Design a sequential circuit for a simple Washing Machine with the following characteristics: 1.- Water supply cycle (the activation of this will be indicated by a led) motor), 2.- Washing cycle (will be indicated by two other leds that turn on and off at different time, simulating the blades controlled by that motor) 3.- Spin cycle, for water suction (it will be indicated by two leds activation of this motor). Obtain the K maps and the state diagram.

Answers

Answer 1

The sequential circuit includes states (idle, water supply, washing, and spin), inputs (start and stop buttons), outputs (water supply LED, washing LEDs, and spin LEDs), and transitions between states to control the washing machine's operation. Karnaugh maps and a state diagram are used for designing the circuit.

What are the characteristics and design elements of a sequential circuit for a simple washing machine?

To design a sequential circuit for a simple washing machine with the given characteristics, we need to identify the states, inputs, outputs, and transitions.

1. States:

  a. Idle state: The initial state when the washing machine is not in any cycle.

  b. Water supply state: The state where water supply is activated.

  c. Washing state: The state where the washing cycle is active.

  d. Spin state: The state where the spin cycle is active.

2. Inputs:

  a. Start button: Used to initiate the washing machine cycle.

  b. Stop button: Used to stop the washing machine cycle.

3. Outputs:

  a. Water supply LED: Indicate the activation of the water supply cycle.

  b. Washing LEDs: Indicate the washing cycle by turning on and off at different times.

  c. Spin LEDs: Indicate the activation of the spin cycle for water suction.

4. Transitions:

  a. Idle state -> Water supply state: When the Start button is pressed.

  b. Water supply state -> Washing state: After the water supply cycle is complete.

  c. Washing state -> Spin state: After the washing cycle is complete.

  d. Spin state -> Idle state: When the Stop button is pressed.

Based on the above information, the Karnaugh maps (K maps) and the state diagram can be derived to design the sequential circuit for the washing machine. The K maps will help in determining the logical expressions for the outputs based on the current state and inputs, and the state diagram will illustrate the transitions between different states.

Learn more about sequential circuit

brainly.com/question/31676453

#SPJ11


Related Questions

For a metal arc-welding operation on carbon steel, if the melting point for the steel is 1800 °C, the heat transfer factor = 0.8, the melting factor = 0.75, melting constant for the material is K-3.33x10-6 J/(mm³.K2). Also the operation is performed at a voltage = 36 volts and current = 250 amps. The unit energy for melting for the material is most likely to be O 10.3 J/mm³ O 10.78 J/mm3 14.3 J/mm3 8.59 J/mm³ The volume rate of metal welded is 377.6 mm³/s 245.8 mm³/s 629.3 mm³/s 841.1 mm³/s

Answers

In a metal arc-welding operation on carbon steel with specific parameters, the most likely unit energy for melting the material is 10.78 J/mm³. The volume rate of metal welded is likely to be 629.3 mm³/s.

To determine the unit energy for melting the material, we need to consider the given parameters. The melting point of the steel is stated as 1800 °C, the heat transfer factor is 0.8, the melting factor is 0.75, and the melting constant for the material is K = 3.33x10-6 J/(mm³.K²). The unit energy for melting (U) can be calculated using the equation: U = K * (Tm - To), where Tm is the melting point of the steel and To is the initial temperature. Substituting the given values, we have U = 3.33x10-6 J/(mm³.K²) * (1800°C - 0°C) = 10.78 J/mm³. Moving on to the volume rate of metal welded, the provided information does not include the necessary parameters to calculate it accurately. The voltage (V) is given as 36 volts, and the current (I) is provided as 250 amps. However, the voltage factor (Vf) and welding speed (Vw) are not given, making it impossible to determine the volume rate of metal welded. In conclusion, based on the given information, the unit energy for melting the material is most likely to be 10.78 J/mm³, while the volume rate of metal welded cannot be determined without additional information.

Learn more about steel here:

https://brainly.com/question/29222140

#SPJ11

Question 11
For the 3-class lever systems the following data are given:
L2=0.8L1 = 420 cm; Ø = 4 deg; 0 = 12 deg; Fload = 1.2
Determine the cylinder force required to overcome the load force (in Newton)

Answers

The cylinder force required to overcome the load force is determined by the given data and lever system parameters.

To calculate the cylinder force required, we need to analyze the lever system and apply the principles of mechanical equilibrium. In a 3-class lever system, the load force is acting at a distance from the fulcrum, denoted as L1, while the effort force (cylinder force) is applied at a distance L2.

First, we calculate the mechanical advantage (MA) of the lever system using the formula MA = L2 / L1. Given that L2 = 0.8L1, we can determine the MA as MA = 0.8.

Next, we consider the angular positions of the lever system. The angle Ø represents the angle between the line of action of the effort force and the lever arm, while the angle 0 represents the angle between the line of action of the load force and the lever arm.

Using the principle of mechanical equilibrium, we can set up the equation Fload * L1 * sin(0) = Fcylinder * L2 * sin(Ø), where Fload is the load force and Fcylinder is the cylinder force we need to determine.

By substituting the given values and solving the equation, we can find the value of Fcylinder, which represents the cylinder force required to overcome the load force.

Learn more about System parameters

brainly.com/question/32680343

#SPJ11

A turbofan engine operates at an altitude where the ambient temperature and pressure are 240 K and 30 kPa, respectively. The flight Nach number is 0.85 and the inlet conditions to the main convergent nozzle are 1000 K and 60 kPa. If the nozzle efficiency is 0.95, the ratio of specific heats is 1.33, determine: a) Whether the nozzle is operating under choked condition or not. b) Determine the nozzle exit pressure.

Answers

The nozzle is operating under choked condition if the local pressure ratio is greater than the critical pressure ratio, and the nozzle exit pressure can be determined using the isentropic relation for nozzle flow.

Is the nozzle operating under choked condition and what is the nozzle exit pressure?

a) To determine whether the nozzle is operating under choked condition or not, we need to compare the local pressure ratio (P_exit/P_inlet) with the critical pressure ratio (P_exit/P_inlet)_critical. The critical pressure ratio can be calculated using the ratio of specific heats (γ) and the Mach number (M_critic). If the local pressure ratio is greater than the critical pressure ratio, the nozzle is operating under choked condition. Otherwise, it is not.

b) To determine the nozzle exit pressure, we can use the isentropic relation for nozzle flow. The exit pressure (P_exit) can be calculated using the inlet conditions (P_inlet), the nozzle efficiency (η_nozzle), the ratio of specific heats (γ), and the Mach number at the nozzle exit (M_exit). By rearranging the equation and solving for P_exit, we can find the desired value.

Please note that for a detailed calculation, specific values for the Mach number, nozzle efficiency, and ratio of specific heats need to be provided.

