tex]\frac{\frac{}{X} - Mu}{\frac{Sigma}{\sqrt{n} } } = \frac{9-8.5}{0.33}= 1.51[/tex]

Then using the Z table you'll find the probability of

P(Z≤1.51)= 0.93448

Then

1 - P([tex]\frac{}{X}[/tex] ≤ 9)= 1 - P(Z≤1.51)= 1 - 0.93448= 0.0552

C)

In this item, since only one city is chosen at random, instead of working with the distribution of the sample mean, you have to work with the distribution of the variable X:

P(X> 9)= 1 - P(X ≤ 9)

Z= (X-μ)/δ= (9-8.5)/1.44

Z= 0.347= 0.35

P(Z≤0.35)= 0.63683

Then

P(X> 9)= 1 - P(X ≤ 9)= 1 - P(Z≤0.35)= 1 - 0.63683= 0.36317

D)

The first quartile is the value of the distribution that separates the bottom 2% of the distribution from the top 75%, in this case it will be the value of the sample average that marks the bottom 25% symbolically:

Q₁: P([tex]\frac{}{X}[/tex]≤[tex]\frac{}{X}[/tex]₁)= 0.25

Which is equivalent to the first quartile of the standard normal distribution. So first you have to identify the first quartile for the Z dist:

P(Z≤z₁)= 0.25

Using the table you have to identify the value of Z that accumulates 0.25 of probability:

z₁= -0.67

Now you have to translate the value of Z to a value of [tex]\frac{}{X}[/tex]:

z₁= ([tex]\frac{}{X}[/tex]₁-μ)/(σ/√n)

z₁*(σ/√n)= ([tex]\frac{}{X}[/tex]₁-μ)

[tex]\frac{}{X}[/tex]₁= z₁*(σ/√n)+μ

[tex]\frac{}{X}[/tex]₁= (-0.67*0.33)+8.5=  8.2789 ppm

The third quartile is the value that separates the bottom 75% of the distribution from the top 25%. For this distribution, it will be that value of the sample mean that accumulates 75%:

Q₃: P([tex]\frac{}{X}[/tex]≤[tex]\frac{}{X}[/tex]₃)= 0.75

⇒ P(Z≤z₃)= 0.75

Using the table you have to identify the value of Z that accumulates 0.75 of probability:

z₃= 0.67

Now you have to translate the value of Z to a value of [tex]\frac{}{X}[/tex]:

z₃= ([tex]\frac{}{X}[/tex]₃-μ)/(σ/√n)

z₃*(σ/√n)= ([tex]\frac{}{X}[/tex]₃-μ)

[tex]\frac{}{X}[/tex]₃= z₃*(σ/√n)+μ

[tex]\frac{}{X}[/tex]₃= (0.67*0.33)+8.5=  8.7211 ppm

IQR= Q₃-Q₁= 8.7211-8.2789= 0.4422

2)

A)

X ~ N(30,10)

For n=4

[tex]\frac{}{X}[/tex] ~ N(μ;σ²/n)

Population mean μ= 30

Population variance σ²/n= 10/4= 2.5

Population standard deviation σ/√n= √2.5= 1.58

[tex]\frac{}{X}[/tex] ~ N(30;2.5)

B)

P( [tex]\frac{}{X}[/tex]<30)

First you have to standardize the value and then look for the probability:

Z=  ([tex]\frac{}{X}[/tex]-μ)/(σ/√n)= (30-30)/1.58= 0

P(Z<0)= 0.50

Then

P( [tex]\frac{}{X}[/tex]<30)= 0.50

Which is no surprise since 30 y the value of the mean of the distribution.

C)

P( [tex]\frac{}{X}[/tex]≤ [tex]\frac{}{X}[/tex]₀)= 0.95

P( Z≤ z₀)= 0.95

z₀= 1.645

Now you have to reverse the standardization:

z₀= ([tex]\frac{}{X}[/tex]₀-μ)/(σ/√n)

z₀*(σ/√n)= ([tex]\frac{}{X}[/tex]₀-μ)

[tex]\frac{}{X}[/tex]₀= z₀*(σ/√n)+μ

[tex]\frac{}{X}[/tex]₀= (1.645*1.58)+30= 32.60

P₉₅= 32.60

D)

P( [tex]\frac{}{X}[/tex]>36)= 1 - P( [tex]\frac{}{X}[/tex]≤36)= 1 - P(Z≤(36-30)/1.58)= 1 - P(Z≤3.79)= 1 - 1 = 0

E)

