how much energy is absorbed in heating 30.0 g of water from 0.0°c to 100.0°c? does changing the rate at which heat is added to the water from 50 j/s to 100 j/s affect this calculation? explain.

Answers

Answer 1

The energy absorbed by 30.0 g of water in heating it from 0.0°C to 100.0°C is 12.7 kJ. Changing the rate at which heat is added from 50 J/s to 100 J/s does not affect this calculation since the energy required to raise the temperature of a substance is independent of the rate at which it is added.

In more detail, the energy absorbed in heating a substance is given by the equation Q = mCΔT, where Q is the energy absorbed, m is the mass of the substance, C is the specific heat capacity of the substance, and ΔT is the change in temperature. For water, the specific heat capacity is 4.18 J/g°C. Therefore, the energy absorbed in heating 30.0 g of water from 0.0°C to 100.0°C is:

Q = (30.0 g)(4.18 J/g°C)(100.0°C - 0.0°C) = 12,540 J = 12.7 kJ

Changing the rate at which heat is added, such as from 50 J/s to 100 J/s, does not affect the amount of energy required to raise the temperature of the water since the energy required is dependent only on the mass, specific heat capacity, and temperature change of the substance, and is independent of the rate at which it is added.

Learn more about energy absorbed here;

https://brainly.com/question/31595217

#SPJ11


Related Questions

What is the energy required to move one elementary charge through a potential difference of 5.0 volts? a) 8.0 J. b) 5.0 J. c) 1.6 x 10^-19J. d) 8.0 x 10^-19 J.

Answers

The energy required to move one elementary charge (e) through a potential difference (V) can be calculated using the formula:E = qV the answer is (d) 8.0 x 10^-19 J.

In physics, potential refers to the energy per unit of charge associated with a physical system. It is often used in the context of electric potential, which is the potential energy per unit of charge associated with a static electric field. Electric potential is measured in units of volts (V) and is defined as the work done per unit charge in moving a test charge from infinity to a point in the electric field.The electric potential difference, or voltage, between two points in an electric field is defined as the work done per unit charge in moving a test charge from one point to the other.

To know more about potential visit :

https://brainly.com/question/4305583

#SPJ11

A race track is in the shape of an ellipse 80 feet long and 60 feet wide. what is the width 32feet from the center?

Answers

The equation for an ellipse centered at the origin with semi-major axis a and semi-minor axis b is:

[tex]x^2/a^2 + y^2/b^2 = 1[/tex]

In this problem, the ellipse has dimensions of 80 feet by 60 feet. Since the center is not specified, we can assume that the center is at the origin. Thus, the equation of the ellipse is:

[tex]x^2/40^2 + y^2/30^2 = 1[/tex]

We want to find the width 32 feet from the center, which means we need to find the height of the ellipse at x = 32. To do this, we can rearrange the equation of the ellipse to solve for y:

[tex]y = ±(1 - x^2/40^2)^(1/2) * 30[/tex]

Since we are only interested in the positive value of y, we can simplify this to:

[tex]y = (1 - x^2/40^2)^(1/2) * 30[/tex]

Substituting x = 32, we get:

y = (1 - 32^2/40^2)^(1/2) * 30

y = (1 - 256/1600)^(1/2) * 30

y = (1344/1600)^(1/2) * 30

y = 0.866 * 30

y = 25.98

Therefore, the width 32 feet from the center is approximately 25.98 feet.

To know more about refer ellipse centered here

brainly.com/question/27603973#

#SPJ11

how much energy is stored in a 2.60-cm-diameter, 14.0-cm-long solenoid that has 150 turns of wire and carries a current of 0.780 a

Answers

The energy stored in a solenoid with 2.60-cm-diameter is 0.000878 J.

U = (1/2) * L * I²

U = energy stored

L = inductance

I = current

inductance of a solenoid= L = (mu * N² * A) / l

L = inductance

mu = permeability of the core material or vacuum

N = number of turns

A = cross-sectional area

l = length of the solenoid

cross-sectional area of the solenoid = A = π r²

r = 2.60 cm / 2 = 1.30 cm = 0.013 m

l = 14.0 cm = 0.14 m

N = 150

I = 0.780 A

mu = 4π10⁻⁷

A = πr² = pi * (0.013 m)² = 0.000530 m²

L = (mu × N² × A) / l = (4π10⁻⁷ × 150² × 0.000530) / 0.14

L = 0.00273 H

U = (1/2) × L × I² = (1/2) × 0.00273 × (0.780)²

U = 0.000878 J

The energy stored in the solenoid is 0.000878 J.

Learn more about solenoid at:

brainly.com/question/3821492

#SPJ4

What is the absolute magnitude of the reduction in the variation of Y when times is introduced into the regression model? What is the relative reduction? What is the name of the latter measure?

Answers

1. The absolute magnitude of the reduction in variation of Y when time is introduced into the regression model can be calculated by subtracting the variance of Y in the original model from the variance of Y in the new model.

