To find the range, standard deviation, and variance for the given sample {15, 17, 19, 21, 22, 56}, we can perform some calculations. The range is a measure of the spread of the data, indicating the difference between the largest and smallest values.
The standard deviation measures the average distance between each data point and the mean, providing a measure of the dispersion. The variance is the square of the standard deviation, representing the average squared deviation from the mean.
To find the range, we subtract the smallest value from the largest value:
Range = 56 - 15 = 41
To find the standard deviation and variance, we first calculate the mean (average) of the sample. The mean is obtained by summing all the values and dividing by the number of values:
Mean = (15 + 17 + 19 + 21 + 22 + 56) / 6 = 26.7 (rounded to one decimal place)
Next, we calculate the deviation of each value from the mean by subtracting the mean from each data point. Then, we square each deviation to remove the negative signs. The squared deviations are:
(15 - 26.7)^2, (17 - 26.7)^2, (19 - 26.7)^2, (21 - 26.7)^2, (22 - 26.7)^2, (56 - 26.7)^2
After summing the squared deviations, we divide by the number of values to calculate the variance:
Variance = (1/6) * (sum of squared deviations) = 204.5 (rounded to one decimal place)
Finally, the standard deviation is the square root of the variance:
Standard Deviation = √(Variance) ≈ 14.3 (rounded to one decimal place)
In summary, the range of the given sample is 41. The standard deviation is approximately 14.3, and the variance is approximately 204.5. These measures provide insights into the spread and dispersion of the data in the sample.
To learn more about standard deviation; -brainly.com/question/29115611
#SPJ11
1.Find the period of the following functions. a) f(t) = (7 cos t)² b) f(t) = cos (2φt²/m)
Period of the functions: The period of the function f(t) = (7 cos t)² is given by 2π/b where b is the period of cos t.The period of the function f(t) = cos (2φt²/m) is given by T = √(4πm/φ). The period of the function f(t) = (7 cos t)² is given by 2π/b where b is the period of cos t.
We know that cos (t) is periodic and has a period of 2π.∴ b = 2π∴ The period of the function f(t) =
(7 cos t)² = 2π/b = 2π/2π = 1.
The period of the function f(t) = cos (2φt²/m) is given by T = √(4πm/φ) Hence, the period of the function f(t) =
cos (2φt²/m) is √(4πm/φ).
The function f(t) = (7 cos t)² is a trigonometric function and it is periodic. The period of the function is given by 2π/b where b is the period of cos t. As cos (t) is periodic and has a period of 2π, the period of the function f(t) = (7 cos t)² is 2π/2π = 1. Hence, the period of the function f(t) = (7 cos t)² is 1.The function f(t) = cos (2φt²/m) is also a trigonometric function and is periodic. The period of this function is given by T = √(4πm/φ). Therefore, the period of the function f(t) = cos (2φt²/m) is √(4πm/φ).
The period of the function f(t) = (7 cos t)² is 1, and the period of the function f(t) = cos (2φt²/m) is √(4πm/φ).
To learn more about trigonometric function visit:
brainly.com/question/25618616
#SPJ11
Blake Hamilton has money in a savings account that earns an annual interest rate of 3%, compounded monthly. What is the APY (in percent) on Blake's account? (Round your answer the nearest hundredth of a percent.)
The Annual Percentage Yield (APY) on Blake Hamilton's savings account, which earns an annual interest rate of 3% compounded monthly, is approximately 3.04%.
The APY represents the total annualized rate of return, taking into account compounding. To calculate the APY, we need to consider the effect of compounding on the stated annual interest rate.
In this case, the annual interest rate is 3%. However, the interest is compounded monthly, which means that the interest is added to the account balance every month, and subsequent interest calculations are based on the new balance.
To calculate the APY, we can use the formula: APY = (1 + r/n)^n - 1, where r is the annual interest rate and n is the number of compounding periods per year.
For Blake Hamilton's account, r = 3% = 0.03 and n = 12 (since compounding is done monthly). Substituting these values into the APY formula, we get APY = (1 + 0.03/12)^12 - 1.
Evaluating this expression, the APY is approximately 0.0304, or 3.04% when rounded to the nearest hundredth of a percent.
Therefore, the APY on Blake Hamilton's account is approximately 3.04%. This reflects the total rate of return taking into account compounding over the course of one year.