Q₃: P([tex]\frac{}{X}[/tex]≤[tex]\frac{}{X}[/tex]₃)= 0.75

⇒ P(Z≤z₃)= 0.75

z₃= 0.67

z₃= ([tex]\frac{}{X}[/tex]₃-μ)/(σ/√n)

z₃*(σ/√n)= ([tex]\frac{}{X}[/tex]₃-μ)

[tex]\frac{}{X}[/tex]₃= z₃*(σ/√n)+μ

[tex]\frac{}{X}[/tex]₃= (0.67*1.58)+30= 31.0586

Q₃: 31.0586

An Undergraduate Study Committee of 6 members at a major university is to be formed from a pool of faculty of 18 men and 6 women. If the committee members are chosen randomly, what is the probability that precisely half of the members will be women?

Answers

Answer:

5/33649= approx 0.00015

Step-by-step explanation:

Total number of outcomes are  C24 6= 24!/(24-6)!/6!=19*20*21*22*23*24/(2*3*4*5*6)= 19*14*22*23

Half of the Committee =3 persons. That mens that number of the women in Commettee=3.  3 women from 6 can be elected C6  3  ways ( outputs)=

6!/3!/3!=4*5*6*/2/3=20

So the probability that 3 members of the commettee are women  is

P(women=3)= 20/(19*14*22*23)=5/(77*19*23)=5/33649=approx 0.00015

The probability that precisely half of the members will be women is;

P(3 women) = 0.1213

This question will be solved by hypergeometric distribution which has the formula;

P(x) = [S_C_s × (N - S)_C_(n - s)]/(NC_n)

where;

S is success from population

s is success from sample

N is population size

n is sample size

We are give;

s = 3 women (which is precisely half of the members selected)

S = 6 women

N = 24 men and women

n = 6 people selected

Thus;

P(3 women) = (⁶C₃ * ⁽¹⁸⁾C₍₃₎)/(²⁴C₆)

P(3 women) = (20 * 816)/134596

P(3 women) = 0.1213

Read more at; https://brainly.com/question/5733654

I need help for the solution​

Answers

Answer:

[tex]\boxed{ \ dY_t=(2\theta+2\psi Y_t+\phi^2)dt+2\phi \sqrt{Y_t}dW_t\ }[/tex]

Step-by-step explanation:

it is a long time I have not applied Ito's lemma

I would say the following

for [tex]f(x)=x^2[/tex]

f'(x)=2x

f''(x)=2

so using Ito's lemma we can write that

[tex]dY_t=2V_tdV_t+\phi^2dt[/tex]

[tex]dY_t=2(\theta+\psi V_t^2)dt+2\phi V_tdW_t+\phi^2dt[/tex]

[tex]dY_t=(2\theta+2\psi V_t^2+\phi^2)dt+2\phi V_tdW_t[/tex]

so it comes

[tex]dY_t=(2\theta+2\psi Y_t+\phi^2)dt+2\phi \sqrt{Y_t}dW_t[/tex]

angle ∠DAC= angle ∠BAD. What is the length of BD? Round to one decimal place.

Answers

Answer: 3.9

Step-by-step explanation: Khan Academy

The length of BD if The angle ∠ DAC is equal to the angle ∠ BAD is 3.92.

What is the triangle?

Three straight lines coming together create a triangle. There are three sides and three corners on every triangle (angles). A triangle's vertex is the intersection of two of its sides. Any one of a triangle's three sides can serve as its base, however typically the bottom side is used.

Given:

The angle ∠ DAC = angle ∠ BAD

As we can see that the triangle BAD and triangle DAC are similar By SAS similarity,

AC / AB = CD / BD  (By the proportional theorem of similarity)

5.6 / 5.1 = 4.3 / BD

1.09 = 4.3 / BD

BD = 4.3 / 1.09

BD = 3.92

Thus, the length of BD is 3.92.

To know more about Triangles:

https://brainly.com/question/16886469

#SPJ2

Pet Place sells pet food and supplies including a popular bailed hay for horses. When the stock of this hay drops to 20 bails, a replenishment order is placed. The store manager is concerned that sales are being lost due to stock outs while waiting for a replenishment order. It has been previously determined that demand during the lead-time is normally distributed with a mean of 15 bails and a standard deviation of 6 bails. The manager would like to know the probability of a stockout during replenishment lead-time. In other words, what is the probability that demand during lead-time will exceed 20 bails

Answers

Answer:

The probability that demand during lead-time will exceed 20 bails is 0.2033.

Step-by-step explanation:

We are given that it has been previously determined that demand during the lead-time is normally distributed with a mean of 15 bails and a standard deviation of 6 bails.