2. The relative reduction can be calculated by dividing the absolute magnitude by the variance of Y in the original model.

3. The latter measure is called the coefficient of determination or R-squared and represents the proportion of variance in Y that can be explained by the regression model.

When time is introduced into a regression model, it can have an impact on the variation of the dependent variable Y. The absolute magnitude of this reduction in variation can be measured by calculating the difference between the variance of Y in the original model and the variance of Y in the new model that includes time. The relative reduction in variation can be calculated by dividing the absolute magnitude of the reduction by the variance of Y in the original model.
The latter measure, which is the ratio of the reduction in variation to the variance of Y in the original model, is called the coefficient of determination or R-squared. This measure represents the proportion of the variance in Y that can be explained by the regression model, including the independent variable time. A higher R-squared value indicates that the regression model is more effective at explaining the variation in Y.

To know more about magnitude visit:

brainly.com/question/2596740

#SPJ11

radon has a half-life of 3.83 days. if 3.00 g of radon gas is present at time t=0, what mass of radon will remain after 1.50 days?

Answers

Answer:We can use the radioactive decay formula to solve this problem:

N(t) = N₀ * (1/2)^(t/T)

where:

N(t) = final amount of radon after time t

N₀ = initial amount of radon

t = time elapsed

T = half-life of radon

We are given that the half-life of radon is 3.83 days. So, we can calculate the fraction of radon that will remain after 1.5 days:

(1/2)^(1.5/3.83) ≈ 0.679

This means that about 67.9% of the radon will remain after 1.5 days. So, we can calculate the mass of radon remaining as:

m = 3.00 g * 0.679 ≈ 2.04 g

Therefore, approximately 2.04 g of radon will remain after 1.5 days.

learn more about half life

https://brainly.com/question/1581092?referrer=searchResults

#SPJ11

Light of wavelength λ = 595 nm passes through a pair of slits that are 23 μm wide and 185 μm apart. How many bright interference fringes are there in the central diffraction maximum? How many bright interference fringes are there in the whole pattern?

Answers

The number of bright interference fringes in the central diffraction maximum can be found using the formula:

n = (d sin θ) / λ

where n is the number of fringes, d is the distance between the slits, θ is the angle between the central maximum and the first bright fringe, and λ is the wavelength of light.

For the central maximum, the angle θ is zero, so sin θ = 0. Therefore, the equation simplifies to:

n = 0

So there are no bright interference fringes in the central diffraction maximum.

The number of bright interference fringes in the whole pattern can be found using the formula:

n = (mλD) / d

where n is the number of fringes, m is the order of the fringe, λ is the wavelength of light, D is the distance from the slits to the screen, and d is the distance between the slits.

To find the maximum value of m, we can use the condition for constructive interference:

d sin θ = mλ

where θ is the angle between the direction of the fringe and the direction of the center of the pattern.

For the first bright fringe on either side of the central maximum, sin θ = λ/d. Therefore, the value of m for the first bright fringe is:

m = d/λ

Substituting this value of m into the formula for the number of fringes, we get:

n = (d/λ)(λD/d) = D

So there are D bright interference fringes in the whole pattern, where D is the distance from the slits to the screen, in units of the wavelength of light.

Learn More About bright fringe at https://brainly.com/question/31754396

#SPJ11

what is an example to illustrate the first postulate of special relativity

Answers

The first postulate of special relativity is that the laws of physics are the same for all observers in uniform motion relative to one another.

An example that illustrates this postulate is the observation of a moving train from two different reference frames. Suppose two people, A and B, are standing on a platform watching a train pass by. A is standing still relative to the platform, while B is moving with the train.

From A's perspective, the train is moving and B is moving along with it. From B's perspective, however, they are both standing still and it is the platform that is moving backward.

Now suppose that A and B both observe a ball being thrown from the back of the train to the front. According to the first postulate of special relativity, the laws of physics are the same for both observers. Therefore, A and B should agree on the speed of the ball, the time it takes to travel from the back to the front of the train, and the trajectory it follows.

This example illustrates that the laws of physics are the same for all observers in uniform motion, regardless of their relative speeds or positions. It is a fundamental principle of special relativity.

To know more about special relativity refer here

https://brainly.com/question/7203715#

#SPJ11

Consider an 82-m (diameter), 1.65-MW wind turbine with a rated wind speed of 13 m/s. At what rpm does the roto turn when it operates with a TSR of 4.8 in 13 m/s winds? How many seconds per rotation is that? What is the tip speed of the rotor in those winds (m/s)? What gear ratio is needed to match the rotor speed to an 1800 rpm generator when the wind is blowing at the rated wind speed? What is the efficiency of the complete wind turbine in 13 m/s winds?

Answers

The rotor turns at 14.52 rpm, taking 4.13 seconds per rotation, with a tip speed of 62.4 m/s. A gear ratio of 123.91 is needed, and efficiency is unknown without further information.

