Answer:
I believe the number of terms are 10
Step-by-step explanation:
The number of terms in the given sequence(5240,4365, 3490, 2615, ..., -2635) is 10.
What is a sequence?In mathematics, a sequence is an enumerated group of elements in which repetitions are allowed and order is significant.
How to solve this problem?The 1st term in the given sequence is 5240
The 2nd term is 4365 = 5240 - 875
The 3rd term is 3490 = 4365 - 875
The 4th term is 2615 = 3490 - 875
Then the 5th term is 2615 - 875 = 1740
The 6th term is 1740 - 875 = 865
The 7th term is 865 - 875 = - 10
The 8th term is - 10 - 875 = - 885
The 9th term is - 885 - 875 = - 1760
The 10 the term is - 1760 - 875 = - 2635.
Therefore the number of terms in the given sequence(5240,4365, 3490, 2615, ..., -2635) is 10.
Know more about sequences here -
https://brainly.com/question/22241938
#SPJ2
Simplify the following expression. 3 – 2(–6x + 3)
Answer:
-3 + 12x
Step-by-step explanation:
3 - 2(-6x + 3)
3 + 12x - 6
-3 + 12 x
Hope this helped! :)
A same side interior angle of two parallel lines is 20° less than the other same side interior angle. Find the measures of these two angles.
Answer:
The measures of the two angles are 80 and 100
Step-by-step explanation:
Let [tex]m_1[/tex] and [tex]m_2[/tex] represent the two angles such that
[tex]m_1 = m_2 - 20[/tex]
Required
Find [tex]m_1[/tex] and [tex]m_2[/tex]
The two angles of a same-side interior angle of parallel lines add up to 180;
This implies that
[tex]m_1 + m_2 = 180[/tex]
Substitute [tex]m_2 - 20[/tex] for [tex]m_1[/tex]
[tex]m_1 + m_2 = 180[/tex] becomes
[tex]m_2 - 20 + m_2 = 180[/tex]
Collect like terms
[tex]m_2 + m_2 = 180 + 20[/tex]
[tex]2m_2 = 180 + 20[/tex]
[tex]2m_2 = 200[/tex]
Divide both sides by 2
[tex]\frac{2m_2}{2} = \frac{200}{2}[/tex]
[tex]m_2 = \frac{200}{2}[/tex]
[tex]m_2 = 100[/tex]
Recall that [tex]m_1 = m_2 - 20[/tex]
[tex]m_1 = 100 - 20[/tex]
[tex]m_1 = 80[/tex]
Hence, the measures of the two angles are 80 and 100
I really need help pls
Answer:
D.
Step-by-step explanation:
Original dimensions:
L = x
W = x
Now we reduce the width by 2 ft and increase the length by 2 ft.
L = x + 2
W = x - 2
The area is the product of the length and width.
A = LW = (x + 2)(x - 2)
The original length and width are 10 ft.
L = W = x = 10
A = LW = (10 + 2)(10 - 2) = 12 * 8 = 96
The new area is 96 sq ft.
Answer: D.
Jim & Gavin share a lottery win of £4750 in the ratio 1 : 4. Jim then shares his part between himself, his wife & their son in the ratio 2 : 6 : 2. How much more does his wife get over their son?
Answer:
£380
Step-by-step explanation:
Consider the initial win of £4750
Sum the parts of the ratio, 1 + 4 = 5 parts
Divide the win by 5 to find the value of one part of the ratio.
£4750 ÷ 5 = £950 ← value of 1 part of the ratio
Thus Jim's share is £950
Sum the parts of the ratio shared in his family, 2 + 6 + 2 = 10 parts
Divide his share by 10 to find the value of one part
£950 ÷ 10 = £95 , thus
2 parts = 2 × £95 = £190 ← sons share
6 parts = 6 × £95 = £570 ← wife's share
£570 - £190 = £380
Wife gets £380 more than the son
(42) A school only provides bus service
to students who live a distance greater
than 2 miles away from the school. On a
coordinate plane, the school is located at
the origin, and Michael lives at the closest
point to the school on Maple Street,
which can be represented by the line
y = 2x – 4. If each unit on the coordinate
plane represents 1 mile, does Michael
live far enough from the school for bus
service?