Let X = demand during the lead-time

So, X ~ Normal([tex]\mu=15, \sigma^{2} = 6^{2}[/tex])

The z-score probability distribution for the normal distribution is given by;

                               Z  =  [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu=[/tex] population mean demand = 15 bails

           [tex]\sigma[/tex] = standard deviation = 6 bails

Now, the probability that demand during lead-time will exceed 20 bails is given by = P(X > 20 bails)

       P(X > 20 bails) = P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{20-15}{6}[/tex] ) = P(Z > 0.83) = 1 - P(Z [tex]\leq[/tex] 0.83)

                                                             = 1 - 0.7967 = 0.2033

What is the slope of the line with the two
points A(-4, 8) and B(-9, 12)?

Answers

Answer:

slope = -4/5

Step-by-step explanation:

A line passes two points (x1, y1) and (x2, y2).

The slope of this line can be calculate by the formula:

s = (y2 - y1)/(x2 - x1)

=>The line that passes A(-4, 8) and B(-9, 12) has the slope:

s = (12 - 8)/(-9 - -4) = 4/(-5) = -4/5

Hope this helps!

A research organization keeps track of what citizens think is the most important problem facing the country today. They randomly sampled a number of people in 2003 and again in 2009 using a different random sample of people in 2009 than in 2003 and asked them to choose the most important problem facing the country today from the following​ choices, war,​ economy, health​ care, or other. Which of the following is the correct test to use to determine if the distribution of​ "problem facing this country​today" is different between the two different​ years?

A.

Use a​ chi-square test of homogeneity.

B.

Use a paired​ t-test.

C.

Use a​ two-sample z-test for proportions.

D.

Use a​ chi-square goodness-of-fit test.

Answers

Answer:

Step-by-step explanation:

From the information given, the population is divided into sub groups. Each group would consist of citizens picking a particular choice as the most important problem facing the country. The choices are the different categories. In this case, the null hypothesis would state that the distribution of proportions for all categories is the same in each population. The alternative hypothesis would state that the distributions is different. Therefore, the correct test to use to determine if the distribution of​ "problem facing this country ​today" is different between the two different​ years is

A) Use a​ chi-square test of homogeneity.

Number of multiples of 7 between 200 and 1000

Answers

Answer:

114

Step-by-step explanation:

Answer:

144Step-by-step explanation:

Find the area of the smaller sector.
A
6 in
030°
Area = [? ]in?
B
Round your answer to the nearest hundredth.

Answers

Answer:

9.42 in²

Step-by-step explanation:

The area of whole circle S=pi*R²    , where pi is appr. 3.14,  R= 6 in

S= 3.14*6² =113.04 in²

The area of smaller sector is Ssec=S/360*30=113,04/12=9.42 in²

The area of the smaller sector with a central angle of 30 degrees and a radius of 6 inches is 9.42478 square inches.

To find the area of a sector, you can use the formula:

Area of sector = (θ/360) × π × r²

where θ is the central angle in degrees, r is the radius of the sector.

The central angle is 30 degrees and the radius is 6 inches.

Plugging these values into the formula:

Area of sector = (30/360) × π × 6²

= (1/12) × π × 36

= (1/12) × 3.14159 × 36

= 9.42478 square inches

To learn more on Area of sector click:

https://brainly.com/question/29055300

#SPJ2

ali's typing rate between 8:00 am and noon is 48 words per minute . after lunch a lunch break, Ali's typing rate between 1:00 pm and 4:00 pm is 2,040 words per hour . what is Ali's average typing rate per minute for the whole time she works?

Answers

Answer:

41 word/min

Step-by-step explanation:

Before noon Ali works:

4 hours= 4*60 min= 240 min

She types:

240*48= 11520 words

After lunch she works:

4 hours

She types:

4*2040= 8160 words

Total Ali works= 4+4= 8 hours= 480 min

Total Ali types= 11520+8160= 19680 words

Average typing rate= 19680 words/480 min= 41 word/min

Antipsychotic drugs are widely prescribed for conditions such as schizophrenia and bipolar disease. An article reported on body composition and metabolic changes for individuals who had taken various antipsychotic drugs for short periods of time. (a) The sample of 41 individuals who had taken aripiprazole had a mean change in total cholesterol (mg/dL) of 3.55, and the estimated standard error sD n was 3.478. Calculate a confidence interval with confidence level approximately 95% for the true average increase in total cholesterol under these circumstances. (Round your answers to two decimal places.)