To find the rpm, we first calculate the rotor's tip speed: Tip Speed = TSR x Wind Speed = 4.8 x 13 = 62.4 m/s. Then, we calculate the rotor's circumference: C = π x Diameter = 3.14 x 82 = 257.68 m. The rotor's rpm is obtained by dividing the tip speed by the circumference and multiplying by 60: Rpm = (62.4/257.68) x 60 = 14.52 rpm.

Time per rotation is 60/rpm = 60/14.52 = 4.13 seconds. For the gear ratio, divide the generator speed by the rotor speed: Gear Ratio = 1800/14.52 = 123.91. The efficiency cannot be determined without further information on the system's losses.

Learn more about gear ratio here:

https://brainly.com/question/10279521

#SPJ11

The net force on any object moving at constant velocity is a. equal to its weight. b. less than its weight. c. 10 meters per second squared. d. zero.

Answers

The net force on any object moving at constant velocity is zero. Option d. is correct .



An object moving at constant velocity has balanced forces acting on it, which means the net force on the object is zero. This is due to Newton's First Law of Motion, which states that an object in motion will remain in motion with the same speed and direction unless acted upon by an unbalanced force. This is due to Newton's first law of motion, also known as the law of inertia, which states that an object at rest or in motion with a constant velocity will remain in that state unless acted upon by an unbalanced force.

When an object is moving at a constant velocity, it means that the object is not accelerating, and therefore there must be no net force acting on it. If there were a net force acting on the object, it would cause it to accelerate or decelerate, changing its velocity.

Therefore, the correct answer is option (d) - the net force on any object moving at a constant velocity is zero.

To know more about Net force refer here :

https://brainly.com/question/14361879

#SPJ11

Choose the correct statements concerning spectral classes of stars. (Give ALL correct answers, i.e., B, AC, BCD...)
A) K-stars are dominated by lines from ionized helium because they are so hot.
B) Neutral hydrogen lines dominate the spectrum for stars with temperatures around 10,000 K because a lot of the hydrogen is in the n=2 level.
C) The spectral sequence has recently been expanded to include L, T, and Y classes.
D) The spectral types of stars arise primarily as a result of differences in temperature.
E) Oh Be A Fine Guy/Girl Kiss Me, is a mnemonic for remembering spectral classes.
F) Hydrogen lines are weak in type O-stars because most of it is completely ionized.

Answers

The correct statements concerning spectral classes of stars are B, C, D, F.

A) This statement is incorrect because K-stars are cooler stars and are not hot enough to be dominated by ionized helium lines.

B) This statement is correct. When the temperature of a star is around 10,000 K, most of the hydrogen atoms are in the second energy level (n=2), which leads to the formation of strong neutral hydrogen lines.

C) This statement is correct. The original spectral sequence (OBAFGKM) has been expanded to include additional classes such as L, T, and Y, which are used to classify cooler and less massive stars.

D) This statement is correct. The spectral types of stars are primarily based on temperature, which influences the ionization state and the strength of spectral lines in the star's spectrum.

E) This statement is a mnemonic used to remember the spectral sequence but is not a statement concerning spectral classes of stars.

F) This statement is correct. Type O-stars are the hottest and most massive stars, and their surface temperature is high enough to ionize most of the hydrogen atoms, which results in the weakness of hydrogen lines in their spectra.

Hence, B,C,D,F statements are correct which concerning spectral classes of stars .

To know more about Spectral classes refer here :

https://brainly.com/question/28216076

#SPJ11

Consider three identical metal spheres, a, b, and c. sphere a carries a charge of 5q. sphere b carries a charge of -q. sphere c carries no net charge. spheres a and b are touched together and then separated. sphere c is then touched to sphere a and separated from it. lastly, sphere c is touched to sphere b and separated from it.

required:
a. how much charge ends up on sphere c?
b. what is the total charge on the three spheres before they are allowed to touch each other?

Answers

a. Sphere c ends up with a charge of -3q.

b. The total charge on the three spheres before they are allowed to touch each other is 5q - q = 4q.

a. When spheres a and b are touched together and then separated, charge is transferred between them until they reach equilibrium. Since sphere a has a charge of 5q and sphere b has a charge of -q, the total charge transferred is 5q - (-q) = 6q. This charge is shared equally between the two spheres, so sphere a ends up with a charge of 5q - 3q = 2q, and sphere b ends up with a charge of -q + 3q = 2q.

When sphere c is touched to sphere a and separated, they share charge. Sphere a has a charge of 2q, and sphere c has no net charge initially. The charge is shared equally, so both spheres end up with a charge of q.

Similarly, when sphere c is touched to sphere b and separated, they also share charge. Sphere b has a charge of 2q, and sphere c has a charge of q. The charge is shared equally, so both spheres end up with a charge of (2q + q) / 2 = 3q/2.