Learn more about annual interest here
https://brainly.com/question/14726983
#SPJ11
Homework: Homework 8.2 Compute the probability of event E if the odds in favor of E are 6 30 29 19 (B) 11 29 (D) 23 13 (A) P(E)=(Type the probability as a fraction Simplify, your answer)
The probabilities of event E are: Option A: P(E) = 23/36, Option B: P(E) = 1/5, Option D: P(E) = 29/48
The probability of an event can be calculated from the odds in favor of the event, using the following formula:
Probability of E occurring = Odds in favor of E / (Odds in favor of E + Odds against E)
Here, the odds in favor of E are given as
6:30, 29:19, and 23:13, respectively.
To use these odds to compute the probability of event E, we first need to convert them to fractions.
6:30 = 6/(6+30)
= 6/36
= 1/5
29:19 = 29/(29+19)
= 29/48
23:1 = 23/(23+13)
= 23/36
Using these fractions, we can now calculate the probability of E as:
P(E) = Odds in favor of E / (Odds in favor of E + Odds against E)
For each of the given odds, the corresponding probability is:
P(E) = 1/5 / (1/5 + 4/5)
= 1/5 / 1
= 1/5
P(E) = 29/48 / (29/48 + 19/48)
= 29/48 / 48/48
= 29/48
P(E) = 23/36 / (23/36 + 13/36)
= 23/36 / 36/36
= 23/36
Know more about the probabilities
https://brainly.com/question/23417919
#SPJ11
Jeff has 32,400 pairs of sunglasses. He wants to distribute them evenly among X people, where X is
a positive integer between 10 and 180, inclusive. For how many X is this possible?
Answer:
To distribute 32,400 pairs of sunglasses evenly among X people, we need to find the positive integer values of X that divide 32,400 without any remainder.
To determine the values of X for which this is possible, we can iterate through the positive integers from 10 to 180 and check if 32,400 is divisible by each integer.
Let's calculate:
Number of possible values for X = 0
For each value of X from 10 to 180, we check if 32,400 is divisible by X using the modulo operator (%):
for X = 10:
32,400 % 10 = 0 (divisible)
for X = 11:
32,400 % 11 = 9 (not divisible)
for X = 12:
32,400 % 12 = 0 (divisible)
...
for X = 180:
32,400 % 180 = 0 (divisible)
We continue this process for all values of X from 10 to 180. If the remainder is 0, it means that 32,400 is divisible by X.
In this case, the number of possible values for X is the count of the integers from 10 to 180 where 32,400 is divisible without a remainder.
After performing the calculations, we find that 32,400 is divisible by the following values of X: 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 90, 96, 100, 108, 120, 128, 135, 144, 150, 160, 180.
Therefore, there are 33 possible values for X between 10 and 180 (inclusive) for which it is possible to distribute 32,400 pairs of sunglasses evenly.
Hope it helps!
The cost to cater a wedding for 100 people includes $1200.00 for food, $800.00 for beverages, $900.00 for rental items, and $800.00 for labor. If a contribution margin of $14.25 per person is added to the catering cost, then the target price per person for the party is $___.
Based on the Question, The target price per person for the party is $51.25.
What is the contribution margin?
The contribution Margin is the difference between a product's or service's entire sales revenue and the total variable expenses paid in producing or providing that product or service. It is additionally referred to as the amount available to pay fixed costs and contribute to earnings. Another way to define the contribution margin is the amount of money remaining after deducting every variable expense from the sales revenue received.
Let's calculate the contribution margin in this case:
Contribution margin = (total sales revenue - total variable costs) / total sales revenue
Given that, The cost to cater a wedding for 100 people includes $1200.00 for food, $800.00 for beverages, $900.00 for rental items, and $800.00 for labor.
Total variable cost = $1200 + $800 = $2000
And, Contribution margin per person = Contribution margin/number of people
Contribution margins per person = $1425 / 100
Contribution margin per person = $14.25
What is the target price per person?
The target price per person = Total cost per person + Contribution margin per person
given that, Total cost per person = (food cost + beverage cost + rental cost + labor cost) / number of people
Total cost per person = ($1200 + $800 + $900 + $800) / 100
Total cost per person = $37.00Therefore,
The target price per person = $37.00 + $14.25
The target price per person = is $51.25
Therefore, The target price per person for the party is $51.25.
Learn more about Contribution margin:
https://brainly.com/question/15281855
#SPJ11
find the vertex of y=(x+3)2+17
The vertex of the quadratic function [tex]y = (x + 3)^2 + 17[/tex] is (-3, 17).
This means that the parabola is symmetric around the vertical line x = -3 and has its lowest point at (-3, 17).
