Answer:
The length of the pendulum depends on acceleration due to gravity (g) which varies in different Earth's location beacuse Earth is not perfectly spherical.
Explanation:
The period of oscillation is calculated as;
[tex]T = 2\pi\sqrt{\frac{l}{g} }[/tex]
where;
L is the length of the pendulum bob
g is acceleration due to gravity
If we make L the subject of the formula in the equation above, we will have;
[tex]T = 2\pi\sqrt{\frac{l}{g}}\\\\\sqrt{\frac{l}{g} } = \frac{T}{2\pi} \\\\\frac{l}{g} = (\frac{T}{2\pi} \)^2\\\\\frac{l}{g} =\frac{T^2}{4\pi^2}\\\\L = \frac{gT^2}{4\pi^2}[/tex]
The length of the pendulum depends on acceleration due to gravity (g).
Acceleration due to gravity is often assumed to be the same everywhere on Earth, but it varies because Earth is not perfectly spherical. The variation of acceleration due to gravity (g) as a result of Earth's geometry, will also cause the length of the pendulum to vary.
An ac circuit consist of a pure resistance of 10ohms is connected across an ae supply
230V 50Hz Calculate the:
(i)Current flowing in the circuit.
(ii)Power dissipated
Plz check attachment for answer.
Hope it's helpful
Bromine, a liquid at room temperature, has a boiling point
Yes it does ! The so-called "boiling point" is the temperature at which Bromine liquid can change state and become Bromine vapor, if enough additional thermal energy is provided. The boiling point is higher than room temperature.