Therefore, sphere c ends up with a charge of -3q (opposite sign due to excess electrons) and the total charge on the three spheres before they are allowed to touch each other is 5q - q = 4q.

learn more about spheres here:

https://brainly.com/question/22849345

#SPJ11

A 1. 5 kg bowling pin is hit with an 8 kg bowling ball going 6. 8 m/s. The pin bounces off the ball at 3. 0 m/s. What is the speed of the bowling ball after the collision?

Answers

After the collision between the 1.5 kg bowling pin and the 8 kg bowling ball, the bowling ball's speed can be calculated using the law of conservation of momentum. The speed of the bowling ball after the collision is approximately 6.8 m/s.

According to the law of conservation of momentum, the total momentum before the collision is equal to the total momentum after the collision. Mathematically, this can be represented as:

[tex]\(m_1 \cdot v_1 + m_2 \cdot v_2 = m_1 \cdot v_1' + m_2 \cdot v_2'\)[/tex]

Where:

[tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] are the masses of the bowling pin and the bowling ball, respectively.

[tex]\(v_1\)[/tex] and [tex]\(v_2\)[/tex] are the initial velocities of the bowling pin and the bowling ball, respectively.

[tex]\(v_1'\)[/tex] and [tex]\(v_2'\)[/tex] are the final velocities of the bowling pin and the bowling ball, respectively.

Plugging in the given values, we have:

[tex]\(1.5 \, \text{kg} \cdot 6.8 \, \text{m/s} + 8 \, \text{kg} \cdot 0 \, \text{m/s} = 1.5 \, \text{kg} \cdot 3.0 \, \text{m/s} + 8 \, \text{kg} \cdot v_2'\)[/tex]

Simplifying the equation, we find:

[tex]\(10.2 \, \text{kg} \cdot \text{m/s} = 4.5 \, \text{kg} \cdot \text{m/s} + 8 \, \text{kg} \cdot v_2'\)[/tex]

Rearranging the equation to solve for [tex]\(v_2'\)[/tex], we get:

[tex]\(8 \, \text{kg} \cdot v_2' = 10.2 \, \text{kg} \cdot \text{m/s} - 4.5 \, \text{kg} \cdot \text{m/s}\) \\\(v_2' = \frac{{10.2 \, \text{kg} \cdot \text{m/s} - 4.5 \, \text{kg} \cdot \text{m/s}}}{{8 \, \text{kg}}}\)\\\(v_2' \approx 0.81 \, \text{m/s}\)[/tex]

Therefore, the speed of the bowling ball after the collision is approximately 0.81 m/s.

To learn more about momentum refer:

https://brainly.com/question/1042017

#SPJ11

What is the significance of the dog's final movement towards civilization at the end of the story? what does this suggest about the dog's relationship to nature? is instinct driving this movement?

Answers

In Jack London's "To Build a Fire," the dog's final movement towards civilization is significant because it suggests that the dog recognizes the dangers of the natural world and has a desire to seek safety and security in human civilization.

This movement highlights the dog's intelligence and adaptation to its environment. It also suggests that the dog's relationship to nature is one of survival and instinct.

The dog is not driven by a conscious decision to seek civilization, but rather by a primal instinct to survive. This reinforces the theme of the harsh and unforgiving nature of the Yukon wilderness, where only the strongest and most adaptable can survive.

Overall, the dog's movement towards civilization symbolizes the tension between nature and civilization, and the struggle for survival in a hostile environment.

To learn more about movement, refer below:

https://brainly.com/question/2856566

#SPJ11

An air puck of mass m
1
= 0.25 kg is tied to a string and allowed to revolve in a circle of radius R = 1.0 m on a frictionless horizontal table. The other end of the string passes through a hole in the center of the table, and a mass of m
2
= 1.0 kg is tied to it. The suspended mass remains in equilibrium while the puck on the tabletop revolves.
(a) What is the tension in the string?
(b) What is the horizontal force acting on the puck?
(c) What is the speed of the puck?

Answers

(a) The tension in the string is equal to the weight of the suspended mass, which is m2g = 9.8 N.

(b) The horizontal force acting on the puck is equal to the centripetal force required to keep it moving in a circle, which is Fc = m1v^2/R.

(c) The speed of the puck can be calculated using the equation v = sqrt(RFc/m1).

To answer (a), we need to realize that the weight of the suspended mass provides the tension in the string. Therefore, the tension T = m2g = (1.0 kg)(9.8 m/s^2) = 9.8 N.

For (b), we use Newton's second law, which states that F = ma. In this case, the acceleration is the centripetal acceleration, which is a = v^2/R. Therefore, Fc = m1a = m1v^2/R.

Finally, to find the speed of the puck in (c), we use the centripetal force equation and solve for v. v = sqrt(RFc/m1) = sqrt((1.0 m)(m1v^2/R)/m1) = sqrt(Rv^2/R) = sqrt(v^2) = v.

In summary, the tension in the string is equal to the weight of the suspended mass, the horizontal force on the puck is the centripetal force required to keep it moving in a circle, and the speed of the puck can be found using the centripetal force equation.

