Emily worked only 4/5 of her normal 40-hr work week. If she makes $18 per hour, how much money did she earn for the week? Use the equation

Answers

Answer 1

Answer:

576 for the week

Step-by-step explanation:

First determine how many hours she worked

4/5 * 40 = 32 hours

32 hours times the hourly rate of 18

32*18 =576


Related Questions

find the are of the kite.
a. 96 ft^2
b.192 ft^2
c.64 ft^2
d.348 ft^2

Answers

Answer:

A

Step-by-step explanation:

The area of a kite is half of the product of the length of the diagonals, or in this case 16*12/2=96 square feet. Hope this helps!

Answer:

a. 96 ft^2

Step-by-step explanation:

You can cut the kite into 2 equal triangle halves vertically.

Then you can use the triangle area formula and multiply it by 2 since there are 2 triangles.

[tex]\frac{1}{2} *12*8*2=\\6*8*2=\\48*2=\\96ft^2[/tex]

The kite's area is a. 96 ft^2.

If the terms of a polynomial do not have a GCF, does that mean it is not factorable?

Answers

If the terms of a polynomial do not have a GCF, does that mean it is not factorable? Explain. The terms of a polynomial do not have to have a common factor for the entire polynomial to be factorable.

In a sample of 22 people, the average cost of a cup of coffee is $2.70. Assume the population standard deviation is $0.93. What is the 90% confidence interval for the cost of a cup of coffee

Answers

Answer:

$2.70+/-$0.33

= ( $2.37, $3.03)

Therefore, the 90% confidence interval (a,b) = ( $2.37, $3.03)

Step-by-step explanation:

Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.

The confidence interval of a statistical data can be written as.

x+/-zr/√n

Given that;

Mean x = $2.70

Standard deviation r = $0.93

Number of samples n = 22

Confidence interval = 90%

z(at 90% confidence) = 1.645

Substituting the values we have;

$2.70+/-1.645($0.93/√22)

$2.70+/-1.645($0.198276666210)

$2.70+/-$0.326165115916

$2.70+/-$0.33

= ( $2.37, $3.03)

Therefore, the 90% confidence interval (a,b) = ( $2.37, $3.03)

How many units of insulin are in 0.75 ML a regular U – 100 insulin

Answers

Answer:

0.75 ML of insulin contains 75 units of insulin

Step-by-step explanation:

U - 100 insulin hold 100 units of insulin per ml

This means that:

1 ML = 100 units

∴ 0.75 ML = 100 × 0.75 = 75  units

Therefore 0.75 ML of insulin contains 75 units of insulin

Please answer this correctly

Answers

Answer:

Hiking: 28%

Canoeing: 16%

Swimming: 24%

Fishing: 32%

Step-by-step explanation:

21 + 12 + 18 + 24 = 75 (there are 75 campers)

21 out of 75 = 28%

12 out of 75 = 16%

18 out of 75 = 24%

24 out of 75 = 32%

Hope this helps!

Please mark Brainliest if correct

Please answer this correctly

Answers

Answer:

The second graph.

Step-by-step explanation:

0-9: 6 numbers

10-19: 2 numbers

20-29: 1 number

30-39: 3 numbers

40-49: 1 number

50-59: 2 numbers

60-69: 0 numbers

70-79: 5 numbers

80-89: 3 numbers

90-99: 1 number

given the diagram below what is cos (45degree)?

Answers

Answer:

[tex]1/\sqrt{2}[/tex]

Answer:

B

Step-by-step explanation:

pls help me I would be happy if do

Answers

Answer:

a prism is a three dimensional shape with the same width all the way through.

Step-by-step explanation:

Step-by-step explanation:

i think this will help.

Which of these fractions is an improper fraction? 5/3 or 3/5

Answers

Answer:

5/3 is an improper fraction because 5 is higher then 3. So the correct way of writing it would be 1 2/3.