Answer:
~1.8 mile
Step-by-step explanation:
Michael lives at the closest point to the school (the origin) on Maple Street, which can be represented by the line y = 2x – 4.
This means Michael's house will be the intersection point of line y1 (y = 2x - 4) and line y2 that is perpendicular to y1 and passes the origin.
Denote equation of y2 is y = ax + b,
with a is equal to negative reciprocal of 2 => a = -1/2
y2 pass the origin (0, 0) => b = 0
=> Equation of y2:
y = (-1/2)x
To find location of Michael's house, we get y1 = y2 or:
2x - 4 = (-1/2)x
<=> 4x - 8 = -x
<=> 5x = 8
<=> x = 8/5
=> y = (-1/2)x = (-1/2)(8/5) = -4/5
=> Location of Michael' house: (x, y) = (8/5, -4/5)
Distance from Michael's house to school is:
D = sqrt(x^2 + y^2) = sqrt[(8/5)^2 + (-4/5)^2) = ~1.8 (mile)
A: What are the solutions to the quadratic equation 9x2 + 64 = 0?
B: What is the factored form of the quadratic expression 9x2 +64?
Select one answer for question A, and select one answer for question B.
B: (3x + 81)(x - 1)
B: (x-8)(3x-8)
B:(3x8)(3x + 8)
B: (3x - 81)(3x + 81)
Ax = or x = -1
A:x =
A: x = i orx = -
O A x = 1
Answer:
B: (3x + 81)(x - 1)
Step-by-step explanation:
Bettina is measuring the food for her farm animals. She has 265 grams of corn, 500 grams of hay, and 495 grams of oats. What is the total weight in kilograms?
Answer
260 kilograms
Step-by-step explanation:
the correct answer is 260 kg
Answer: 12.6 kg
Step-by-step explanation: add the amounts of food for her farm, and just search for how many kg are in 1,260 grams
By first calculating the angle of LMN, calculate the area of triangle MNL. You must show all your working.
Answer:
16.66cm²
Step-by-step Explanation:
Given:
∆LMN with m<N = 38°
Length of side NL = 7.2cm
Length of side ML = 4.8cm
Required:
Area of ∆MNL
Solution:
Step 1: Find Angle LMN using the sine rule sin(A)/a = sin(B)/b
Where sin(A) = Sin(M) = ?
a = NL = 7.2cm
sin(B) = sin(N) = 38°
b = ML = 4.8cm
Thus,
Sin(M)/7.2 = sin(38)/4.8
Cross multiply
4.8*sin(M) = 7.2*sin(38)
4.8*sin(M) = 7.2*0.6157
4.8*sin(M) = 4.43304
Divide both sides by 4.8
sin(M) = 4.43304/4.8
sin(M) = 0.92355
M = sin-¹(0.92355) ≈ 67.45°
Step 2: Find m<L
angle M + angle N + angle L = 180 (sum of angles in a triangle)
67.45 + 38 + angle L = 180
105.45 + angle L = 180
Subtract 105.45 from both sides
Angle L = 180 - 105.45
Angle L = 74.55°
Step 3: Find the area of ∆MNL using the formula ½*a*b*sin(C)
Where,
a = NL = 7.2 cm
b = ML = 4.8 cm
sin(C) = sin(L) = sin(74.55)
Thus,
Area of ∆MNL = ½*7.2*4.8*0.9639
= ½*33.31
= 16.655
Area of ∆MNL ≈ 16.66cm²
Bacteria in a petri dish doubles every 10 minutes.
a) If there are 10 bacteria initially, how many are there after 120 minutes?
b) If there are 10 bacteria initially, when would there be a million bacteria?