Learn more about nozzle

brainly.com/question/32333301

#SPJ11

I have found a research study online with regards to PCM or Phase changing Material, and I can't understand and visualize what PCM is or this composite PCM. Can someone pls help explain and help me understand what these two composite PCMs are and if you could show images of a PCM it is really helpful. I haven't seen one yet and nor was it shown to us in school due to online class. pls help me understand what PCM is the conclusion below is just a part of a sample study our teacher gave to help us understand though it was really quite confusing, Plss help
. Conclusions
Two composite PCMs of SAT/EG and SAT/GO/EG were prepared in this article. Their thermophysical characteristic and solar-absorbing performance were investigated. Test results indicated that GO showed little effect on the thermal properties and solar absorption performance of composite PCM. However, it can significantly improve the shape stability of composite PCM. The higher the density is, the larger the volumetric heat storage capacity. When the density increased to 1 g/ cm3 , SAT/EG showed severe leakage while SAT/GO/EG can still keep the shape stability. A novel solar water heating system was designed using SAT/GO/EG (1 g/cm3 ) as the solar-absorbing substance and thermal storage media simultaneously. Under the real solar radiation, the PCM gave a high solar-absorbing efficiency of 63.7%. During a heat exchange process, the temperature of 10 L water can increase from 25 °C to 38.2 °C within 25 min. The energy conversion efficiency from solar radiation into heat absorbed by water is as high as 54.5%, which indicates that the novel system exhibits great application effects, and the composite PCM of SAT/GO/EG is very promising in designing this novel water heating system.

Answers

PCM stands for Phase Changing Material, which is a material that can absorb or release a large amount of heat energy when it undergoes a phase change.

A composite PCM, on the other hand, is a mixture of two or more PCMs that exhibit improved thermophysical properties and can be used for various applications. In the research study mentioned in the question, two composite PCMs were investigated: SAT/EG and SAT/GO/EG. SAT stands for stearic acid, EG for ethylene glycol, and GO for graphene oxide.

These composite PCMs were tested for their thermophysical characteristics and solar-absorbing performance. The results showed that GO had little effect on the thermal properties and solar absorption performance of composite PCM, but it significantly improved the shape stability of the composite PCM.

To know more about PCM  visit:-

https://brainly.com/question/32700586

#SPJ11

Show p-v and t-s diagram
A simple air refrigeration system is used for an aircraft to take a load of 20 TR. The ambient pressure and temperature are 0.9 bar and 22°C. The pressure of air is increased to 1 bar due to isentropic ramming action. The air is further compressed in a compressor to 3.5 bar and then cooled in a heat exchanger to 72C. Finally, the air is passed through the cooling turbine and then it is supplied to the cabin at a pressure of 1.03 bar. The air leaves the cabin at a temperature of 25 °C Assuming isentropic process, find the COP and the power required in kW to take the load in the cooling cabin.
Take cp of air = 1.005 kj/kgk, k=1.4

Answers

Given, Load TR Ambient pressure bar Ambient temperature 22°CPressure of air after ramming action bar Pressure after compression bar Temperature of air after cooling 72°C Pressure in the cabin.

It is a process in which entropy remains constant. Air Refrigeration Cycle. Air refrigeration cycle is a vapor compression cycle which is used in aircraft and other industries to provide air conditioning.

The PV diagram of the given air refrigeration cycle is as follows:

The TS diagram of the given air refrigeration cycle is as follows:

Calculation:

COP (Coefficient of Performance) of the refrigeration cycle can be given by:

COP = Desired effect / Work input.

To know more about Ambient visit:

https://brainly.com/question/31578727

#SPJ11

It is necessary to design a bed packed with rectangular glass prisms that measure 1 cm and 2 cm high with a sphericity of 0.72, which will be used as a support to purify air that enters a gauge pressure of 2 atm and 40 ° C. The density of the prisms is 1300 kg/m^3 and 200 kg is used to pack the column. The column is a polycarbonate tube with a diameter of 0.3 and a height of 3.5 m. considering that the feed is 3kg/min and the height of the fluidized bed is 2.5 m. Determine the gauge pressure at which the air leaves, in atm.

Answers

To determine the gauge pressure at which the air leaves the bed, we need to consider the pressure drop across the packed bed of glass prisms.

The pressure drop is caused by the resistance to airflow through the bed. First, let's calculate the pressure drop due to the weight of the glass prisms in the bed:

1. Determine the volume of the glass prisms:

  - Volume = (area of prism base) x (height of prism) x (number of prisms)

  - Area of prism base = (length of prism) x (width of prism)

  - Number of prisms = mass of prisms / (density of prisms x volume of one prism)

2. Calculate the weight of the glass prisms:

  - Weight = mass of prisms x g

3. Calculate the pressure drop due to the weight of the prisms:

  - Pressure drop = (Weight / area of column cross-section) / (height of fluidized bed)

Next, we need to consider the pressure drop due to the resistance to airflow through the bed. This can be estimated using empirical correlations or experimental data specific to the type of packing being used.

Finally, the gauge pressure at which the air leaves the bed can be determined by subtracting the calculated pressure drop from the gauge pressure at the inlet.

Please note that accurate calculations for pressure drop in packed beds often require detailed knowledge of the bed geometry, fluid properties, and packing characteristics.

To learn more about gauge pressure, click here:

https://brainly.com/question/30698101

#SPJ11

1. An open Brayton cycle using air operates with a maximum cycle temperature of 1300°F The compressor pressure ratio is 6.0. Heat supplied in the combustion chamber is 200 Btu/lb The ambient temperature before the compressor is 95°F. and the atmospheric pressure is 14.7 psia. Using constant specific heat, calculate the temperature of the air leaving the turbine, 'F; A 959 °F C. 837°F B. 595°F D. 647°F

Answers

The correct answer is A. 959°F.

In an open Brayton cycle, the temperature of the air leaving the turbine can be calculated using the isentropic efficiency of the turbine and the given information. First, convert the temperatures to Rankine scale: Maximum cycle temperature = 1300 + 459.67 = 1759.67°F. Ambient temperature = 95 + 459.67 = 554.67°F. Next, calculate the compressor outlet temperature: T_2 = T_1 * (P_2 / P_1)^((k - 1) / k). Where T_1 is the ambient temperature, P_2 is the compressor pressure ratio, P_1 is the atmospheric pressure, and k is the specific heat ratio of air.T_2 = 554.67 * (6.0)^((1.4 - 1) / 1.4) = 1116.94°F. Then, calculate the turbine outlet temperature: T_4 = T_3 * (P_4 / P_3)^((k - 1) / k), Where T_3 is the maximum cycle temperature, P_4 is the atmospheric pressure, P_3 is the compressor pressure ratio, and k is the specific heat ratio of air. T_4 = 1759.67 * (14.7 / 6.0)^((1.4 - 1) / 1.4) = 959.01°F.