Step-by-step explanation:

Answer: 5/3

Explanation:

5/3 is an improper fraction, and could be a mixed number, because the denominator is less than the numerator.

5/3 = 1 2/3

finding angle measures between intersecting lines.

Answers

Answer: x=45°

Step-by-step explanation:

Angles opposite from each other are equal. The angle 160 degrees in red on the bottom encompasses two angles: BEG and CEG. Angle BEG is on the opposite side as FEA which means it is equal to x.

Since angle FED on the other side is 115, you subtract 115 from 160 to get 45 degrees.

Answer: x=45°

The angle BEG, which is opposite to the angle FEA, is determined to be 45 degrees.

According to the information provided, in a figure with an angle of 160 degrees (red angle on the bottom), there are two angles labeled as BEG and CEG. It is stated that the angle BEG is opposite to the angle FEA, making them equal, so we can represent this angle as x.

Additionally, it is mentioned that the angle FED on the other side measures 115 degrees.

To find the value of x, we subtract 115 degrees from the angle of 160 degrees.
=160-115
= 45

Thus, the solution is x = 45°.

For more details about the angle visit the link below: https://brainly.com/question/16959514

#SPJ4

for a sample size of 115 and a population parameter of 0.1,what is the standard deviation of the normal curve that can be used to approximate the binomial probability histogram. Round your answer to three decimal places


A.0.028

B.0.054

C.0.043

D.0.035

Answers

Answer:

A) 0.028

Step-by-step explanation:

Given:

Sample size, n = 115

Population parameter, p = 0.1

The X-Bin(n=155, p=0.1)

Required:

Find the standard deviation of the normal curve that can be used to approximate the binomial probability histogram.

To find the standard deviation, use the formula below:

[tex]\sigma = \sqrt{\frac{p(1-p)}{n}}[/tex]

Substitute figures in the equation:

[tex]\sigma = \sqrt{\frac{0.1(1 - 0.1)}{115}}[/tex]

[tex]\sigma = \sqrt{\frac{0.1 * 0.9}{115}}[/tex]

[tex]\sigma = \sqrt{\frac{0.09}{115}}[/tex]

[tex] \sigma = \sqrt{7.826*10^-^4}[/tex]

[tex] \sigma = 0.028 [/tex]

The Standard deviation of the normal curve that can be used to approximate the binomial probability histogram is 0.028

If the radius of a circle is 31.2 cm, what is the approximate area if you use 3.14 for pi and the area is rounded to the nearest tenth?

Answers

Answer:

3056.6 cm^2

Step-by-step explanation:

A = (pi)r^2 = 3.14 * 31.2 cm * 31.2 cm = 3056.6 cm^2

Answer: 3056.60 sq. cm.

Step-by-step explanation:

Area of a circle = π x r^2

= 3.14 x 31.2^2

= 3056.60

HURRY TIMEDD!!!!!
What is the value of the discriminant, b2 − 4ac, for the quadratic equation 0 = x2 − 4x + 5, and what does it mean about the number of real solutions the equation has? The discriminant is −4, so the equation has 2 real solutions. The discriminant is −4, so the equation has no real solutions. The discriminant is 35, so the equation has 2 real solutions. The discriminant is 35, so the equation has no real solutions.

Answers

Answer:

Second option is the correct choice.

Step-by-step explanation:

"The discriminant is −4, so the equation has no real solutions."

[tex]x^2-4x+5=0\\\\a=1,\:b=-4,\:c=5:\\\\b^2-4ac=\left(-4\right)^2-4\cdot \:1\cdot \:5=-4[/tex]

Best Regards!

Answer: B

The discriminant is −4, so the equation has no real solutions.

Step-by-step explanation:

Just took quiz EDG2021

Mark Brainliest

Which of the following is not an undefined term?
point, ray, line, plane

Answers

Answer:

Step-by-step explanation:

Ray

Answer:

ray

Step-by-step explanation:

ray is a part of a line that has an endpoint in one side and extends indefinitely on the opposite side. hence, the answer is ray

hope this helps

Can someone please explain how to do this problem? The websites instructions are very poor. Rewrite [tex]\frac{2}{x^{2} -x-12}[/tex] and [tex]\frac{1}{x^{2}-16 }[/tex] as equivalent rational expressions with the lowest common denominator.

