Answer: Hello your question is incomplete attached below is the complete question
answer : V(out) (t) = 1 - e^-100t
Explanation:
The equation of the output voltage as a function of time assuming at t = 0 switch closes and capacitor will be discharged when t < 0
V(out) (t) = 1 - e^-100t
attached below is the step by step explanation
The output side of an ideal transformer has 35 turns, and supplies 2.0 A to a 24-W device. Ifthe input is a standard wall outlet, calculate the number of turns on the input side, and the currentdrawn from the outlet.
Answer:
The current drawn from the outlet is 0.2 A
The number of turns on the input side is 350 turns
Explanation:
Given;
number of turns of the secondary coil, Ns = 35 turns
the output current, [tex]I_s[/tex] = 2 A
power supplied, [tex]P_s[/tex] = 24 W
the standard wall outlet in most homes = 120 V = input voltage
For an ideal transformer; output power = input power
the current drawn from the outlet is calculated;
[tex]I_pV_p = P_s\\\\I_p = \frac{P_s}{V_p} = \frac{24}{120} = 0.2 \ A[/tex]
The number of turns on the input side is calculated as;
[tex]\frac{N_p}{N_s} = \frac{I_s}{I_p} \\\\N_p = \frac{N_sI_s}{I_p} \\\\N_p = \frac{35 \times 2}{0.2} \\\\N_p = 350 \ turns[/tex]
Which option identifies the best way to reduce the environmental impact in the following scenario?
Sheryl has been assessing a factory where cheese is made and packaged. She has determined that the
product's packaging is the component that causes the highest environmental impact.
Sheryl should implement steps to create a cheese that does not need to be packaged.
0 Sheryl should implement steps to educate the factory personnel on the subject of conservation.
O Sheryl should implement steps to optimize the packaging in an eco-friendly manner.
O Sheryl should implement steps to reduce costs in the packaging department.
Sheryl should implement steps to optimize the packaging in an eco-friendly manner.
dentify the recommended practices when putting a tip on a micropipette. Select one or more: Gently push the micropipette into the tip and tap lightly to load the tip. Hold the micropipette at a 45 degree angle to the tip rack. Use the tip size designed for the micropipette size in use. Remove the tip from the rack and place it on micropipette by hand.
Answer:
Gently push the micropipette into the tip box and tag tightly to load the tip.
Explanation:
The recommended practice when putting a tip on a micropipette is ; Gently push the micropipette into the tip box and tag tightly to load the tip.
Given that it is not advisable to remove tip from rack so as not to contaminate it, if we want to put a tip on a micropipette we should gently push the micropipette into the tip box.
Determine the complex power, apparent power, average power absorbed, reactive power, and power factor (including whether it is leading or lagging) for a load circuit whose voltage and current at its input terminals are given by:
Answer: hello your question is incomplete attached below is the missing detail
answer :
Complex power = 2.5 ∠ 50° VA
apparent power = 2.5 VA
average power = 1.6 Watts
reactive power = 1.915 Var
power factor = 0.64 ( leading )
Explanation:
i) complex power
P = Vrms * Irms
= 17.67∠40° * 0.1414∠-10°
= 2.5∠50° VA
ii) Apparent power
s = Vrms * Irms
= 17.67 * 0.1414
= 2.5 VA
iii) Average power absorbed
Absorbed power ( p ) = Vrms * Irms * cos∅
= 17.67 * 0.1414 * cos ( 50 )
= 1.6 watt
iv) Reactive power
P = Vrms * Irms * sin∅
= 17.67 * 0.1414 * sin ( 50 )
= 1.915 VAR
v) power factor
P.F = cos ∅ = p /s
= 1.6 watt / 2.5 VA = 0.64.
The National Weather Service has issued an alert for a severe storm that will bring 100 mm of rainfall in one hour. A farmer in the area is trying to decide whether to sand bag the creek that drains the 40 acres of row crops. The soil for the drainage area is a sandy clay loam and has a porosity of 0.398, effective porosity of 0.330, suction pressure of 52.3 cm, a hydraulic conductivity of 0.25 cm/hr and an effective saturation of 90%. Assuming that ponding occurs instantaneously, estimate the total depth of direct runoff in mm from the event using the Green-Ampt infiltration model.
a. 80
b. 89
c. 76
d. 72