(Show step by step)
Answer:
Step-by-step explanation:
Givens
Petri Dish A sees a double ever 10 minutes
Petri Dish B sees a double ever 6 minutes
Consequences
A doubles 60 / 10 = 6 times.
B doubles 60 / 6 = 10 times.SolutionIf you work best with numbers then suppose there are 100 bacteria in both dishes at the beginningA = 100 * 2^6B = 100 * 2^10A will have 100 * 64 = 6400 bacteria growing inside AB will have 100 * 1024 = 102400 bacteria growing inside BB/A = 102400 / 6400 = 16There are 16 times as many in B than in A
1,305 divided by 31,828 x100
Answer:
[tex]4 \frac{1}{10}[/tex]
Step-by-step explanation:
=> [tex]\frac{1305}{31828} * 100[/tex]
=> 0.041 * 100
=> 4.1
=> [tex]4 \frac{1}{10}[/tex]
A truck is to be filled with packages that weigh 5.8kg. If the maximum capacity of the truck is 48000 grams and there is a 5500 gram package already on the truck how many 5.8kg packages can be loaded?
Answer: 7 packages
Step-by-step explanation:
From the question, we are told that a truck is to be filled with packages that weigh 5.8kg. The maximum capacity of the truck is 48000 grams(48kg) and there is a 5500 gram(5.5kg) package already in the truck.
First, we need to subtract 5.5kg from 48kg to know the amount of space left. This will be:
= 48kg - 5.5kg
= 42.5kg
To get the number of 5.8kg packages that can be loaded, we divide 42.5kg by 5.8kg. This will be:
= 42.5kg/5.8kg
= 7.3
= 7 approximately
Therefore, 7 packages will be loaded.
N.B: 1000 grams = 1 kilogram
Written Response! Please help!
Evelyn believes that if she flips a coin 480 times, it will land tails up exactly 240 times. What would you tell Evelyn about her prediction?
Based on Evelyn's response, it can be said that she predicts that there is a 50% chance of the coin landing on tails and a 50% chance of the coin landing on heads.
What is the probability?Probability determines the chances that an event would happen. The probability the event occurs is 1 and the probability that the event does not occur is 0.
The probability that the coin lands on tails is half of the number of times the coin is tossed. This means she belives that there is an equal chance that the coin would land on either heads or tails.
To learn more about probability, please check: https://brainly.com/question/13234031
Pleaseee hellllpp!!!!
How many grams of AuCl3, if the compound has 6.3 x10^23 atoms of Cl?
Answer:
105.86 grams of AuCl3, if the compound has 6.3 x10^23 atoms of Cl.
Step-by-step explanation:
We are given that the compound has 6.3 x10^23 atoms of Cl.
To find how many molecules of AuCl3 are in the given compound, we divide the compound by 3, i.e;
[tex]\frac{6.3 \times 10^{23} }{3}[/tex] = [tex]2.1\times 10^{23}[/tex] molecules of AuCl3.
Now, as we know that 1 mole of AuCI3 has [tex]6.022 \times 10^{23}[/tex] molecules.
So, the moles that our compound has is given by;
= [tex]\frac{2.1 \times 10^{23} }{6.022 \times 10^{23} }[/tex] = [tex]\frac{2.1}{6.022}[/tex] = 0.349 mole AuCI3
Also, the molar mass of AuCI3 = 303.33 g/mole
So, the molar mass of 0.349 moles AuCI3 = [tex]303.33 \times 0.349[/tex]
= 105.86 g
Hence, 105.86 grams of AuCl3, if the compound has 6.3 x10^23 atoms of Cl.
Which relation is not a function?
a) y = 1x + 7
by=- 4(x + 3)2 + 10
c) -2y = - 3x + 9
d) x2 + y2 = 25
Answer:
x^2+y^2=25
Step-by-step explanation:
x^2+y^2=25 graphs a circle. A relation is a function if every x only has one y value. This is not true in a circle.
Answer:
d) x^2 + y^2 = 25.