Answers

Answer: x = -5

Step-by-step explanation:

If you factor each denominator, you can find the LCM.

[tex]\dfrac{2}{x^2-x-12}=\dfrac{1}{x^2-16}\\\\\\\dfrac{2}{(x-4)(x+3)}=\dfrac{1}{(x-4)(x+4)}\\\\\\\text{The LCM is (x-4)(x+4)(x+3)}\\\\\\\dfrac{2}{(x-4)(x+3)}\bigg(\dfrac{x+4}{x+4}\bigg)=\dfrac{1}{(x-4)(x+4)}\bigg(\dfrac{x+3}{x+3}\bigg)\\\\\\\dfrac{2(x+4)}{(x-4)(x+4)(x+3)}=\dfrac{1(x+3)}{(x-4)(x+4)(x+3)}\\[/tex]

Now that the denominators are equal, we can clear the denominator and set the numerators equal to each other.

2(x + 4) = 1(x + 3)

2x + 8 = x + 3

x  + 8 =       3

x        =      -5

A fence 6 feet tall runs parallel to a tall building at a distance of 6 feet from the building. We want to find the the length of the shortest ladder that will reach from the ground over the fence to the wall of the building. Here are some hints for finding a solution: Use the angle that the ladder makes with the ground to define the position of the ladder and draw a picture of the ladder leaning against the wall of the building and just touching the top of the fence. If the ladder makes an angle 0.82 radians with the ground, touches the top of the fence and just reaches the wall, calculate the distance along the ladder from the ground to the top of the fence. equation editorEquation Editor The distance along the ladder from the top of the fence to the wall is equation editorEquation Editor Using these hints write a function L(x) which gives the total length of a ladder which touches the ground at an angle x, touches the top of the fence and just reaches the wall. L(x) = equation editorEquation Editor . Use this function to find the length of the shortest ladder which will clear the fence. The length of the shortest ladder is equation editorEquation Editor feet.

Answers

Answer:

  12√2 feet ≈ 16.97 feet

Step-by-step explanation:

For the dimensions shown in the attached diagram, the distance "a" along the ladder from the ground to the fence is ...

  a = (6 ft)/sin(x) = (6 ft)/sin(0.82) ≈ 8.206 ft

The distance along the ladder from the top of the fence to the wall is ...

  b = (6 ft)/cos(x) = (6 ft)/cos(0.82) ≈ 8.795 ft

__

In general, the distance along the ladder from the ground to the wall is ...

  L(x) = a +b

  L(x) = 6/sin(x) +6/cos(x)

This distance will be shortest for the case where the derivative with respect to x is zero.

  L'(x) = 6(-cos(x)/sin(x)² +sin(x)/cos(x)²) = 6(sin(x)³ -cos(x)³)/(sin(x)²cos(x²))

This will be zero when the numerator is zero:

  0 = 6(sin(x) -cos(x))(1 -sin(x)cos(x))

The last factor is always positive, so the solution here is ...

  sin(x) = cos(x)   ⇒   x = π/4

And the length of the shortest ladder is ...

  L(π/4) = 6√2 + 6√2

  L(π/4) = 12√2 . . . . feet

_____

The ladder length for the "trial" angle of 0.82 radians was ...

  8.206 +8.795 = 17.001 . . . ft

The actual shortest ladder is ...