Answers

Answer:

95% for the true average increase in total cholesterol under these circumstances

(-2.306 , 9.406)

Step-by-step explanation:

Step(i):-

Given sample size 'n' =41

Mean of the sample(x⁻)  = 3.55

The estimated standard error

                                             [tex]S.E = \frac{S.D}{\sqrt{n} }[/tex]

Given  estimated standard error ( S.E) = 3.478

Level of significance ∝=0.05

Step(ii):-

95% for the true average increase in total cholesterol under these circumstances

[tex](x^{-} - t_{0.05} S.E ,x^{-} + t_{0.05} S.E)[/tex]

Degrees of freedom

ν= n-1 = 41-1 =40

t₀.₀₅ = 1.6839

95% for the true average increase in total cholesterol under these circumstances

[tex](x^{-} - t_{0.05} S.E ,x^{-} + t_{0.05} S.E)[/tex]

( 3.55 - 1.6839 ×3.478 ,3.55 + 1.6839 ×3.478 )

(3.55 - 5.856 , 3.55 + 5.856)

(-2.306 , 9.406)

Conclusion:-

95% for the true average increase in total cholesterol under these circumstances

(-2.306 , 9.406)

The manager of the Danvers-Hilton Resort Hotel stated that the mean guest bill for a weekend is $600 or less. A member of the hotel's accounting staff noticed that the total charges for guest bills have been increasing in recent months. The accountant will use a sample of future weekend guest bills to test the manager's claim. (a) Which form of the hypotheses should be used to test the manager's claim? H0: - Select your answer - Ha: - Select your answer - The member of the hotel's accounting staff suspects that the total charges for guest bills have Select in recent months. To test the manager’s claim, the staff member will conduct Select test of the population Select . (b) What conclusion is appropriate when H0 cannot be rejected? When H0 cannot be rejected, there Select enough evidence to conclude that the total charges for guest bills have Select in recent months. (c) What conclusion is appropriate when H0 can be rejected? When H0 can be rejected, there Select enough evidence to conclude that the total charges for guest bills have Select in recent m

Answers

Answer:

a) Null hypothesis (H0): the mean guest bill for a weekend is $600.

Alternative hypothesis (Ha): the mean guest bill for a weekend is significantly bigger than $600.

b) When H0 can not be rejected, the conclusion is that there is no enough evidence to claim that the mean guest bill had increased from $600.

c) When the H0 is rejected, they have enough evidence to claim that the mean guest bill is significantly bigger than $600.  

Step-by-step explanation:

a) The accountant, as he wants to see if there is evidence to support the claim that the mean guest bill has increased significanty, should write the hypothesis like that:

Null hypothesis (H0): the mean guest bill for a weekend is $600.

Alternative hypothesis (Ha): the mean guest bill for a weekend is significantly bigger than $600.

A sample of bills of the period in study needs to be taken in order to have a representation of the actual population of bills and then perform a t-test, as the sample mean and standard deviation will be used to perform the test.

b) When H0 can not be rejected, the conclusion is that there is no enough evidence to claim that the mean guest bill had increased from $600. If the P-value was low but not enough, they may take another sample to perform the test again or leave it like that.

c) When the H0 is rejected, they have enough evidence to claim that the mean guest bill is significantly bigger than $600.  

PLEASE ANSWER FAST !!!
What is the range of the function g for given domain ?

Answers

Answer:

The answer is B

Step-by-step explanation:

Hope this helps.. if not im sorry :(

The Downtown Parking Authority of Tampa, Florida, reported the following information for a sample of 228 customers on the number of hours cars are parked and the amount they are charged.
Number of Hours Frequency Amount Charged
1 21 $4
2 36 6
3 53 9
4 40 13
5 22 14
6 11 16
7 9 18
8 36 22
228
A. Convert the information on the number of hours parked to a probability distribution. Is this a discrete or a continuous probability distribution?
B. Find the mean and the standard deviation of the number of hours parked. How would you answer the question: How long is a typical customer parked?
C. Find the mean and the standard deviation of the amount charged.