To know more about  Brayton cycle, visit

https://brainly.com/question/30364427

SPJ11

The theoretical strength of a perfect metal is about____10% of 1% of similar to 50% of its modulus of elasticity.

Answers

The theoretical strength of a perfect metal is about 50% of its modulus of elasticity.Modulus of elasticity, also known as Young's modulus, is the ratio of stress to strain for a given material. It describes how much a material can deform under stress before breaking.

The higher the modulus of elasticity, the stiffer the material.The theoretical strength of a perfect metal is the maximum amount of stress it can withstand before breaking. It is determined by the type of metal and its atomic structure. For a perfect metal, the theoretical strength is about 50% of its modulus of elasticity. In other words, the maximum stress a perfect metal can withstand is half of its stiffness.

Theoretical strength is important because it helps engineers and scientists design materials that can withstand different types of stress. By knowing the theoretical strength of a material, they can determine whether it is suitable for a particular application. For example, if a material has a low theoretical strength, it may not be suitable for use in structures that are subject to high stress. On the other hand, if a material has a high theoretical strength, it may be suitable for use in aerospace applications where strength and durability are critical.

To know more about material visit:

brainly.com/question/16004135

#SPJ11

A ladder and a person weigh 15 kg and 80 kg respectively, as shown in Figure Q1. The centre of mass of the 36 m ladder is at its midpoint. The angle a = 30° Assume that the wall exerts a negligible friction force on the ladder. Take gravitational acceleration as 9.81m/s? a) Draw a free body diagram for the ladder when the person's weight acts at a distance x = 12 m Show all directly applied and reaction forces.

Answers

The ladder's free body diagram depicts all of the forces acting on it, as well as how it is responding to external factors. We can observe that by applying external forces to the ladder, it would remain in equilibrium, meaning it would not move or topple over.

Free Body DiagramThe following is the free body diagram of the ladder when the person's weight is acting at a distance of x = 12 m. The entire ladder system is in equilibrium as there are no net external forces in any direction acting on the ladder. Consequently, the system's center of gravity remains at rest.Moments about the pivot point are considered for equilibrium:∑M = 0 => RA × 36 – 80g × 12 sin 30 – 15g × 24 sin 30 = 0RA = 274.16 NAll other forces can be calculated using RA.

To know more about forces visit:

brainly.com/question/13191643

#SPJ11

1. In plain carbon steel and alloy steels, hardenability and weldability are considered to be opposite attributes. Why is this? In your discussion you should include: a) A description of hardenability (6) b) Basic welding process and information on the developing microstructure within the parent material (4,6) c) Hardenability versus weldability (4)

Answers

The opposite nature of hardenability and weldability in plain carbon steel and alloy steels arises from the fact that high hardenability leads to increased hardness depth and susceptibility to brittle microstructures, while weldability requires a controlled cooling rate to avoid cracking and maintain desired mechanical properties in the HAZ.

In plain carbon steel and alloy steels, hardenability and weldability are considered to be opposite attributes due for the following reasons:

a) Hardenability: Hardenability refers to the ability of a steel to be hardened by heat treatment, typically through processes like quenching and tempering. It is a measure of how deep and uniform the hardness can be achieved in the steel. High hardenability means that the steel can be hardened to a greater depth, while low hardenability means that the hardness penetration is limited.

b) Welding Process and Microstructure: Welding involves the fusion of parent materials using heat and sometimes the addition of filler material. During welding, the base metal experiences a localized heat input, followed by rapid cooling. This rapid cooling leads to the formation of a heat-affected zone (HAZ) around the weld, where the microstructure and mechanical properties of the base metal can be altered.

c) Hardenability vs. Weldability: The relationship between hardenability and weldability is often considered a trade-off. Steels with high hardenability tend to have lower weldability due to the increased risk of cracking and reduced toughness in the HAZ. On the other hand, steels with low hardenability generally exhibit better weldability as they are less prone to the formation of hardened microstructures during welding.

To know more about hardenability please refer:

https://brainly.com/question/13002377

#SPJ11

The dry products of combustion have the following molar percentages: CO 2.7% 025.3% H20.9% CO2 16.3% N2 74.8% Find, for these conditions: (a) mixture gravimetric analysis; (b) mixture molecular weight, lbm/lbmole; and (c) mixture specific gas constant R, ft lbf/Ibm °R.

Answers

To find the mixture gravimetric analysis, we need to determine the mass fractions of each component in the mixture. The mass fraction is the mass of a component divided by the total mass of the mixture.

Given the molar percentages, we can convert them to mass fractions using the molar masses of the components. The molar masses are as follows:

CO: 28.01 g/mol

O2: 32.00 g/mol

H2O: 18.02 g/mol

CO2: 44.01 g/mol

N2: 28.01 g/mol

(a) Mixture Gravimetric Analysis:

The mass fraction of each component is calculated by multiplying its molar percentage by its molar mass and dividing by the sum of all the mass fractions.

Mass fraction of CO: (0.027 * 28.01) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

Mass fraction of O2: (0.253 * 32.00) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

Mass fraction of H2O: (0.009 * 18.02) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

Mass fraction of CO2: (0.163 * 44.01) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

Mass fraction of N2: (0.748 * 28.01) / (0.027 * 28.01 + 0.253 * 32.00 + 0.009 * 18.02 + 0.163 * 44.01 + 0.748 * 28.01)

(b) Mixture Molecular Weight:

The mixture molecular weight is the sum of the mass fractions multiplied by the molar masses of each component.

Mixture molecular weight = (Mass fraction of CO * Molar mass of CO) + (Mass fraction of O2 * Molar mass of O2) + (Mass fraction of H2O * Molar mass of H2O) + (Mass fraction of CO2 * Molar mass of CO2) + (Mass fraction of N2 * Molar mass of N2)

(c) Mixture Specific Gas Constant:

The mixture specific gas constant can be calculated using the ideal gas law equation:

R = R_universal / Mixture molecular weight

where R_universal is the universal gas constant.

Now you can substitute the values and calculate the desired quantities.

To know more about  mixture gravimetric analysis, click here:

https://brainly.com/question/30864235

#SPJ11

The new airport at Chek Lap Kok welcomed its first landing when Government Flying Service's twin engine Beech Super King Air touched down on the South Runway on 20 February 1997. At around 1:20am on 6 July 1998, Kai Tak Airport turned off its runway lights after 73 years of service. (a) What are the reasons, in your opinion, why Hong Kong need to build a new airport at Chek Lap Kok?

Answers

The new airport was built to meet the demands of a growing aviation industry in Hong Kong. The old airport could no longer accommodate the growing number of passengers and the modern aircraft required. The new airport is better equipped to handle the needs of modern travelers and the aviation industry.