Learn more about horizontal  here:

https://brainly.com/question/29019854

#SPJ11

true/false. experiments can measure not only whether a compound is paramagnetic, but also the number of unpaired electrons

Answers

True. Experiments can measure not only whether a compound is paramagnetic, but also the number of unpaired electrons.

Paramagnetic substances are those that contain unpaired electrons, leading to an attraction to an external magnetic field. To determine if a compound is paramagnetic and to measure the number of unpaired electrons, various experimental techniques can be employed. One common method is Electron Paramagnetic Resonance (EPR) spectroscopy, also known as Electron Spin Resonance (ESR) spectroscopy.

EPR spectroscopy is a powerful tool for detecting and characterizing species with unpaired electrons, such as free radicals, transition metal ions, and some rare earth ions. This technique works by applying a magnetic field to the sample and then measuring the absorption of microwave radiation by the unpaired electrons as they undergo transitions between different energy levels.

The resulting EPR spectrum provides information about the electronic structure of the paramagnetic species, allowing researchers to determine the number of unpaired electrons present and other characteristics, such as their spin state and the local environment surrounding the unpaired electrons. In this way, EPR spectroscopy can provide valuable insights into the nature of paramagnetic compounds and their role in various chemical and biological processes.

To know more about the paramagnetic substances, click here;

https://brainly.com/question/28304342

#SPJ11

Cart a has a mass 7 kg is traveling at 8 m/s. another cart b has mass 9 kg and is stopped. the two carts collide and stick together. what is the velocity of the two carts after the collision?

Answers

When two objects collide and stick together, the resulting velocity can be found using the principle of conservation of momentum which states that the total momentum before the collision is equal to the total momentum after the collision. That is Initial momentum = Final momentum.

Let m1 be the mass of cart A, m2 be the mass of cart B, and v1 and v2 be their respective velocities before the collision. Also, let vf be their common velocity after collision.

We can express the above equation mathematically as m1v1 + m2v2 = (m1 + m2)vfCart A has a mass of 7 kg and is travelling at 8 m/s. Another cart B has a mass of 9 kg and is stopped.

Therefore, v1 = 8 m/s, m1 = 7 kg, m2 = 9 kg and v2 = 0 m/s.

Substituting the given values, we have:7 kg (8 m/s) + 9 kg (0 m/s) = (7 kg + 9 kg) vf.

Simplifying, we get 56 kg m/s = 16 kg vf.

Dividing both sides by 16 kg, we get vf = 56/16 m/s ≈ 3.5 m/s.

Therefore, the velocity of the two carts after the collision is approximately 3.5 m/s.

Learn more about momentum here ;

https://brainly.com/question/30677308

#SPJ11

Calculate the angular separation of two Sodium lines given as 580.0nm and 590.0 nm in first order spectrum. Take the number of ruled lines per unit length on the diffraction grating as 300 per mm?
(A) 0.0180
(B) 180
(C) 1.80
(D) 0.180

Answers

The angular separation of two Sodium lines is calculated as (C) 1.80.

The angular separation between the two Sodium lines can be calculated using the formula:

Δθ = λ/d

Where Δθ is the angular separation, λ is the wavelength difference between the two lines, and d is the distance between the adjacent ruled lines on the diffraction grating.

First, we need to convert the given wavelengths from nanometers to meters:

λ1 = 580.0 nm = 5.80 × 10⁻⁷ m
λ2 = 590.0 nm = 5.90 × 10⁻⁷ m

The wavelength difference is:

Δλ = λ₂ - λ₁ = 5.90 × 10⁻⁷ m - 5.80 × 10⁻⁷ m = 1.0 × 10⁻⁸ m

The distance between adjacent ruled lines on the diffraction grating is given as 300 lines per mm, which can be converted to lines per meter:

d = 300 lines/mm × 1 mm/1000 lines × 1 m/1000 mm = 3 × 10⁻⁴ m/line

Substituting the values into the formula, we get:

Δθ = Δλ/d = (1.0 × 10⁻⁸ m)/(3 × 10⁻⁴ m/line) = 0.033 radians

Finally, we convert the answer to degrees by multiplying by 180/π:

Δθ = 0.033 × 180/π = 1.89 degrees

Rounding off to two significant figures, the answer is:

(C) 1.80

To know more about angular separation, refer

https://brainly.com/question/30365113

#SPJ11

A cylindrical capacitor has inner and outer radii at 5 mm and 15 mm, respectively, and the space between the conductors is filled with a dielectric material with relative permittivity of 2.0. The inner conductor is maintained at a potential of 100 V while the outer conductor is grounded. Find: (a) the voltage midway between the conductors, (b) the electric field midway between the conductors, and c) the surface charge density on the inner and outer conductors.

Answers

The surface charge density on the outer conductor is zero, since it is grounded and has no net charge.