Answers

Answer: A. This is a discrete probability distribution.

hours             probability

  1                      0.09        

 2                      0.16

 3                      0.23

 4                      0.17

 5                      0.09

 6                      0.05

 7                      0.04

 8                      0.16

B. E(X) = 4.12; σ = 2.21

C. μ = 12.75; s = 6.11

Step-by-step explanation: Probability Distribution is an equation or table linking each outcome of an experiment with its probability of ocurrence. For this case, since the experiment is performed a high number of times and in a long run, the relative frequency of the event is its probability. Therefore:

A. To convert to a probability distribution, find the probability through the frequency by doing:

Hour 1

P(X) = [tex]\frac{21}{228}[/tex] = 0.09

Hour 2

P(X) = [tex]\frac{36}{228}[/tex] = 0.16

Hour 3

P(X) = [tex]\frac{53}{228}[/tex] = 0.23

Hour 4

P(X) = [tex]\frac{40}{228}[/tex] = 0.17

Hour 5

P(X) = [tex]\frac{22}{228}[/tex] = 0.09

Hour 6

P(X) = [tex]\frac{11}{228}[/tex] = 0.05

Hour 7

P(X) = [tex]\frac{9}{228}[/tex] = 0.04

Hour 8

P(X) = [tex]\frac{36}{228}[/tex] = 0.16

The table will be:  

hours             probability

  1                      0.09        

 2                      0.16

 3                      0.23

 4                      0.17

 5                      0.09

 6                      0.05

 7                      0.04

 8                      0.16

This is a discrete distribution because it lists all the possible values that the discrete variable can be and its associated probabilities.

B. Mean for a probability distribution is calculated as:

E(X) = ∑[[tex]x_{i}[/tex].P([tex]x_{i}[/tex])]

E(X) = 1*0.09 + 2*0.16+3*0.23+4*0.17+5*0.09+6*0.05+7*0.04+8*0.16

E(X) = 4.12

Standard Deviation is:

σ = √∑{[x - E(x)]² . P(x)}

σ = [tex]\sqrt{(1-4.12)^{2}*0.09 + (2-4.12)^{2}*0.16 + ... + (7-4.12)^{2}*0.04 + (8-4.12)^{2}*0.16}[/tex]

σ = [tex]\sqrt{4.87}[/tex]

σ = 2.21

The average number of hours parked is approximately 4h with a standard deviation of approximately 2 hours, which means that a typical costumer parks between 2 to 6 hours.

C. Mean for a sample is given by: μ = ∑[tex]\frac{x_{i}}{n}[/tex] , which is this case is:

μ = [tex]\frac{4+6+9+13+14+16+18+22}{8}[/tex]

μ = 12.75

Standard Deviation of a sample: s = √[tex]\frac{1}{n-1}[/tex]∑([tex]x_{i}[/tex] - μ)²

s =  [tex]\sqrt{ \frac{(4-12.75)^{2} + (6-12.74)^{2} + ... + (18-12.75)^{2} + (22-12.75)^{2} }{8-1}}[/tex]

s = 6.11

The average amount charged is 12.75±6.11.

Please answer this question I give brainliest thank you! Number 8

Answers

Answer:

The third options

Step-by-step explanation:

Counting we can see that 10 students went to two or less states, and 10 went to three or more

Answer: half of the students has visited 2 or fewer states.

Explanation: if we count the total amount of students in the survey we can determine that there was a total of 20 students. Half of 20 is 10. Option three is true because if we count the amount of students who have visited 2 or fewer a states it adds up to 10 making that statement true

Find the area of a triangle that has the base of 5 inches and a height of 3 3/4 inches

Answers

Answer:

9.375 in^2

Step-by-step explanation:

A grocery store manager notices that this month her store sold a total of 597 gallons of ice cream, which represents a decrease of 15% from last month. On the other hand, her store sold 617 pounds of broccoli this month, which represents an increase of 21% from last month. How much ice cream and broccoli did the store sell last month? Round your answers to the nearest integer.

Answers

Answer:

(a)The total sales of ice-cream last month is 702 gallons.

(b)The total sales of broccoli last month is 510 pounds.

Step-by-step explanation:

Part A

Total Sales of gallons of ice cream this month = 597

Since it represents a decrease of 15% of last month's sales

Let the total sales of ice-cream last month =x

Then:

(100-15)% of x =597

85% of x=597

0.85x=597

x=597/0.85

x=702 (to the nearest integer)

The total sales of ice-cream last month is 702 gallons.

Part B

Total Sales of broccoli this month = 617 pounds

Since it represents an increase of 21% of last month's sales

Let the total sales of ice-cream last month =y

Then:

(100+21)% of y =617

121% of y=617

1.21y=617

y=617/1.21

y=510 (to the nearest integer)

The total sales of broccoli last month is 510 pounds.

Please answer this correctly

Answers

Answer:

1/2 (simplified)

Step-by-step explanation:

6 numbers (that's the total probability) --> 6 denominator

3 are odd (odd numbers in the probability) --> 3 numerator

so => 3/6

--> simplify

1/2

Hope this helps!