  12√2 = 16.971 . . . feet

In a certain community, eight percent of all adults over age 50 have diabetes. If a health service in this community correctly diagnosis 95% of all persons with diabetes as having the disease and incorrectly diagnoses ten percent of all persons without diabetes as having the disease, find the probabilities that:

Answers

Complete question is;

In a certain community, 8% of all people above 50 years of age have diabetes. A health service in this community correctly diagnoses 95% of all person with diabetes as having the disease, and incorrectly diagnoses 10% of all person without diabetes as having the disease. Find the probability that a person randomly selected from among all people of age above 50 and diagnosed by the health service as having diabetes actually has the disease.

Answer:

P(has diabetes | positive) = 0.442

Step-by-step explanation:

Probability of having diabetes and being positive is;

P(positive & has diabetes) = P(has diabetes) × P(positive | has diabetes)

We are told 8% or 0.08 have diabetes and there's a correct diagnosis of 95% of all the persons with diabetes having the disease.

Thus;

P(positive & has diabetes) = 0.08 × 0.95 = 0.076

P(negative & has diabetes) = P(has diabetes) × (1 –P(positive | has diabetes)) = 0.08 × (1 - 0.95)

P(negative & has diabetes) = 0.004

P(positive & no diabetes) = P(no diabetes) × P(positive | no diabetes)

We are told that there is an incorrect diagnoses of 10% of all persons without diabetes as having the disease

Thus;

P(positive & no diabetes) = 0.92 × 0.1 = 0.092

P(negative &no diabetes) =P(no diabetes) × (1 –P(positive | no diabetes)) = 0.92 × (1 - 0.1)

P(negative &no diabetes) = 0.828

Probability that a person selected having diabetes actually has the disease is;

P(has diabetes | positive) =P(positive & has diabetes) / P(positive)

P(positive) = 0.08 + P(positive & no diabetes)

P(positive) = 0.08 + 0.092 = 0.172

P(has diabetes | positive) = 0.076/0.172 = 0.442

The probability are "0.168 and 0.452".

Using formula:

[tex]P(\text{diabetes diagnosis})\\[/tex]:

[tex]=\text{P(having diabetes and have been diagnosed with it)}\\ + \text{P(not have diabetes and yet be diagnosed with diabetes)}[/tex]

[tex]=0.08 \times 0.95+(1-0.08) \times 0.10 \\\\=0.08 \times 0.95+0.92 \times 0.10 \\\\=0.076+0.092\\\\=0.168[/tex]

[tex]\text{P(have been diagnosed with diabetes)}[/tex]:

[tex]=\frac{\text{P(have diabetic and been diagnosed as having insulin)}}{\text{P(diabetes diagnosis)}}[/tex]

[tex]=\frac{0.08\times 0.95}{0.168} \\\\=\frac{0.076}{0.168} \\\\=0.452\\[/tex]

Learn more about the probability:

brainly.com/question/18849788

Find the volume of the cone.
4 cm
3 cm
V = [?] cm3
Round to the nearest tenth.

Answers

Answer:

Volume of a cone = 1/3πr²h

h = height

r = radius

r = 3cm h = 4cm

Volume = 1/3π(3)²(4)

= 36 × 1/3π

= 12π

= 36.69cm³

= 37cm³ to the nearest tenth

Hope this helps

Answer:

37.7

_______

NOT 37

Step-by-step explanation:

v = [tex]\frac{1}{3}[/tex] · [tex]\pi[/tex] · [tex]r^{2}[/tex] · [tex]h[/tex]

v = [tex]\frac{1}{3}[/tex] · [tex]\pi[/tex] · [tex]3^{2}[/tex] · [tex]4 = 12\pi = 37.69911 =[/tex] 37.7

a) find the value of 2x+y wehn x =4 and y =3 b) find the value of a^2 + b when a = -2 and b = 5

Answers

Answer:

a. 11b. 9

Solution,

a. Given,

X=4

y=3

Now,

[tex]2x + y \\ = 2 \times 4 + 3 \\ = 8 + 3 \\ = 11[/tex]

b. Given,

a=-2

b=5

Now,

[tex] {a}^{2} + b \\ = {( - 2)}^{2} + 5 \\ = 4 + 5 \\ = 9[/tex]

hope this helps...