Step-by-step explanation:
D is the equation of a circle so it fails the vertical line test for a function. If a relation is a function then any vertical line passing through it's graph will only intersect it once. This is not true of a circle.
Help
Use a calculator to find the
square root of 74 and round
to the nearest tenth.
d = 174.
d = [?]
Answer:
8.6
Step-by-step explanation:
The square root of 74 is 8.602325267. If you round this number to the nearest tenth you get 8.6
The square root of 74 is 8.602325267. If you round this number to the nearest tenth you get 8.6.
What is an expression?Expression in maths is defined as the collection of the numbers variables and functions by using signs like addition, subtraction, multiplication, and division.
Numbers (constants), variables, operations, functions, brackets, punctuation, and grouping can all be represented by mathematical symbols, which can also be used to indicate the logical syntax's order of operations and other features.
The square root of the value 74 will be calculated as below:-
D = √74
D = 8.602325267
D = 8.6
Therefore, the square root of 74 is 8.602325267. If you round this number to the nearest tenth you get 8.6.
To know more about expression follow
https://brainly.com/question/723406
#SPJ2
Someone Help me please !
Answer:
[tex] \sqrt{9} \times \sqrt{16} [/tex]
Step-by-step explanation:
[tex] \sqrt{9} \times 16 = \sqrt{9} \times \sqrt{16} = 3 \times 4 = 12[/tex]
Hope this helps ;) ❤❤❤
Answer:
sqrt(9) * sqrt(16)
Step-by-step explanation:
sqrt( 9*16)
We know that sqrt(a*b) = sqrt(a) sqrt(b)
sqrt(9) * sqrt(16)
3*4
12
The mean per capita income is 19,292 dollars per annum with a variance of 540,225. What is the probability that the sample mean would be less than 19269 dollars if a sample of 499 persons is randomly selected? Round your answer to four decimal places.
Answer:
The probability is 0.2423.
Step-by-step explanation:
Given mean per capita = 19292 dollars
Given the variance = 540225
Now find the probability that the sample mean will be less than 19269 dollar when the sample is 499.
Below is the calculation:
[tex]\bar{X} \sim N(\mu =19292, \ \sigma = \frac{\sqrt{540225}}{\sqrt{499}}) \\\bar{X} \sim N(\mu =19292, \ \sigma = 32.90) \\\text{therefore the probability is:} \\P (\bar{X}< 19269) \\\text{Convert it to standard normal variable.} \\P(Z< \frac{19269-19292}{32.90}) \\P(Z< - 0.6990) \\\text{Now getting the probability from standard normal table}\\P(Z< -0.6990) = 0.2423[/tex]
Select the correct answer.
Identify the expression equivalent to 4(x + x + 7) - 2x + 8 - 4 by substituting x = 1 and x = 2.
PLZ HELP
Answer:
Option (C)
Step-by-step explanation:
Given expression is 4(x + x + 7) - 2x + 8 - 4
When x = 1,
Value of the expression will be,
= 4(1 + 1 + 7) - 2(1) + 8 - 4
= 4(9) - 2 + 8 - 4
= 36 - 2 + 8 - 4
= 38
For x = 2,
= 4(2 + 2 + 7) -2(2) + 8 - 4
= 44 - 4 + 8 - 4
= 44
Now we will check the same for the given options.
Option (A). For x = 1,
6x + 11 = 6(1) + 11
= 17
For x = 2,
6x + 11 = 6(2) + 11
= 23
Option (B). For x = 1,
3(x + 7) = 3(1 + 7)
= 24
For x = 2,
3(x + 7) = 2(2 + 7)
= 18
Option (C), x = 1
2(3x + 16) = 2[3(1) + 16]
= 38
For x = 2,
2(3x + 16) = 2[3(2) + 16]
= 44
Option (D), For x = 1,
= 19
For x = 2,
2(3x + 16) = 2[3(2) + 16]
= 44
Since value of the expression for x = 1 and 2 matches with the value in option (C)
Therefore, Option (C) will be the answer.