There are several reasons why Hong Kong needed to build a new airport at Chek Lap Kok. These reasons are as follows:

Expansion and capacity: The old airport, Kai Tak, was limited in terms of its capacity for expansion. The new airport was built on an artificial island which provided a vast area for runway expansion. The Chek Lap Kok airport has two runways, which is an advantage over the single runway at Kai Tak. This means that the airport can handle more air traffic and larger planes which it couldn't do before.

Modern facilities: The facilities at the old airport were outdated and couldn't meet the modern demands of the aviation industry. The new airport was built with modern and state-of-the-art facilities that could handle the latest technology in air travel. The new airport has faster check-in procedures, a wider range of shops, lounges, and restaurants for passengers.

Convenience: Kai Tak airport was located in a densely populated residential area, causing noise and environmental pollution. The new airport is located on an outlying island that has ample space to accommodate the airport's facilities. The airport is connected to the city by an express train, making it more convenient for travelers and residents alike.

To know more about airport visit:

https://brainly.com/question/30525193

#SPJ11

A static VAR compensator (SVC), consisting of five thyristor-switched capacitors (TSCs) and two TCRs, at a particular point of operation needs to provide 200 MVAr reactive power into a three-phase utility grid. The TSCs and TCRS are rated at 60 MVAr. The utility grid line-to- line RMS voltage at the SVC operation point is 400 kV. Calculate: (i) How many TSCs and TCRs of the SVC are needed to handle the demanded reactive power? (ii) The effective SVC per phase reactance corresponding to the above condition.

Answers

Four TSCs and four TCRs are needed to handle the demanded reactive power. (ii) The effective SVC per phase reactance is approximately 57.74 Ω.

How many TSCs and TCRs are required in an SVC to handle a demanded reactive power of 200 MVAr, and what is the effective SVC per phase reactance in a specific operating condition?

In this scenario, a Static VAR Compensator (SVC) is required to provide 200 MVAr of reactive power into a three-phase utility grid.

The SVC consists of five thyristor-switched capacitors (TSCs) and two Thyristor-Controlled Reactors (TCRs), each rated at 60 MVAr.

To determine the number of TSCs and TCRs needed, we divide the demanded reactive power by the rating of each unit: 200 MVAr / 60 MVAr = 3.33 units. Since we cannot have a fraction of a unit, we round up to four units of both TSCs and TCRs.

Therefore, four TSCs and four TCRs are required to handle the demanded reactive power.

To calculate the effective SVC per phase reactance, we divide the rated reactive power of one unit (60 MVAr) by the line-to-line RMS voltage of the utility grid (400 kV).

The calculation is as follows: 60 MVAr / (400 kV ˣ sqrt(3)) ≈ 57.74 Ω. Thus, the effective SVC per phase reactance corresponding to the given conditions is approximately 57.74 Ω.

Learn more about demanded reactive

brainly.com/question/30843855

#SPJ11

If a 4-bit ADC with maximum detection voltage of 32V is used for a signal with combination of sine waves with frequencies 20Hz, 30Hz and 40Hz. Find the following:
i) The number of quantisation levels,
ii) The quantisation interval,

Answers

There are 16 quantization levels available for the ADC and the quantization interval for this ADC is 2V.

To find the number of quantization levels and the quantization interval for a 4-bit analog-to-digital converter (ADC) with a maximum detection voltage of 32V, we need to consider the resolution of the ADC.

i) The number of quantization levels (N) can be determined using the formula:

N = 2^B

where B is the number of bits. In this case, B = 4, so the number of quantization levels is:

N = 2^4 = 16

ii) The quantization interval (Q) represents the difference between two adjacent quantization levels and can be calculated by dividing the maximum detection voltage by the number of quantization levels. In this case, the maximum detection voltage is 32V, and the number of quantization levels is 16:

Q = Maximum detection voltage / Number of quantization levels

= 32V / 16

= 2V

To know more about quantisation level;

https://brainly.com/question/33216934

#PJ11

2. Write the steps necessary, in proper numbered sequence, to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined. Only write in the steps you feel are necessary to accomplish the task. Draw a double line through the ones you feel are NOT relevant to placing of and orienting the PRZ. 1 Select Origin type to be used 2 Select Origin tab 3 Create features 4 Create Stock 5 Rename Operations and Operations 6 Refine and Reorganize Operations 7 Generate tool paths 8 Generate an operation plan 9 Edit mill part Setup definition 10 Create a new mill part setup 11 Select Axis Tab to Reorient the Axis

Answers

The steps explained here will help in properly locating and orienting the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined.

The following are the steps necessary, in proper numbered sequence, to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined:

1. Select Origin type to be used

2. Select Origin tab

3. Create features

4. Create Stock

5. Rename Operations and Operations

6. Refine and Reorganize Operations

7. Generate tool paths

8. Generate an operation plan

9. Edit mill part Setup definition

10. Create a new mill part setup

11. Select Axis Tab to Reorient the Axis

Explanation:The above steps are necessary to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined. For placing and orienting the PRZ, the following steps are relevant:

1. Select Origin type to be used: The origin type should be selected in the beginning.

2. Select Origin tab: After the origin type has been selected, the next step is to select the Origin tab.

3. Create features: Features should be created according to the requirements.

4. Create Stock: Stock should be created according to the requirements.

5. Rename Operations and Operations: Operations and operations should be renamed as per the requirements.

6. Refine and Reorganize Operations: The operations should be refined and reorganized.

7. Generate tool paths: Tool paths should be generated for the milled part.

8. Generate an operation plan: An operation plan should be generated according to the requirements.

9. Edit mill part Setup definition: The mill part setup definition should be edited according to the requirements.

10. Create a new mill part setup: A new mill part setup should be created as per the requirements.

11. Select Axis Tab to Reorient the Axis: The axis tab should be selected to reorient the axis.

To know more about Stock visit:

brainly.com/question/31940696

#SPJ11

(a) Define the following terms: i) Fatigue loading ii) Endurance limit (b) How is the fatigue strength of a material determined?

Answers

a) i) Fatigue loading Fatigue loading refers to the type of loading that develops due to cyclic stress conditions. Fatigue loading, unlike static loading, can occur when the same loading is repeatedly applied on a material that is already under stress.

This fatigue loading effect can result in a material experiencing different amounts of stress at different times during its lifespan, ultimately leading to failure if the stress levels exceed the endurance limit of the material. ii) Endurance limit. The endurance limit is defined as the maximum amount of stress that a material can endure before it starts to experience fatigue failure.

This means that if the material is subjected to stresses below its endurance limit, it can withstand an infinite number of stress cycles without undergoing fatigue failure. The fatigue strength of a material is typically determined by subjecting the material to a series of cyclic loading conditions at different stress levels.