Good luck on your assignment..

A woman has a collection of video games and anime. she has 50 anime DVDs, and she has 70 video games. which it adds up to 120 items. if you divide them by 5, how many items does she have all together?

Answers

She has 24 items

Hope this helps you:)

Answer:

24

Step-by-step explanation:

Since you are given almost everything, you just simply divide by 5=>

120/5 = 24

Hope this helps

√x+3 = √5x-1 Find the value of X

Answers

Answer:

x=1

Step-by-step explanation:

sqrt(x+3) = sqrt(5x-1)

Square each side

x+3 = 5x-1

Subtract x from each side

3 = 4x-1

Add 1 to each side

4 =4x

Divide by 4

x=1

Answer:

x= 1

Step-by-step explanation:

[tex]\sqrt{x+3}=\sqrt{5x-1}[/tex]

Square both sides.

x + 3 = 5x - 1

Subtract 3 and 5x on both sides.

x - 5x = -1 - 3

-4x = -4

Divide -4 into both sides.

-4x/-4 = -4/-4

x = 1

An article reports that 1 in 500 people carry the defective gene that causes inherited colon cancer. In a sample of 2000 individuals, what is the approximate distribution of the number who carry this gene

Answers

Answer:

Brianliest!

Step-by-step explanation:

4

1 in 500

500 x 4 = 2000

4 in 2000

A line passes through the points P(1,-6,7) and Q(-9,10,-5) find the standard parametric equations for the line, written using the base point P(1,-6,7) and the components of the vector PQ rightarrow.
x = _________, y = _________, z = __________.

Answers

Answer:

[tex]x = 1-10t\\y = -6+16t\\z = 7-12t[/tex]

Step-by-step explanation:

We are given the coordinates of points P(1,-6,7) and Q(-9,10,-5).

The values in the form of ([tex]x,y,z[/tex]) are:

[tex]x_1=1\\x_2=-9\\y_1=-6\\,y_2=10\\z_1=7\\z_2=-5[/tex]

[tex]$\vec{PQ}$[/tex] can be written as the difference of values of x, y and z axis of the two points i.e. change in axis.

[tex]\vec{PQ}=<x_2-x_1,y_2-y_1,z_2-z_1>[/tex]

[tex]\vec{PQ} = <(-9-1), 10-(-6),(-5-7)>\\\Rightarrow \vec{PQ} = <-10, 16,-12>[/tex]

The equation of line in vector form can be written as:

[tex]\vec{r} (t) = <1,-6,7> + t<-10,16,-12>[/tex]

The standard parametric equation can be written as:

[tex]x = 1-10t\\y = -6+16t\\z = 7-12t[/tex]

Initially 100 milligrams of a radioactive substance was present. After 6 hours the mass had decreased by 3%. If the rate of decay is proportional to the amount of the substance present at time t, determine the half-life of the radioactive substance. (Round your answer to one decimal place.)

Answers

The radioactive compound has a half-life of around 3.09 hours.

The period of time needed for a radioactive substance's initial quantity to decay by half is known as its half-life. The half-life of a drug may be calculated as follows if the rate of decay is proportionate to the amount of the substance existing at time t:

Let t be the half-life of the substance, then after t hours, the amount of the substance present will be,

100 mg × [tex]\dfrac{1}{2}[/tex] = 50 mg.

At time 6 hours, the amount of the substance present is,

100 mg × (1 - 3%) = 97 mg.

Given that the amount of material available determines how quickly something degrades,

The half-life can be calculated as follows:

[tex]t = 6 \times \dfrac{50}{ 97} = 3.09 \ hours[/tex]

Therefore, the half-life of the radioactive substance is approximately 3.09 hours.

Learn more about half-life:

brainly.com/question/24710827

#SPJ12

Which graph shows a function whose domain and range exclude exactly one value?​

Answers

Answer:

C (the third graph)

Step-by-step explanation:

This graph's function has a domain and range that both exclude one value, which is 0. The x and y values are never 0 in the function, as it approaches 0 but never meets it.