(a) The voltage midway between the conductors can be calculated using the formula V = V1 - V2, where V1 is the voltage on the inner conductor and V2 is the voltage on the outer conductor. So, V = 100 V - 0 V = 100 V.
(b) The electric field midway between the conductors can be calculated using the formula E = V/d, where V is the voltage and d is the distance between the conductors. Here, the distance is the average of the inner and outer radii, which is (5 mm + 15 mm)/2 = 10 mm = 0.01 m. So, E = 100 V/0.01 m = 10,000 V/m.
(c) The surface charge density on the inner conductor can be calculated using the formula σ = ε0εrE, where ε0 is the permittivity of free space, εr is the relative permittivity, and E is the electric field. Here, σ = ε0εrE(1/r), where r is the radius of the inner conductor. So, σ = (8.85 x 10^-12 F/m)(2.0)(10,000 V/m)(1/0.005 m) = 3.54 x 10^-7 C/m^2.
The surface charge density on the outer conductor is zero, since it is grounded and has no net charge.

To know more about Electric field visit:

https://brainly.com/question/8971780

#SPJ11

A mass of gasoline occupies 70. 01 at 20°C. What is the volume at 35°C?​

Answers

The volume at 35°C is approximately 69.86 liters

The solution to the problem: "A mass of gasoline occupies 70.01 at 20°C.  the volume at 35°C" is given below:Given,M1= 70.01; T1 = 20°C; T2 = 35°CVolume is given by the formula, V = \frac{m}{ρ}

Volume is directly proportional to mass when density is constant. When the mass of the substance is constant, the volume is proportional to the density. As a result, the formula for calculating density is ρ= \frac{m}{V}.Using the formula of density, let's find out the volume of the gasoline.ρ1= m/V1ρ2= m/V2We can also write, ρ1V1= ρ2V2Now let's apply the values in the above formula;ρ1= m/V1ρ2= m/V2

ρ1V1= \frac{ρ2V2M1}{ V1}  = ρ1 (1+ α (T2 - T1)) V1V2 = V1 / (1+ α (T2 - T1)) Given, M1 = 70.01; T1 = 20°C; T2 = 35°C

Therefore, V2 = \frac{V1 }{(1+ α (T2 - T1))V2}=\frac{ 70.01}{(1 + 0.00095 * 15) } [α for gasoline is 0.00095 per degree Celsius]V2 = 69.86 liters (approx)

Hence, the volume at 35°C is approximately 69.86 liters.

learn more about density Refer: https://brainly.com/question/32242821

#SPJ11

You switch from a 60x oil immersion objective with an NA of 1.40 to a 40x air immersion objective with an NA of 0.5. In this problem you can take the index of refraction of oil to be 1.51.Part (a) What is the acceptance angle (in degrees) for the oil immersion objective? α1 =Part (b) What is the acceptance angle (in degrees) for the air immersion objective? α2 =

Answers

(a) 64.7° is the acceptance angle (in degrees) for the oil immersion objective

(b) 30° is the acceptance angle (in degrees) for the air immersion objective.

Part (a): The acceptance angle for the oil immersion objective can be calculated using the formula α1 = sin⁻¹(NA1/n), where NA1 is the numerical aperture of the objective and n is the refractive index of the medium between the specimen and the objective. Here, NA1 = 1.40 and n = 1.51 (refractive index of oil). Substituting these values, we get α1 = sin⁻¹(1.40/1.51) = 64.7°.
Part (b): The acceptance angle for the air immersion objective can be calculated using the formula α2 = sin⁻¹(NA2/n), where NA2 is the numerical aperture of the objective and n is the refractive index of the medium between the specimen and the objective. Here, NA2 = 0.5 and n = 1 (refractive index of air). Substituting these values, we get α2 = sin⁻¹(0.5/1) = 30°.
In summary, the acceptance angle for the oil immersion objective is 64.7°, while the acceptance angle for the air immersion objective is 30°. This difference in acceptance angle is due to the fact that oil has a higher refractive index than air, which allows for greater light refraction and therefore a larger acceptance angle.

To know more about immersion visit:

brainly.com/question/29306517

#SPJ11

How much electrical energy must this freezer use to produce 1.4 kgkg of ice at -4 ∘C from water at 15 ∘C ?

Answers

The amount of energy required to freeze 1.4 kg of water into ice at -4 ∘C is 469.6 kJ.

At what temperature water freezes to ice?

The amount of energy required to freeze water into ice depends on various factors such as the mass of water, the initial and final temperatures of the water, and the environment around it.

To calculate the energy required to freeze water into ice, we need to use the following formula:

Q = m * Lf

Where:

Q = amount of heat energy required to freeze water into ice (in joules, J)

m = mass of water being frozen (in kilograms, kg)

Lf = specific latent heat of fusion of water (in joules per kilogram, J/kg)

The specific latent heat of fusion of water is the amount of energy required to change a unit mass of water from a liquid to a solid state at its melting point. For water, this value is approximately 334 kJ/kg.