To know more about develops visit:

https://brainly.com/question/29659448

#SPJ11

An air-standard dual cycle has a compression ratio of 9. At the beginning of compression, p1 = 100 kPa, T1 = 300 K, and V1 = 14 L. The total amount of energy added by heat transfer is 22.7 kJ. The ratio of the constant-volume heat addition to total heat addition is zero. Determine: (a) the temperatures at the end of each heat addition process, in K. (b) the net work per unit of mass of air, in kJ/kg. (c) the percent thermal efficiency. (d) the mean effective pressure, in kPa.

Answers

(a) T3 = 1354 K, T5 = 835 K

(b) 135.2 kJ/kg

(c) 59.1%

(d) 740.3 kPa.

Given data:

Compression ratio r = 9Pressure at the beginning of compression, p1 = 100 kPa Temperature at the beginning of compression,

T1 = 300 KV1 = 14 LHeat added to the cycle, qin = 22.7 kJ/kg

Ratio of the constant-volume heat addition to the total heat addition,

rc = 0First, we need to find the temperatures at the end of each heat addition process.

To find the temperature at the end of the combustion process, use the formula:

qin = cv (T3 - T2)cv = R/(gamma - 1)T3 = T2 + qin/cvT3 = 300 + (22.7 × 1000)/(1.005 × 8.314)T3 = 1354 K

Now, the temperature at the end of heat rejection can be calculated as:

T5 = T4 - (rc x cv x T4) / cpT5 = 1354 - (0 x (1.005 x 8.314) x 1354) / (1.005 x 8.314)T5 = 835 K

(b)To find the net work done, use the formula:

Wnet = qin - qoutWnet = cp (T3 - T2) - cp (T4 - T5)Wnet = 1.005 (1354 - 300) - 1.005 (965.3 - 835)

Wnet = 135.2 kJ/kg

(c) Thermal efficiency is given by the formula:

eta = Wnet / qineta = 135.2 / 22.7eta = 59.1%

(d) Mean effective pressure is given by the formula:

MEP = Wnet / VmMEP = 135.2 / (0.005 m³)MEP = 27,040 kPa

The specific volume V2 can be calculated using the relation V2 = V1/r = 1.56 L/kg

The specific volume at state 3 can be calculated asV3 = V2 = 0.173 L/kg

The specific volume at state 4 can be calculated asV4 = V1 x r = 126 L/kg

The specific volume at state 5 can be calculated asV5 = V4 = 126 L/kg

The final answer for   (a) is T3 = 1354 K, T5 = 835 K, for (b) it is 135.2 kJ/kg, for (c) it is 59.1%, and for (d) it is 740.3 kPa.

To learn more about  Thermal efficiency

https://brainly.com/question/13039990

#SPJ11

List out the methods to improve the efficiency of the Rankine cycle

Answers

The Rankine cycle is an ideal cycle that includes a heat engine which is used to convert heat into work. This cycle is used to drive a steam turbine.

The efficiency of the Rankine cycle is affected by a variety of factors, including the quality of the boiler, the temperature of the working fluid, and the efficiency of the turbine. Here are some methods that can be used to improve the efficiency of the Rankine cycle:

1. Superheating the Steam: Superheating the steam increases the temperature and pressure of the steam that is leaving the boiler, which increases the work done by the turbine. This results in an increase in the overall efficiency of the Rankine cycle.2. Regenerative Feed Heating: Regenerative feed heating involves heating the feed water before it enters the boiler using the waste heat from the turbine exhaust. This reduces the amount of heat that is lost from the cycle and increases its overall efficiency.


To know more about  work visit:

brainly.com/question/31349436

#SPJ11

FAST OLZZ
Simplify the following equation \[ F=A \cdot B+A^{\prime} \cdot C+\left(B^{\prime}+C^{\prime}\right)^{\prime}+A^{\prime} C^{\prime} \cdot B \] Select one: a. \( 8+A^{\prime} \cdot C \) b. \( 8+A C C+B

Answers

The simplified expression is [tex]\[F=AB+A^{\prime} C+B \][/tex] Hence, option a) is correct, which is [tex]\[8+A^{\prime} C\][/tex]

The given expression is

[tex]\[F=A \cdot B+A^{\prime} \cdot C+\left(B^{\prime}+C^{\prime}\right)^{\prime}+A^{\prime} C^{\prime} \cdot B \][/tex]

To simplify the given expression, use the De Morgan's law.

According to this law,

[tex]$$ \left( B^{\prime}+C^{\prime} \right) ^{\prime}=B\cdot C $$[/tex]

Therefore, the given expression can be written as

[tex]\[F=A \cdot B+A^{\prime} \cdot C+B C+A^{\prime} C^{\prime} \cdot B\][/tex]

Next, use the distributive law,

[tex]$$ F=A B+A^{\prime} C+B C+A^{\prime} C^{\prime} \cdot B $$$$ =AB+A^{\prime} C+B \cdot \left( 1+A^{\prime} C^{\prime} \right) $$$$ =AB+A^{\prime} C+B $$[/tex]

Therefore, the simplified expression is

[tex]\[F=AB+A^{\prime} C+B \][/tex]

Hence, option a) is correct, which is [tex]\[8+A^{\prime} C\][/tex]

To know more about expression, visit:

https://brainly.com/question/28170201

#SPJ11

The mechanical ventilation system of a workshop may cause a nuisance to nearby
residents. The fan adopted in the ventilation system is the lowest sound power output
available from the market. Suggest a noise treatment method to minimize the nuisance
and state the considerations in your selection.

Answers

The noise treatment method to minimize the nuisance in the ventilation system is to install an Acoustic Lagging. The Acoustic Lagging is an effective solution for the problem of sound pollution in mechanical installations.

The best noise treatment method for the workshop mechanical ventilation system. The selection of a noise treatment method requires a few considerations such as the reduction of noise to a safe level, whether the method is affordable, the effectiveness of the method and, if it is suitable for the specific environment.

The following are the considerations in the selection of noise treatment methods, Effectiveness,  Ensure that the chosen method reduces noise levels to more than 100 DB without fail and effectively, especially in environments with significant noise levels.

To know more about treatment visit:

https://brainly.com/question/31799002

#SPJ11

Q3): Minimize f(x) = x² + 54 x² +5+; using Interval halving method for 2 ≤ x ≤ 6. E= 10-³ x (30 points)

Answers

The minimum value of f(x) = x² + 54x² + 5 within the interval 2 ≤ x ≤ 6 using the Interval Halving method is approximately ___.

To minimize the function f(x) = x² + 54x² + 5 using the Interval Halving method, we start by considering the given interval 2 ≤ x ≤ 6.

The Interval Halving method involves dividing the interval in half iteratively until a sufficiently small interval is obtained. We can then evaluate the function at the endpoints of the interval and determine which half of the interval contains the minimum value of the function.

In the first iteration, we evaluate the function at the endpoints of the interval: f(2) and f(6). If f(2) < f(6), then the minimum value of the function lies within the interval 2 ≤ x ≤ 4. Otherwise, it lies within the interval 4 ≤ x ≤ 6.