Answer:

see below

Step-by-step explanation:

This graph has an asymptote at y = 0 and x=0

This excludes these values

The domain excludes x =0

The range excludes y=0

If an image of a triangle is congruent to the pre-image, what is the scale factor of the dilation?
0.1
1/2
1
10

Answers

The scale factor of the dilation is 1 because the image and pre-image share the SAME everything (lengths, area, etc.). So if you multiply one of the image’s length by any number other than one, the pre-image will change.

What is the general form of the equation of the line shown? 2 x - y + 3 = 0 2 x - y - 3 = 0 x - 2 y - 3 = 0

Answers

Answer:

2x - y - 3 = 0

Step-by-step explanation:

Find slope-intercept form first: y = mx + b

Step 1: Pick out 2 points

In this case, I picked out (2, 1) and (0, -3) from the graph

Step 2: Using slope formula y2 - y1/x2 - x1 to find slope

-3 - 1/0 - 2

m = 2

Step 3: Place slope formula results into point-slope form

y = 2x + b

Step 4: Plug in a point to find b

-3 = 2(0) + b

b = -3

Step 5: Write slope-intercept form

y = 2x - 3

Step 6: Move all variables and constants to one side

0 = 2x - 3 - y

Step 7: Rearrange

2x - y - 3 = 0 is your answer

Lard-O potato chips guarantees that all snack-sized bags of chips are between 16 and 17 ounces. The machine that fills the bags has an output with a mean of 16.5 and a standard deviation of 0.25 ounces. Construct a control chart for the Lard-O example using 3 sigma limits if samples of size 5 are randomly selected from the process. The center line is ____. The standard deviation of the sample mean is ____. The UCL

Answers

Answer:

- The center line is at 16.5 ounces.

- The standard deviation of the sample mean = 0.112 ounce.

- The UCL = 16.836 ounces.

- The LCL = 16.154 ounces.

Step-by-step explanation:

The Central limit theorem allows us to write for a random sample extracted from a normal population distribution with each variable independent of one another that

Mean of sampling distribution (μₓ) is approximately equal to the population mean (μ).

μₓ = μ = 16.5 ounces

And the standard deviation of the sampling distribution is given as

σₓ = (σ/√N)

where σ = population standard deviation = 0.25 ounce

N = Sample size = 5

σₓ = (0.25/√5) = 0.1118033989 = 0.112 ounce

Now using the 3 sigma limit rule that 99.5% of the distribution lies within 3 standard deviations of the mean, the entire distribution lies within

(μₓ ± 3σₓ)

= 16.5 ± (3×0.112)

= 16.5 ± (0.336)

= (16.154, 16.836)

Hope this Helps!!!

13. Two points P and Q, 10 m apart on level ground,
are due West of the foot B of a tree TB. Given that
TPB = 23° and TQB = 32°, find the height of tree​

Answers

Answer: height = 13.24 m

Step-by-step explanation:

Draw a picture (see image below), then set up the proportions to find the length of QB.  Then input QB into either of the equations to find h.

Given: PQ = 10

          ∠TPB = 23°

          ∠TQB = 32°

[tex]\tan P=\dfrac{opposite}{adjacent}\qquad \qquad \tan Q=\dfrac{opposite}{adjacent}\\\\\\\tan 23^o=\dfrac{h}{10+x}\qquad \qquad \tan 32^o=\dfrac{h}{x}\\\\\\\underline{\text{Solve each equation for h:}}\\\tan 23^o(10+x)=h\qquad \qquad \tan 32^o(x)=h\\\\\\\underline{\text{Set the equations equal to each other and solve for x:}}\\\tan23^o(10+x)=\tan32^o(x)\\0.4245(10+x)=0.6249x\\4.245+0.4245x=0.6249x\\4.245=0.2004x\\21.18=x[/tex]

[tex]\underline{\text{In put x = 21.18 into either equation and solve for h:}}\\h=\tan 32^o(x)\\h=0.6249(2.118)\\\large\boxed{h=13.24}[/tex]

What is AB? Geometry help please

Answers

Answer:

AB = 37 units.