Dude this is the same answer as the previous question

Answer: 1/2

Black walnut trees contain chemicals that inhibit the growth of other plants. In a simple experiment to test whether this is true, you grow several tomato plants in soil with and without decomposing leaves from a black walnut tree. You collect data on plant height as a measure of growth. In this experiment, __________ is the independent variable, __________ is the dependent variable, and __________ is the control.

Answers

Answer:

Height of tomato plant is the dependent variable

Presence of walnut leaves in the soil is the independent variable

Tomato plants grown without walnut leaves is the control

Step-by-step explanation:

An independent variable is the variable in an experiment that can be altered to test for a certain result. It is independent, or does not change with change in other factors in the experiment. In this case, the presence or absence, or quantity of walnut available in the soil is the independent variable in the experiment.

A dependent variable varies, and depends on the independent variable. It is what is measured in the experiment. In this case, the height of the tomato plants is the dependent variable that depends on the presence, absence or quantity of walnut in the soil.

A control in an experiment, is a replicate experiment, that is manipulated in order to be able to test a single variable at a time. Controls are variables are held constant so as to minimize their effect on the system under study. In this case, some of the tomato plants are planted without walnut in the soil, to test the effect of the absence of the walnut in the soil.

Need help with this . The picture is enclosed

Answers

Answer: (fоg)(24)=5

Step-by-step explanation:

(fоg)(24) is f of g of 24. This means you plug in g(24) into f(x).

[tex]g(24)=\sqrt{24-8}[/tex]

[tex]g(24)=\sqrt{16}[/tex]

[tex]g(24)=4[/tex]

Now that we know g(24), we can plug it into f(x).

f(4)=2(4)-3

f(4)=8-3

f(4)=5

Consider random samples selected from the population of all female college soccer players in the United States. Assume the mean height of female college soccer players in the United States is 66 inches and the standard deviation is 3.5 inches. Which do you expect to have less variability (spread): a sampling distribution with sample size n

Answers

Answer:

Option C is correct.

The sampling distribution with sample size n=100 will have less variability.

Step-by-step explanation:

Complete Question

Consider random samples selected from the population of all female college soccer players in the United States. Assume the mean height of female college soccer players in the United States is 66 inches and the standard deviation is 3.5 inches. Which do you expect to have less variability (spread): a sampling distribution with sample size n = 100 or a sample size of n = 20.

A. Both sampling distributions will have the same variability.

B.The sampling distribution with sample size n=20 will have less variability

C. The sampling distribution with sample size n =100 will have less variability

Solution

The central limit theorem allows us to say that as long as

- the sample is randomly selected from the population distribution with each variable independent of each other and with the sample having an adequate enough sample size.

- the random sample is normal or almost normal which is guaranteed if the population distribution that the random sample was extracted from is normal or approximately normal,

1) The mean of sampling distribution (μₓ) is approximately equal to the population mean (μ)

μₓ = μ = 66 inches

2) The standard deviation of the sampling distribution or the standard error of the sample mean is related to the population standard deviation through

σₓ = (σ/√N)

where σ = population standard deviation = 3.5 inches

N = Sample size

And the measure of variability for a sampling distribution is the magnitude of the standard deviation of the sampling distribution.

For sampling distribution with sample size n = 100

σₓ = (3.5/√100) = 0.35 inch

For sampling distribution with sample size n = 20

σₓ = (3.5/√20) = 0.7826 inch

The standard deviation of the sampling distribution with sample size n = 20 is more than double that of the sampling distribution with sample size n = 100, hence, it is evident that the bigger the sample size, the lesser the standard deviation of the sampling distribution and the lesser the variability that the sampling distribution shows.

Hope this Helps!!!

What is the result of −18⋅16 2/3? Enter the result as an improper fraction and as a mixed number.

Answers

Answer:

-30000/100

300 0/1

Step-by-step explanation:

We have the following numbers -18 and 16 2/3, the first is an integer and the second is a mixed number, the first thing is to pass the mixed number to a decimal number.

16 2/3 = 16.67

We do the multiplication:

−18⋅16 2/3 = -300

We have an improper fraction is a fraction in which the numerator (top number) is greater than or equal to the denominator (bottom number), therefore it would be:

-30000/100

How mixed number would it be:

300 0/1

george cut a cake into 8 equal pieces. what is the unit fraction for the cake

Answers

Answer: 1/8

Step-by-step explanation:

Unit Fractions: A unit fraction is a rational number written as a fraction where the numerator is one and the denominator is a positive integer. A unit fraction is therefore the reciprocal of a positive integer, 1/n.

Example of Unit Fractions: 1/1, 1/2, 1/3, 1/4 ,1/5, etc.