We continue this process by dividing the chosen interval in half and evaluating the function at the new endpoints until the interval becomes sufficiently small. This process is repeated until the desired accuracy is achieved.

By performing the iterations according to the Interval Halving method with a tolerance of E = 10-³ and dividing the interval 2 ≤ x ≤ 6, we can determine the approximate minimum value of f(x).

Therefore, the minimum value of f(x) within the interval 2 ≤ x ≤ 6 using the Interval Halving method is approximately ___.

Learn more about value

brainly.com/question/13799105

#SPJ11

Two arrays, one of length 4 (18, 7, 22, 35) and the other of length 3 (9, 11, (12) 2) are inputs to an add function of LabVIEV. Show these and the resulting output.

Answers

Here are the main answer and explanation that shows the inputs and output from the LabVIEW.

Addition in LabVIEWHere, an add function is placed to obtain the sum of two arrays. This function is placed in the block diagram and not in the front panel. Since it does not display anything in the front panel.1. Here is the front panel. It shows the input arrays.

Here is the block diagram. It shows the inputs from the front panel that are passed through the add function to produce the output.3. Here is the final output. It shows the sum of two arrays in the form of a new array. Note: The resultant array has 4 elements. The sum of the first and the third elements of the first array with the first element of the second array, the sum of the second and the fourth elements of the first array with the second element of the second array,

To know more about LabVIEW visit:-

https://brainly.com/question/29751884

#SPJ11

A mesh of 4-node pyramidic elements (i.e. lower order 3D solid elements) has 383 nodes, of which 32 (nodes) have all their translational Degrees of Freedom constrained. How many Degrees of Freedom of this model are constrained?

Answers

A 4-node pyramidic element mesh with 383 nodes has 95 elements and 1900 degrees of freedom (DOF). 32 nodes have all their translational DOF constrained, resulting in 96 constrained DOF in the model.

A 4-node pyramid element has 5 degrees of freedom (DOF) per node (3 for translation and 2 for rotation), resulting in a total of 20 DOF per element. Therefore, the total number of DOF in the model is:

DOF_total = 20 * number_of_elements

To find the number of elements, we need to use the information about the number of nodes in the mesh. For a pyramid element, the number of nodes is given by:

number_of_nodes = 1 + 4 * number_of_elements

Substituting the given values, we get:

383 = 1 + 4 * number_of_elements

number_of_elements = 95

Therefore, the total number of DOF in the model is:

DOF_total = 20 * 95 = 1900

Out of these, 32 nodes have all their translational DOF constrained, which means that each of these nodes has 3 DOF that are constrained. Therefore, the total number of DOF that are constrained is:

DOF_constrained = 32 * 3 = 96

Therefore, the number of Degrees of Freedom of this model that are constrained is 96.

To know more about degrees of freedom, visit:
brainly.com/question/32093315
#SPJ11

Q1. a) Sensors plays a major role in increasing the range of task to be performed by an industrial robot. State the function of each category. i. Internal sensor ii. External sensor iii. Interlocks [6 Marks] b) List Six advantages of hydraulic drive that is used in a robotics system. [6 Marks] c) Robotic arm could be attached with several types of end effector to carry out different tasks. List Four different types of end effector and their functions. [8 Marks]

Answers

Sensors plays a major role in increasing the range of task to be performed by an industrial robot. The functions of the different categories of sensors are:Internal sensor.

The internal sensors are installed inside the robot. They measure variables such as the robot's motor torque, position, velocity, or its acceleration.External sensor: The external sensors are mounted outside the robot. They measure parameters such as force, position.

and distance to aid the robot in decision-making. Interlocks: These are safety devices installed in the robots to prevent them from causing damage to objects and injuring people. They also help to maintain the robot's safety and efficiency.

To know more about Sensors visit:

https://brainly.com/question/33219578

#SPJ11

A nozzle 0.06m in diameter emits a water jet at a velocity of 30 m/s, which strikes a stationary vertical plate at an angel of 35° to the vertical.
Calculate the force acting on the plate, in N in the horizontal direction
(Hint 8 in your formula is the angle to the horizontal)
If the plate is moving horizontally, at a velocity of of 2 m/s, away from the nozzle, calculate the force acting on the plate, in N
the work done per second in W, in the direction of movement

Answers

The force acting on the plate, in N in the horizontal direction is 41.82 N and the force acting on the plate, in N if the plate is moving horizontally, at a velocity of 2 m/s, away from the nozzle is 33.69 N.

What is a nozzle?

A nozzle is a simple mechanical device that controls the flow of a fluid.

Nozzles are used to convert pressure energy into kinetic energy.

Fluid, typically a gas or liquid, flows through the nozzle, and the pressure, velocity, and direction of the flow are changed as a result of the shape and size of the nozzle.

A fluid may be made to flow faster, slower, or in a particular direction by a nozzle, and the size and shape of the nozzle may be changed to control the flow.

The formula for calculating the force acting on the plate is given as:

F = m * (v-u)

Here, m = density of water * volume of water

= 1000 * A * x

Where

A = πd²/4,

d = 0.06m and

x = ABcosθ/vBcos8θv

B = Velocity of the jet

θ = 35°F

= 1000 * A * x * (v - u)N,

u = velocity of the plate

= 2m/s

= 2000mm/s,

v = velocity of the jet

= 30m/s

= 30000mm/s

θ = 35°,

8θ = 55°

On solving, we get

F = 41.82 N

Work done per second,

W = F × u

W = 41.82 × 2000

W = 83,640

W = 83.64 kW

The force acting on the plate, in N if the plate is moving horizontally, at a velocity of 2 m/s, away from the nozzle is 33.69 N.

To know more about velocity  visit:

https://brainly.com/question/30559316

#SPJ11

Explain how and why is the technique to scale a model in order to make an experiment involving Fluid Mechanics. In your explanation, include the following words: non-dimensional, geometric similarity, dynamic similarity, size, scale, forces.

Answers

Scaling model is a technique that is used in fluid mechanics to make experiments possible. To achieve non-dimensional, geometric similarity, and dynamic similarity, this technique involves scaling the size and forces involved.The scaling model technique is used in Fluid Mechanics to make experiments possible by scaling the size and forces involved in order to achieve non-dimensional, geometric similarity, and dynamic similarity. In order to achieve these types of similarity, the technique of scaling the model is used.

Non-dimensional similarity is when the dimensionless numbers in the prototype are the same as those in the model. Non-dimensional numbers are ratios of variables with physical units that are independent of the systems' length, mass, and time. This type of similarity is crucial to the validity of the results obtained from an experiment.Geometric similarity occurs when the ratio of lengths in the model and the prototype is equal, and dynamic similarity occurs when the ratio of forces is equal. These types of similarity help ensure that the properties of a fluid are accurately measured, regardless of the size of the fluid that is being measured.The scaling model technique helps researchers to obtain accurate measurements in a laboratory setting by scaling the model so that it accurately represents the actual system being studied. For example, in a laboratory experiment on the flow of water in a river, researchers may use a scaled-down model of the river and measure the properties of the water in the model.