Bruno solved the following equation: 4x + one half(10x − 4) = 6 Step Work Justification 1 4x + 5x − 2 = 6 2 9x − 2 = 6 3 9x = 8 4 x = eight ninths Which of the following has all the correct justifications Bruno used to solve this equation? 1. Multiplication Property of Equality 2. Combine like terms 3. Subtraction Property of Equality 4. Division Property of Equality 1. Distributive Property 2. Combine like terms 3. Subtraction Property of Equality 4. Division Property of Equality 1. Distributive Property 2. Combine like terms 3. Addition Property of Equality 4. Division Property of Equality 1. Multiplication Property of Equality 2. Combine like terms 3. Addition Property of Equality 4. Division Property of Equality
Answer:
Statement Reason
1. [tex]4x+5x-2=6[/tex] 1. Distributive Property
2. [tex]9x-2=6[/tex] 2. Combine like terms
3. [tex]9x=8[/tex] 3. Addition Property of Equality
4. [tex]x=\dfrac{8}{9}[/tex] 4. Division Property of Equality
Step-by-step explanation:
The given equation is
[tex]4x+\dfrac{1}{2}(10x-4)=6[/tex]
Using distributive property, we get
[tex]4x+\dfrac{1}{2}(10x)+\dfrac{1}{2}(-4)=6[/tex]
[tex]4x+5x-2=6[/tex]
[tex]9x-2=6[/tex] (Combine like terms)
Using Addition Property of Equality, add 2 on both sides.
[tex]9x=6+2[/tex]
[tex]9x=8[/tex]
Using Division Property of Equality, divide both sides by 9.
[tex]x=\dfrac{8}{9}[/tex]
Factor the expression 4x + 32. Explain each step you take in the process. 100 points goes to brainliest
Answer:
4(x+8)
Step-by-step explanation:
4x+32
x+8 in parentheses
and put the 4 on the outside of the parentheses
like this 4(x+8)
Answer:
4(x+8)
Step-by-step explanation:
4x + 32
Rewriting
4*x + 4*8
Factor out 4
4(x+8)
i need the answer right now
Of a squirrel's hidden nuts, for every 555 that get found, there are 333 that do not get found. A squirrel hid 404040 nuts all together. How many of the nuts do not get found?
Answer:
151515 not found
Step-by-step explanation:
For every 555 nuts found, 333 are not. This gives a total of 888.
555 + 333 = 888
Divide the total number of nuts by this number.
404040/888 = 455
Multiply the number that get found and the number that don't by the number calculated above.
555 × 455 = 252525
333 × 455 = 151515
252525 nuts will be found and 151515 will not.
Answer:
15
Step-by-step explanation:
A rectangular driveway has the dimensions shown below. Concrete costs $49.75 per square yard to pour. How much will it cost to pour concrete for the entire driveway?
[tex]\boxed{ \bf The~answer~is~$2,350.69.}[/tex]The answer is $2,350.69.
Explanation:First, we must find the area of the rectangular driveway.
A = l × w
A = 15.75 × 3
A = 47.25
So, the area of the driveway is 47.25 yd².
Next, we need to multiply the cost of each square yard by the area.
49.75 × 47.25 = 2350.6875
This can be rounded to 2,350.69.
Here’s a graph of a linear function. Write the equation that describes that function.
Express it in slope-intercept form.
Answer:
The equation that describes the function is y = -6x-1
Step-by-step explanation:
Firstly we can see that the graph passes through the origin.
The general equation of a starlight line graph is;
y = mx + c
where m is the slope and c is the y-intercept
what’s left now is go find our slope
We need two points for this on the line.
