a. The function, f(x) = 2x-5 5-x would not require a sign chart for finding its domain because is a linear equation with a slope of 2.
b. The function , g(x) 3x+7 x √x+1 x2-9 would require a sign chart for finding its domain the denominators contains terms that can potentially make it zero, causing division by zero errors.
How to determine the domainFirst, we need to know that the domain of a function is the set of values that we are allowed to plug into our function.
a. It is not essential to use a sign chart to determine the domain of the function f(x) = 2x - 5.
The equation for the function is linear, with a constant slope of 2. It is defined for all real values of x since it doesn't involve any fractions, square roots, or logarithms. Consequently, the range of f(x) is (-, +).
b. The formula for the function g(x) is (3x + 7)/(x (x + 1)(x2 - 9)). incorporates square roots and logical expressions. In these circumstances, a sign chart is required to identify the domain.
There are terms in the denominator that could theoretically reduce it to zero, leading to division by zero mistakes.
The denominator contains the variables x and (x + 1), neither of which can be equal to zero. Furthermore, x2 - 9 shouldn't be zero because it
Learn more about functions at: https://brainly.com/question/11624077
#SPJ1
Jeff has 32,400 pairs of sunglasses. He wants to distribute them evenly among X people, where X is
a positive integer between 10 and 180, inclusive. For how many X is this possible?
Answer:
To distribute 32,400 pairs of sunglasses evenly among X people, we need to find the positive integer values of X that divide 32,400 without any remainder.
To determine the values of X for which this is possible, we can iterate through the positive integers from 10 to 180 and check if 32,400 is divisible by each integer.
Let's calculate:
Number of possible values for X = 0
For each value of X from 10 to 180, we check if 32,400 is divisible by X using the modulo operator (%):
for X = 10:
32,400 % 10 = 0 (divisible)
for X = 11:
32,400 % 11 = 9 (not divisible)
for X = 12:
32,400 % 12 = 0 (divisible)
...
for X = 180:
32,400 % 180 = 0 (divisible)
We continue this process for all values of X from 10 to 180. If the remainder is 0, it means that 32,400 is divisible by X.
In this case, the number of possible values for X is the count of the integers from 10 to 180 where 32,400 is divisible without a remainder.
After performing the calculations, we find that 32,400 is divisible by the following values of X: 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 90, 96, 100, 108, 120, 128, 135, 144, 150, 160, 180.
Therefore, there are 33 possible values for X between 10 and 180 (inclusive) for which it is possible to distribute 32,400 pairs of sunglasses evenly.
Hope it helps!