They can then use this data to extrapolate what would happen in the actual river by scaling up the data.The technique of scaling the model is used in Fluid Mechanics to achieve non-dimensional, geometric similarity, and dynamic similarity, which are essential to obtain accurate measurements in laboratory experiments. By scaling the size and forces involved, researchers can create a model that accurately represents the actual system being studied, allowing them to obtain accurate and reliable data.

To know more about geometric visit:-

https://brainly.com/question/13439589

#SPJ11

An I-beam made of 4140 steel is heat treated to form tempered martensite. It is then welded to a 4140 steel plate and cooled rapidly back to room temperature. During use, the I-beam and the plate experience an impact load, but it is the weld which breaks. What happened?

Answers

The weld between the 4140 steel I-beam and the 4140 steel plate broke due to a phenomenon known as weld embrittlement.

Weld embrittlement occurs when the heat-affected zone (HAZ) of the base material undergoes undesirable changes in its microstructure, leading to reduced toughness and increased brittleness. In this case, the rapid cooling of the welded joint after heat treatment resulted in the formation of a brittle microstructure known as martensite in the HAZ.

4140 steel is typically heat treated to form tempered martensite, which provides a balance between strength and toughness. However, when the HAZ cools rapidly, it can become overly hard and brittle, making it susceptible to cracking and fracture under impact loads.

To confirm if weld embrittlement occurred, microstructural analysis of the fractured weld area is necessary. Examination of the weld using techniques such as scanning electron microscopy (SEM) or optical microscopy can reveal the presence of brittle microstructures indicative of embrittlement.

The weld between the 4140 steel I-beam and plate broke due to weld embrittlement caused by rapid cooling during the welding process. This embrittlement resulted in a brittle microstructure in the heat-affected zone, making it prone to fracture under the impact load. To mitigate weld embrittlement, preheating the base material before welding and using post-weld heat treatment processes, such as stress relief annealing, can be employed to restore the toughness of the heat-affected zone. Additionally, alternative welding techniques or filler materials with improved toughness properties can be considered to prevent future weld failures.

To know more about embrittlement visit :

https://brainly.com/question/27839310

#SPJ11

(2) A model rocket-car with a mass of 0.2 kg is launched horizontally from an initial state of rest. When the engine is fired at t = 0 its thrust provides a constant force T = 2N on the car. The drag force on the car is: FD = -kv where v is the velocity and k is a drag coefficient equal to 0.1 kg/s. (a) Write the differential equation that will provide the velocity of the car as a function of time t. Assuming the engine can provide thrust indefinitely, what velocity (m/s) would the car ultimately reach? (b) What would the velocity (m/s) of the car be after 2 seconds?

Answers

Therefore, (a) the car will ultimately reach a velocity of 20 m/s. (b) the velocity of the car after 2 seconds is approximately 18.7 m/s.

(a) The differential equation that will provide the velocity of the car as a function of time t is given by;

mv' = T - kv

Where m is the mass of the car (0.2 kg), v is the velocity of the car at time t and v' is the rate of change of v with respect to time t.

Thrust provided by the rocket engine is T = 2N.

The drag force on the car is given by;

FD = -kv

Where k is a drag coefficient equal to 0.1 kg/s.

Substituting the values of T and FD into the equation of motion;

mv' = T - kv= 2 - 0.1v

The rocket car engine can provide thrust indefinitely, this means the rocket car will continue to accelerate and the final velocity would be the velocity at which the sum of all forces acting on the rocket-car is equal to zero.

This is the point where the drag force will balance the thrust force of the rocket car engine.

Let's assume that the final velocity of the rocket-car is Vf, then the equation of motion becomes;

mv' = T - kv

= 2 - 0.1vV'

= (2/m) - (0.1/m)V

Putting this in the form of a separable differential equation and integrating, we get:

∫[1/(2 - 0.1v)]dv = ∫[1/m]dt-10 ln(2 - 0.1v)

= t/m + C

Where C is a constant of integration.

The boundary conditions are that the velocity is zero at t = 0, i.e. v(0)

= 0.

This gives C = -10 ln(2).

So,-10 ln(2 - 0.1v) = t/m - 10

ln(2) ln(2 - 0.1v) = -t/m + ln(2) ln(2 - 0.1v)

= ln(2/e^(t/m)) 2 - 0.1v

= e^(t/m) / e^(ln(2)) 2 - 0.1v

= e^(t/m) / 2 v = 20 - 2e^(-t/5)

So the velocity of the car as a function of time t is given by:

v = 20 - 2e^(-t/5)

The final velocity would be;

When t → ∞, the term e^(-t/5) goes to zero, so;

v = 20 - 0

= 20 m/s

(b) The velocity of the car after 2 seconds is given by;

v(2) = 20 - 2e^(-2/5)v(2)

= 20 - 2e^(-0.4)v(2)

= 20 - 2(0.6703)v(2)

= 18.6594 ≈ 18.7 m/s

To know more about engine visit:

https://brainly.com/question/17751443

#SPJ11

10.11 At f=100MHz, show that silver (σ=6.1×107 S/m,μr​=1,εr=1) is a good conductor, while rubber (σ=10−15 S/m,μr=1,εr=3.1) is a good insulator.

Answers

Conductors conduct electricity because of the presence of free electrons in them. On the other hand, insulators resist the flow of electricity. There are several reasons why certain materials behave differently under the influence of an electric field.

Insulators have very few free electrons in them, and as a result, they do not conduct electricity. Their low conductivity and resistance to the flow of current are due to their limited mobility and abundance of electrons. Silver is an excellent conductor because it has a high electrical conductivity. At f=100MHz, the electrical conductivity of silver (σ=6.1×107 S/m) is so high that it is a good conductor. At this frequency, it has a low skin depth.

Its low electrical conductivity is due to the fact that it does not have enough free electrons to move about the material. Moreover, rubber has a high dielectric constant (εr=3.1) due to the absence of free electrons. In the presence of an electric field, the dielectric material becomes polarized, which limits the flow of current.

To know more about Conductors visit:

https://brainly.com/question/14405035

#SPJ11

Two generators, G1 and G2, have no-load frequencies of 61.5 Hz and 61.0 Hz, respectively. They are connected in parallel and supply a load of 2.5 MW at a 0.8 lagging power factor. If the power slope of Gi and G2 are 1.1 MW per Hz and 1.2 MW per Hz, respectively, a. b. Determine the system frequency (6) Determine the power contribution of each generator. (4) If the load is increased to 3.5 MW, determine the new system frequency and the power contribution of each generator.