To find the vertex of the quadratic function y = (x + 3)^2 + 17, we can identify the vertex form of a quadratic equation, which is given by [tex]y = a(x - h)^2 + k,[/tex]
where (h, k) represents the vertex.
Comparing the given function [tex]y = (x + 3)^2 + 17[/tex] with the vertex form, we can see that h = -3 and k = 17.
Therefore, the vertex of the quadratic function is (-3, 17).
To understand this conceptually, the vertex represents the point where the quadratic function reaches its minimum or maximum value.
In this case, since the coefficient of the [tex]x^2[/tex] term is positive, the parabola opens upward, meaning that the vertex corresponds to the minimum point of the function.
By setting the derivative of the function to zero, we could also find the x-coordinate of the vertex.
However, in this case, it is not necessary since the equation is already in vertex.
For similar question on quadratic function.
https://brainly.com/question/1214333
#SPJ8
1. [-/5 Points] DETAILS Use the half-angle formulas to determine the exact values of the sine, cosine, and tangent of the angle. I 12 sin(+2) = cos(+2) = tan LARPCALC11 5.5.037. Submit Answer
We are asked to use the half-angle formulas to find the exact values of sine, cosine, and tangent of the angle [tex]\(\theta/2\)[/tex], given that [tex]\(\sin(\theta) = \frac{1}{2}\) and \(\cos(\theta) = \frac{1}{2}\)[/tex].
The half-angle formulas allow us to express trigonometric functions of an angle [tex]\(\theta/2\[/tex]) in terms of the trigonometric functions of[tex]\(\theta\)[/tex]. The formulas are as follows:
[tex]\(\sin(\frac{\theta}{2}) = \pm \sqrt{\frac{1 - \cos(\theta)}{2}}\)\(\cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1 + \cos(\theta)}{2}}\)\(\tan(\frac{\theta}{2}) = \frac{\sin(\theta)}{1 + \cos(\theta)}\)[/tex]
Given that [tex]\(\sin(\theta) = \frac{1}{2}\) and \(\cos(\theta) = \frac{1}{2}\)[/tex], we can substitute these values into the half-angle formulas.
For [tex]\(\sin(\frac{\theta}{2})\)[/tex]:
[tex]\(\sin(\frac{\theta}{2}) = \pm \sqrt{\frac{1 - \cos(\theta)}{2}} = \pm \sqrt{\frac{1 - \frac{1}{2}}{2}} = \pm \frac{1}{2}\)[/tex]
For [tex]\(\cos(\frac{\theta}{2})\):\(\cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1 + \cos(\theta)}{2}} = \pm \sqrt{\frac{1 + \frac{1}{2}}{2}} = \pm \frac{\sqrt{3}}{2}\)[/tex]
For[tex]\(\tan(\frac{\theta}{2})\):\(\tan(\frac{\theta}{2}) = \frac{\sin(\theta)}{1 + \cos(\theta)} = \frac{\frac{1}{2}}{1 + \frac{1}{2}} = \frac{1}{3}\)[/tex]
Therefore, using the half-angle formulas, we find that \[tex](\sin(\frac{\theta}{2}) = \pm \frac{1}{2}\), \(\cos(\frac{\theta}{2}) = \pm \frac{\sqrt{3}}{2}\), and \(\tan(\frac{\theta}{2}) = \frac{1}{3}\).[/tex]
Learn more about trigonometric here:
https://brainly.com/question/29156330
#SPJ11
the half-life of radium-226 is 1600 years. Suppose you have a 20-mg sample. How much of the sample will remain after 4000 years? Round to 4 decimal places.
Approximately 3.5355 mg of the sample will remain after 4000 years.
To determine how much of the sample will remain after 4000 years.
We can use the formula for exponential decay:
N(t) = N₀ * (1/2)^(t / T)
Where:
N(t) is the amount remaining after time t
N₀ is the initial amount
T is the half-life
Given:
Initial amount (N₀) = 20 mg
Half-life (T) = 1600 years
Time (t) = 4000 years
Plugging in the values, we get:
N(4000) = 20 * (1/2)^(4000 / 1600)
Simplifying the equation:
N(4000) = 20 * (1/2)^2.5
N(4000) = 20 * (1/2)^(5/2)
Using the fact that (1/2)^(5/2) is the square root of (1/2)^5, we have:
N(4000) = 20 * √(1/2)^5
N(4000) = 20 * √(1/32)
N(4000) = 20 * 0.1767766953
N(4000) ≈ 3.5355 mg
Therefore, approximately 3.5355 mg of the sample will remain after 4000 years.
Learn more about sample here:
https://brainly.com/question/32907665
#SPJ11