Hope this helps! Please mark as brainliest!

The unit fraction of the cake is 1/8

What is a unit fraction?

A unit fraction is a rational number written as a fraction where the numerator is one and the denominator is a positive integer.

A unit fraction is therefore the reciprocal of a positive integer, 1/n.

Examples are 1/1, 1/2, 1/3, 1/4, 1/5, etc.

Given that, George cut a cake into 8 equal pieces, we need to find the unit fraction for the cake

Since, George cut the cake in 8 equal pieces so, 1 part will be shown by 1/8 of the cake, that mean 1/8 is one unit of the cake, we can say that 1/8 is the unit of the whole cake.

Hence, the unit fraction of the cake is 1/8

Learn more about unit fractions, click;

https://brainly.com/question/15326565

#SPJ3

Consider random samples of size 900 from a population with proportion 0.75 . Find the standard error of the distribution of sample proportions. Round your answer for the standard error to three decimal places. standard error

Answers

Answer:

[tex] SE =\sqrt{\frac{p(1-p)}{n}}[/tex]

And replacing we got:

[tex] SE=\sqrt{\frac{0.75*(1-0.75)}{900}}= 0.014[/tex]

Step-by-step explanation:

For this case we have the following info given:

[tex] n=900[/tex] represent the sample size selected

[tex]p = 0.75[/tex] represent the population proportion

We want to find the standard error and we can use the distribution for the sample proportion and for this case since the sample size is large enough and we satisfy np>10 and n(1-p) >10 we have:

[tex] \hat p \sim N (p,\sqrt{\frac{p(1-p)}{n}})[/tex]

And the standard error is given;

[tex] SE =\sqrt{\frac{p(1-p)}{n}}[/tex]

And replacing we got:

[tex] SE= \sqrt{\frac{0.75* (1-0.75)}{900}}= 0.014[/tex]

which of the following is equivalent to this?
a: b over a divided by d over c
b: a over b divided by d over c
c: b over a divided by d over c
d: b over a divided by c over d
please help me!

Answers

Answer:

b: a over b divided by do over c

Step-by-step explanation:

You can solve this by plugging in numbers for each variable.

For example: a=1, b=4, c=1, d=2

1/4 ÷ 1/2 = 0.125

If you plug in the numbers for all the equations listed, only 1/4 ÷ 2/1 = 0.125.

HELP ASAP GIVING BRANLIST!!

Answers

Answer:

Question 1: 3 - 5 hours.

Question 2: 0 - 1 hour

Step-by-step explanation:

Question 1: As you can see in the diagram, the guy is moving really slowly and is almost stuck, therefore, it is 3 - 5  hours.

Question 2:  In hours 0 - 1, you can see that the graph is the closest to vertical as it gets.

Find the Laplace transform F(s)=L{f(t)} of the function f(t)=sin2(wt), defined on the interval t≥0. F(s)=L{sin2(wt)}= help (formulas) Hint: Use a double-angle trigonometric identity. For what values of s does the Laplace transform exist? help (inequalities)

Answers

The Laplace transform of the function [tex]\frac{1}{2} (\frac{1}{s} - \frac{s}{s^2 + 4w^2} )[/tex] .

The Laplace transform exist when s > 0 .

Here, the given function is f(t) = sin²(wt) .

The Laplace transform of the the function f(t),

F(s) = f(t) = { [tex]{\frac{1}{2} \times 2sin^2(wt) }[/tex] }

F(s) = { [tex]\frac{1}{2} \times (1- cos2wt)[/tex] }

F(s) = { [tex]\frac{1}{2} - \frac{1}{2} \times cos(2wt)\\[/tex] }

F(s) = [tex]\frac{1}{2} (\frac{1}{s} - \frac{s}{s^2 + 4w^2} )[/tex]

Next,

The above Laplace transform exist if s > 0 .

Know more about Laplace transform,

https://brainly.com/question/31481915

#SPJ4

When $\frac{1}{1111}$ is expressed as a decimal, what is the sum of the first 40 digits after the decimal point?

Answers

Answer:

90

Step-by-step explanation:

1/1111= 0. (0009) cycles of 0009 after decimal point (one 9 per 4 digits)

Number of digits 9:

40/4= 1010*9= 90

Answer:

90

Step-by-step explanation:

Suppose that four microchips in a production run of sixty are defective. A sample of six is to be selected to be checked for defects. (a) How many different samples can be chosen

Answers

Answer:

50,063,860 different samples can be chosen

Step-by-step explanation:

The order in which the microchips are chosen is not important. So we use the combinations formula to solve this question.