Now, let's plug in the given values:

m = 1.4 kg (mass of water being frozen)

Lf = 334 kJ/kg (specific latent heat of fusion of water)

Q = m * Lf

Q = 1.4 kg * 334 kJ/kg

Q = 469.6 kJ

So, the amount of energy required to freeze 1.4 kg of water into ice at -4 ∘C is 469.6 kJ.

The amount of electrical energy required to produce this much cooling depends on the efficiency of the freezer. If we assume that the freezer has an efficiency of 50%, then it will require twice the amount of energy or 939.2 kJ of electrical energy.

Learn more about energy

brainly.com/question/18461965

#SPJ11

A carpet which is 10 meters long is completely rolled up. When x meters have been unrolled, the force required to unroll it further is given by F(x)=900/(x+1)3 Newtons. How much work is done unrolling the entire carpet?

Answers

A carpet which is 10 meters long is completely rolled up. When x meters have been unrolled, the force required to unroll it further is given by F(x)=900/(x+1)3 Newtons. The work done unrolling the entire 10-meter carpet is approximately 317.74 joules.

To calculate the work done unrolling the entire carpet, we need to find the integral of the force function F(x) = 900/(x+1)^3 with respect to x over the interval [0, 10]. This will give us the total work done in joules.

The integral is:
∫(900/(x+1)^3) dx from 0 to 10
Using the substitution method, let u = x + 1, then du = dx. The new integral becomes:
∫(900/u^3) du from 1 to 11

Now, integrating this expression, we get:
(-450/u^2) from 1 to 11
Evaluating the integral at the limits, we have:
(-450/121) - (-450/1) ≈ 317.74 joules
Therefore, the work done unrolling the entire 10-meter carpet is approximately 317.74 joules.

Learn more about work here:

https://brainly.com/question/31655489

#SPJ11

compared with compounds such as sodium chloride, the wax produced by bees has a low boiling point. which best explains this property of beeswax?

Answers

The low boiling point of beeswax is a result of its chemical composition, which is different from that of ionic compounds such as sodium chloride, as well as its natural function in the hive.

The low boiling point of beeswax compared to compounds such as sodium chloride can be attributed to its chemical composition. Beeswax is a complex mixture of hydrocarbons, fatty acids, and esters that have a relatively low molecular weight and weak intermolecular forces between the molecules.

This results in a lower boiling point compared to ionic compounds like sodium chloride, which have strong electrostatic attractions between the ions and require a higher temperature to break these bonds and vaporize.

Additionally, beeswax is a natural substance that is produced by bees and is intended to melt and flow at relatively low temperatures to facilitate their hive construction. As a result, it has evolved to have a lower boiling point to enable it to melt and be manipulated by the bees.

For more such questions on chemical composition:

https://brainly.com/question/678196

#SPJ11

Approximate Lake Superior by a circle of radius 162 km at a latitude of 47°. Assume the water is at rest with respect to Earth and find the depth that the center is depressed with respect to the shore due to the centrifugal force.

Answers

The center of Lake Superior is depressed by 5.2 meters due to the centrifugal force at a radius of 162 km and a latitude of 47°.

When a body rotates, objects on its surface are subject to centrifugal force which causes them to move away from the center.

In this case, Lake Superior is assumed to be at rest with respect to Earth and a circle of radius 162 km at a latitude of 47° is drawn around it.

Using the formula for centrifugal force, the depth that the center of the lake is depressed with respect to the shore is calculated to be 5.2 meters.

This means that the water at the center of Lake Superior is pushed outwards due to the centrifugal force, causing it to be shallower than the shore.

Understanding the effects of centrifugal force is important in many areas of science and engineering.

For more such questions on force, click on:

https://brainly.com/question/388851

#SPJ11

an object is executing simple harmonic motion. what is true about the acceleration of this object? (there may be more than one correct choice.)

Answers

The correct choices regarding the acceleration are: 1. The acceleration is a maximum when the object is instantaneously at rest, 4. The acceleration is a maximum when the displacement of the object is zero.

In simple harmonic motion (SHM), the acceleration of the object is directly related to its displacement and is given by the equation a = -ω²x, where a is the acceleration, ω is the angular frequency, and x is the displacement.

1. The acceleration is a maximum when the object is instantaneously at rest:

When the object is at the extreme points of its motion (maximum displacement), it momentarily comes to rest before reversing its direction. At these points, the velocity is zero, and therefore the acceleration is at its maximum magnitude.

2. The acceleration is a maximum when the displacement of the object is zero:

At the equilibrium position (where the object crosses the mean position), the displacement is zero. Substituting x = 0 into the acceleration equation, we find that the acceleration is also zero.

Therefore, the acceleration is a maximum when the object is instantaneously at rest and when the displacement of the object is zero.

learn more about acceleration here:

https://brainly.com/question/31749073

#SPJ11

the complete question is:

An object is moving in a straightforward harmonic manner. What is accurate regarding the object's acceleration? Pick every option that fits.