Answers

Determination of system frequency the system frequency can be determined by calculating the weighted average of the two individual frequencies: f (system) = (f1 P1 + f2 P2) / (P1 + P2) where f1 and f2 are the frequencies of the generators G1 and G2 respectively, and P1 and P2 are the power outputs of G1 and G2 respectively.

The power contribution of each generator can be determined by multiplying the difference between the system frequency and the individual frequency of each generator by the power slope of that generator:

Determination of new system frequency and power contribution of each generator If the load is increased to 3.5 MW, the total power output of the generators will be 2.5 MW + 3.5 MW = 6 MW.

To know more about load visit:

https://brainly.com/question/2288570

#SPJ11

Other Questions
About 70% of the salt in our diet typically comes from _______ a. meals prepared at home b. peanut butter, ketchup, mustard, and other condiments c. prepared or processed food from the grocery store or restaurants d. potato chips and similar salty/crunchy snacks with what minimum speed must you toss a 190 g ball straight up to just touch the 11- m -high roof of the gymnasium if you release the ball 1.1 m above the ground? solve this problem using energy. 6. A quantum particle is described by the wave function y(x) = A cos (2x/L) for -L/4 x L/4 and (x) everywhere else. Determine: (a) The normalization constant A, (b) The probability of findin A cylindrical specimen of some metal alloy 10 mm in diameter is stressed elastically in tension. A force of 10,000 N produces a reduction in specimen diameter of 2 10^-3 mm. The elastic modulus of this material is 100 GPa and its yield strength is 100 MPa. What is the Poisson's ratio of this material? 6 1 point Choose the following options which indicate pleiotropy: A mutant allele at one locus X creates mice with brown fur, while an allele at locus Y creates mice with red eye color. When mice are A 27-year old male seen in the family practice office is found to have an elevated PT, with a normal APTT. Platelet count is 220,000/microliter. Bleeding time is 6 minutes. Which of the following factor deficiencies is suggested? O A. V OB. VII OC. VIII OD.X The following laboratory date were obtained from a 14-year old male with a history of abnormal bleeding: PT: 13 seconds APTT: 98 seconds Factor VIII Activity: markedly decreased Platelet Count 153,000 Bleeding Time: 7 minutes Platelet Aggregation . ADP: normal EPl: normal . Collagen: normal Ristocetin: normal Which of the following disorders does this patient most likely have? A. hemophilia A B. von Willebrand's disease C. hemophilia B D.factor VII deficiency A citrated plasma specimen was collect at 7:00 am and prothrombin time results were released. At 3:00 pm, the physician called the lab and requested that an APTT be performed on the same sample. The technician should reject this request due to which of the following? A. the APTT will be prolonged due to increased glass contact factor OB. the APTT will be decreased due to the release of platelet factors OC. the APTT will be prolonged due to the loss of factor V and/or VIII OD. the APTT will be prolonged due to the loss of factor VII Explain briefly the advantages" and "disadvantages of the "Non ferrous metals and alloys" in comparison with the "Ferrous alloys (15p). Explain briefly the compositions and the application areas of the "Brasses" Based on what you read, which of the following was a factor in Worthington's success in telemarketing at her first job?a. Her product knowledge b. Her sales presentation c. Her ability to control costs d. The way in which she was compensated Water has the following composition: pH = 7.8 HCO32 = 85 mg/L as CaCO3 Ca+ = 32 mg/L as CaCO3 Mg2+ = 40 mg/L as CaCO3 The following three questions pertain to this water. What is the highest theoretical concentration of Ca2+ (M) that can be dissolved at this pH in equilibrium with Ca(OH)(s) assuming no other calcium solids will form? Note: Don't be alarmed - it will be a large number! Ca(OH)(s) Ca+ + 2OH Kp-10:53 ie lbmol of pentane gas (CH) reacts with the theoretical amount of air in a closed, rigid tank. Initially, the reactants are at 77F, 1 m. After complete combustion, the temperature in the tank is 1900R. Assume air has a molar analysis of 21% O and 79% N. Determine the heat transfer, in Btu. Q = i Btu need help asap pls !!MY NOTES ASK YOUR TEACHER A spaceship hevering ever the surface of Saturn drops an object from a height of 75 m. How much longer does it take to reach the surface than if dropped from the same height Explain why an organization may wish to set up an independent contractor relationship. What are the factors that courts look at in ascertaining whether a situation is an employment relationship or an independent contractor relationship? which of the following is true about blood plasma? a. the main protein component is hemoglobin. b. it is the same as serum. c. it contains about 20 dissolved components. d. it is about 90% water. List the major constituents dissolved in seawater in decreasing concentration By 1870, the __________ household was the norm for a large majority of African Americans.two-parentdispersed-familyone-parentmultigenerationalThe answer is not multigenrational WILL UPVOTE PLEASE AND THANK YOU!!! :)10. Aflotoxins are dangerous toxins produced by Aspergillus flavus in food grains such as corn. True False Chapter 23 phase a. b. All protozoan pathogens have a cyst trophozoite sexual blood C. d. e. This PA 2 assignment requires you to identify a current change in an organization with which you are familiar, and evaluate a current public issue about which "something must be done." In relation to the change issue, think about what sense-making changes might need to be enacted and how you would go about doing this. Then, design a mindmap visually assessing this in terms of the eight (8) elements of the sense-making framework suggested by Helms Mills and as set out in Table 9.7:Sensemaking and identity constructionSocial sense-makingExtracted cues of sensemakingOngoing sense-makingRetrospectionPlausibilityEnactmentProjective sense-makingMake sure you visually address the following questions:Which ones did you believe you might have the most/least control over, and why?What implications does this have for adopting a sense-making approach to organizational change?Note Course :BUS 700 Leadership and Creative Solution Implementation Area : Management 11kg of R-134a at 320kPa fills a rigid tank whose volume is 0.011m. Find the quality, the temperature, the total internal energy and enthalpy of the system. If the container heats up and the pressure reaches to 600kPa, find the temperature, total energy and total enthalpy at the end of the process. A connecting rod of length /= 11.67in has a mass m3 = 0.0234blob. Its mass moment of inertia is 0.614 blob-in. Its CG is located 0.35/ from the crank pin, point A. A crank of length r= 4.132in has a mass m = 0.0564blob. Its mass moment of inertia about its pivot is 0.78 blob-in. Its CG is at 0.25r from the main pin, O. The piston mass= 1.012 blob. The thickness of the cylinder wall is 0.33in, and the Bore (B) is 4in. The gas pressure is 500psi. The linkage is running at a constant speed 1732rpm and crank position is 37.5. If the crank has been exact static balanced with a mass equal to me and balance radius of r, what is the inertia force on the Y-direction? What are the five principal reactions that occurred duringprimodial nucleosynthesis?Name all the types of stable nuclei that remained afterprimordial nucleosynthesis had finished.At what proportio