Let’s identify these points;
The identifiable points are; (1,-7) and (-1,5)
So the formula for the slope is;
y2-y1/x2-x1 = (5-(-7))/(-1-1) = 12/-2 = -6
Thus, the equation of the line becomes
y = -6x + c
Looking at the graph again, we can see an obvious y-intercept at the point y = -1
So our intercept is -1
The equation of the line is thus;
y = -6x -1
3. Write an exponential equation for each coin that will give the coin's value, V, at any time, t. Use
the formula:
Vt) = P(1 + r) where V(t) is the value of the coin in t years, Please HELP! help on number three
Answer:
Coin A : [tex]V(t)=25(1.07)^t[/tex]
Coin B : [tex]V(t)=40(1.05)^t[/tex]
Step-by-step explanation:
Consider the given formula is
[tex]V(t)=P(1+r)^t[/tex]
where, P is current value, V(t) is the value of the coin in t years, and r is annual appreciation rate.
For coin A, current value is 25 dollars and annual appreciation rate is 7%.
[tex]V(t)=25(1+0.07)^t[/tex]
[tex]V(t)=25(1.07)^t[/tex]
For coin B, current value is 40 dollars and annual appreciation rate is 5%.
[tex]V(t)=40(1+0.05)^t[/tex]
[tex]V(t)=40(1.05)^t[/tex]
Therefore, the required equations for coin A and B are [tex]V(t)=25(1.07)^t[/tex] and [tex]V(t)=40(1.05)^t[/tex] respectively.
Find the coefficient of x^2 in the expression of (x - 7)^5. a. -3430 b. -3034 c. 3034 d. 3430
Answer:
let me know when you have the anwser
Step-by-step explanation:
Which expression can be simplified to find the slope of the line of best-fit in the scatterplot below? On a graph, a trend line goes through points (4, 35) and (16, 134). StartFraction 134 minus 35 Over 16 minus 4 EndFraction StartFraction 134 minus 16 Over 35 minus 4 EndFraction StartFraction 4 minus 16 Over 35 minus 134 EndFraction StartFraction 4 minus 16 Over 134 minus 35 EndFraction
Answer:
134-35/16-4 (A)
Step-by-step explanation:
I just know
Answer
A) 134-35/16-4
Step-by-step explanation:
describe the solution to the system of equations graphed below.
Answer:
Step-by-step explanation:
The answer is B, the solution to your equation is at (2,1). Your solution is where the two lines meet.
Answer:
The second option.
Step-by-step explanation:
When two lines intersect, they usually intersect at just one point (unless they are parallel, where they never intersect; or no solutions when they infinitely intersect).
According to the graph provided, the lines are intersecting at one point: (2, 1).
So, your answer will be the second option!
Hope this helps!
Suppose it takes
12
hours for a certain strain of bacteria to reproduce by dividing in half. If
45
bacteria are present to begin with, the total number present after
x
days is
f
(
x
)
=
45
⋅
4
x
.
Find the total number present after
1
,
2
, and
3
days.
Answer:
Step-by-step explanation:
The formula is
[tex]y=45(4)^x[/tex]
which models the exponential function
[tex]y=a(b)^x[/tex] where a is the initial amount of whatever it is you have (in our case it's bacteria), b is the growth rate (ours is 4 which means that every day the number from the day before increases by a factor of 4), and x is the number of days. We plug into the formula the values we have, starting with x = 1:
[tex]y=45(4)^1[/tex]
Always raise what's inside the parenthesis first, then multiply in the 45. 4 to the first is 4, and 4 multiplied by 45 is 180. After the first day, there are 180 bacteria present in the culture.
Next, x = 2:
[tex]y=45(4)^2[/tex] which simplifies to
y = 45(16) so
y = 720.
Next, x = 3:
[tex]y=45(4)^3[/tex] which simplifies to
y = 45(64) so
y = 2880
Solve the equation x^2 – 16x + 25 = 0 to the nearest tenth.
Answer:
1.8 and 14.3
Step-by-step explanation:
Our equation is a quadratic equation so we will use the dicriminant method
Let Δ be our dicriminant a=1b= -16c= 25Δ= (-16)²-4*25*1=156≥0 so we have two solutions : x and y x= (16-[tex]\sqrt{156}[/tex])/2= 1.7555≈ 1.8y=(16+[tex]\sqrt{156}[/tex])/2=14.244≈ 14.3