1. The object is instantaneously at rest when the acceleration is at its maximum.

2. The acceleration is at its highest when the object's speed is at its highest.

3. When an object is moving at its fastest, there is no acceleration.

4-When the object's displacement is zero, the acceleration is at its highest.

5-The acceleration is greatest when the object's displacement is greatest.

Other Questions
Consider the method createTriangle that creates a right triangle based on any given character and with the base of the specified number of times.For example, the call createTriangle ('*', 10); produces this triangle:*******************************************************Implement this method in Java by using recursion.Sample main method:public static void main(String[] args) {createTriangle('*', 10); how many teenagers (people from ages 13-19) must you select to ensure that 4 of them were born on the exact same date (mm/dd/yyyy)? simplify your answer to an integer. larghe amounts of long-stored organic material will bgin to decay and release carbon dixxiode when extneive areas of please calculate the net present value of a project that is associated with the following cash flows: year 0 through year 3 cash flows are $-42,398, $13,407, $21,219, $17,800. Which detail best develops the central idea in the text? About the Hubble Space Telescope adapted excerpt from NASA and Space Telescope Science Institute Orbiting 360 miles above Earth, the Hubble Space Telescope is positioned high above the blurring effects of the atmosphere. From this vantage point, it captures images with 10 times the typical clarity of any ground-based telescope and views not only visible light but also wavelengths of near-infrared and ultraviolet light that cannot reach Earth's surface. To operate from orbit, the observatory works like any other scientific or imaging spacecraft; it converts the optical data it collects into electrical signals that are transmitted back to Earth. It must also withstand the airless, high-radiation, and harsh thermal environment of space. Unlike most other spacecraft, however, Hubble was designed to be serviced periodically by astronauts and so was built with modular components that are astronaut-friendly to handle and replace. This design strategy has enabled it to operate longer than ordinary spacecraft and to benefit from the technological advancements of the last two decades. Astronauts have visited the telescope five times to upgrade its computers, mechanisms, and instruments. These servicing missions have kept the observatory at the forefront of discovery by providing it with increasingly sensitive and accurate components. The last of these servicing calls was in May 2009. what will be the main cyclic product of an intramolecular aldol condensation of this molecule? the anterior surface of the kidneys is covered with ______ and the posterior surface lies directly against the posterior abdominal wall. multiple choice question. simplify the expression. do not evaluate. cos2(14) sin2(14) Light of wavelength = 595 nm passes through a pair of slits that are 23 m wide and 185 m apart. How many bright interference fringes are there in the central diffraction maximum? How many bright interference fringes are there in the whole pattern? complete and balance the following half reaction in acid. i (aq) io3 (aq) how many electrons are needed and is the reaction an oxidation or reduction? Bank A is considering a loan to be fully funded by deposits, with the following parameters:Loan amount: $3 billionAverage annual interest rate paid on deposits: 1.5%Annual interest rate on loan: 4.0%Expected loss: 1.0% of face value of loanAnnual operating costs: 1.0% of face value of loanEconomic capital: 8.0% of the loan amountAverage return on economic capital: 3.0%What is the risk-adjusted return on capital (RAROC) for this loan? A race track is in the shape of an ellipse 80 feet long and 60 feet wide. what is the width 32feet from the center? What is the absolute magnitude of the reduction in the variation of Y when times is introduced into the regression model? What is the relative reduction? What is the name of the latter measure? Will the population of rural china increase or decrease? Case Study Of Employee Turnover.pdf answer the following questions("Case Study of Employee Turnover at Ice Cream Deli in Mexico")1.Which results are systematic or confirmed by the two methodologies used to evaluate causes of turnover?2. Are there any distinct results between the methodologies used?3. Would you recommend the use of more than one methodology when analyzing causes of turnover? Why?4. From your point of view, which is the strongest cause of high undesirable turnover in "Ice Cream Deli"? .5. If you were on the consultant team, how would you commit senior management to lower the turnover rates?6. If you were on the consultant team, what retention initiative would you suggest for this organization?7. If you were the manager, what strategy would you implement in order to reduce high turnover in "Ice Cream Deli" and why?8. Which is more expensive - the cost of doing necessary things to retain your most valuable people or the cost of losing and replacing those people? What is the significance of the dog's final movement towards civilization at the end of the story? what does this suggest about the dog's relationship to nature? is instinct driving this movement? How does the text help us understand the relationship between people and the government? A mass of gasoline occupies 70. 01 at 20C. What is the volume at 35C? For each of the goods and services listed below, please determine whether or not advertising is an effective way to cover the cost of their provision Advertising Will Help Advertising Will Not Help The house you live inThe sandwich you Public Television ate for lunch The fireworks displays in your town on July 4th Lighthouses on the coast of Maine the maximum amount of energy produced by a reaction that can be theoretically harnesses as work is equal to