Step-by-step explanation:

Solve for AB using the Pythagorean theorem:

c² = a² + b² (c being AB in this instance)

Plug in the values of the legs of the triangle:

c² = 12² + 35²

c² = 144 + 1225

c² = 1369

c = √1369

c = 37

Therefore, AB = 37.

Other Questions
YOOO PLZ HELP ASAP!!! Simplify the expression by combining like terms15 + 12x 5.2 + 4y - 7 A hockey puck slides off the edge of a horizontal platform with an initial velocity of 28.0 m/shorizontally in a city where the acceleration due to gravity is 9.81 m/s 2. The puck experiences no significant air resistance as it falls. The height of the platform above the ground is 2.00 m. What is the angle below the horizontal of the velocity of the puck just before it hits the ground Find the vertex of the graphed function. f(x) = |x 4| + 3 The vertex is at (, ). PLEASEEE HELPPPPPPPjjsek Part BWhat were the reactants of the first experiment in the video?1,Font SizesA -A: EEE A boat travels at 15 m/s in a direction 45 east of north for an hour. The boat then turns and travels at 18 m/s in a direction 5 north of east for an hour.What is the magnitude of the boats resultant velocity? Round your answer to the nearest whole number. (Multiple Choice, 20 pts)Solve the rational equation x divided by 4 equals x squared divided by quantity x plus 2 end quantity, and check for extraneous solutions.A. x = two thirds; 0 is an extraneous solutionB. x = 0; x = two thirds is an extraneous solutionC. x = 0 and x = two thirdsD. No solution What is the slope of the line on the graph below 1/5 1/3 3 or 5 Which words in the passage from Elie Wiesel's Nobel Peace Prize acceptancespeech best contribute to his modest tone?It is with a profound sense of humility that I accept thehonor you have chosen to bestow upon me. I know: yourchoice transcends me. This both frightens and pleasesme.O A. choice, senseB. profound, meC. humility, bestowO D. accept, pleases What was a 19th century artistic movement that influence nationalism in Europe Wyatts eye-level height is 120 ft above sea level, and Shawns eye-level height is 270 ft above sea level. How much farther can Shawn see to the horizon? Use the formula d = StartRoot StartFraction 3 h Over 2 EndFraction EndRoot, h greater-than-or-equal-to 0 with d being the distance they can see in miles and h being their eye-level height in feet.StartRoot 5 EndRoot mi3 StartRoot 5 EndRoot mi15 StartRoot 5 EndRoot mi45 StartRoot 5 EndRoot mi QUESTION 12 For a strategic alliance, firms should seek partners that are: a. known for being opportunistic. b. radically different when it comes to strategic goals. c. willing to share costs and risks of new-product development. d. different in terms of vision and agendas. e. similar when it comes to capabilities. Which country attacked American ships during World War 2?A)GermanyB)EnglandC)France 0.24731182795 to 1 Decimal Place List and describe at least four reasons why some countries are rich and some are poor. You may use books available at home or you may research online. WILL MARK AS BRAINLIEST!!Read and choose the correct option to complete the sentence with the preterite or the imperfect.Soy Juan. Hace cinco aos que ________ mi auto.comprabacomprabascomprcompr Let f(x)=5x and g(x)= -x+1. Find f o g(ONLY 2 HOURS TO ANSWER!) Edmund makes a cube using eight small cubes. Samuel uses cubes of the same size as the small cubes to make a cuboid twice as long, three times as wide and four times as high as Edmund's cube. How many more cubes does Samuel use than Edmund? Which of these is one characteristic of topographic maps? contain contour lines to display elevation contain information about types of vegetation contain weather and climate information contain satellite images of land masses