Combinations formula:

[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

How many different samples can be chosen

We choose 6 microchips from a set of 60. So

[tex]C_{60,6} = \frac{60!}{6!(60-6)!} = 50063860[/tex]

50,063,860 different samples can be chosen

HELP ASAP!!!The first picture is what each variables equal too

Answers

Answer:

Just replace the variables with the number

d5

c4 (uh oh)

a2

b-3

f-7

d-c = 5 - 4 = 1

1/3 - 4(ab+f)

2 x -3 = -6

-6 + -7 = -13

-13 x 4 = -52

1/3 - -52 = 1/3 + 52 =

52 1/3

Hope this helps

Step-by-step explanation:

Other Questions
if f(x)=x-7 and g(x)=x^3, find G(f(x)) Daniel acquires a 30 percent interest in the PPZ Partnership from Paolo, an existing partner, for $48,000 of cash. The PPZ Partnership has borrowed $19,000 of recourse liabilities as of the date Daniel bought the interest. What is Daniel's basis in his partnership interest Read the passage. Delia pointed out the slender branches of the almond tree to Kaveh, noting the flowers that were about to bloom. As they walked through the garden, Kaveh noticed a skinny tree in the corner of the yard and asked Delia what type it was. How does the word choice slender affect the meaning of the passage? The word slender implies that the almond tree is elegant. The word slender implies that the almond tree is not growing very well. The word slender implies that the almond tree is underfed. The word slender implies that the almond tree is natural. define hardware.Give 2 examples Bud's cheeseburger and fries contained 1310 milligrams and 350 milligrams of sodium, respectively. Together they contained 66.4% of the recommended daily intake of sodium fordiet. What is the daily recommended intake of sodium for a 2,000 calorie diet? What is the value of AC? A student walk 60m on a bearingof 028 degree and then 180mdue east. How is she from herstarting point, correct to thenearest whole number? QS 9-13 Note receivable interest and maturity LO P4 On December 1, Daw Co. accepts a $12,000, 45-day, 7% note from a customer. (1) Prepare the year-end adjusting entry to record accrued interest revenue on December 31. (2) Prepare the entry required on the note's maturity date assuming it is honored. (Use 360 days a year.) "I do not love you as if you were salt-rose, or topaz, or the arrow of carnations the fire shoots off. I love you as certain dark things are to be loved, in secret, between the shadow and the soul." What is being suggested by the type of imagery that the speaker uses in the third and fourth lines of this poem? illness bright colorsdarkness new beginningsI think it's darkness. A service station has both self-service and full-service islands. On each island, there is a single regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-service island at a particular time, and let Y denote the number of hoses on the full-service island in use at that time. The joint pmf of X and Y appears in the accompanying tabulation. Yp(x,y), 0 1 2 0 .10 .04 .02 x 1 .08 .20 .06 2 .06 .14 .30 a. What is P(X = 1 and = 1)? b. Compute P(X land Y 1). c. Give a word description of the event {X t- 0 and Y 0}, and compute the probability of this event d. Compute the marginal pmf of X and of Y. Using pX(x), what is P(X 5 1)? e. Are X and Y independent rv's? Explain. What is mE45125/F80A45D125135B please help you dont need to explain this just tell me the right answer Mary is running a marathon which is a total of 26 miles. She is running at a pace of 7.5 miles per hour andhas already run 8 miles. If she stays at the same pace, how much time in hours does she have left? Question 9 (5 points)In Joy Luck Club, which of the following choices best explains why the beautyinstructor tells the narrator and her mother that "Peter Pan is very popular thesedays" in Paragraph 8? whats the solution of y=x-4 and y=1/3x Rashida no maneja; ella camina a su oficina para mantenerse ________ y saludable. activa dulce mal triste what is ud. form of the verb dormir in the preterite tense a. durmieron b. dormiste c. duerme d. durmio Please describe the regulation of the blood glucose 6 hours after a meal?Please include all relevant organs, hormones, and actions. 2 less than a number times 6 A car travels 22 miles for every gallon of gasoline used. The table below represents this relationship. Gas Mileage Distance Traveled (miles) Gasoline Used (gallons) 22 1 44 2 x 3 88 4 Which equation correctly shows a pair of equivalent ratios that can be used to find the unknown? StartFraction 1 over 22 EndFraction = StartFraction x over 2 EndFraction StartFraction 22 over 1 EndFraction = StartFraction x over 2 EndFraction StartFraction 1 over 22 EndFraction = StartFraction x over 3 EndFraction StartFraction 22 over 1 EndFraction = StartFraction x over 3 EndFraction