Answer: see below
Step-by-step explanation:
To sketch the graph of y = 2x + 4,
notice that this is in Slope-Intercept form of y = mx + b where
m is the slope and b is the y-intercept.
--> m = [tex]\dfrac{2}{1}[/tex] b = 4
Start on the y-axis and plot 4 (coordinate (0, 4)
From that point, count Up 2 and Right 1 to plot the next point (1, 6)
Draw a line through the points (0.4) and (1, 6).
VERTICAL STRETCHES AND SHRINKS OF THE SQUARE ROOT FUNCTION
What is the domain of the function f(x) = Vo?
O all real numbers
O all real numbers less than 0
all real number less than or equal to 0
O all real numbers greater than or equal to 0
Answer:
all real numbers greater than or equal to zero
Step-by-step explanation:
The domain of the real function f(x) = sqrt(x) is
all real numbers greater than or equal to zero
because when x < 0, then f(x) will become complex, which does not belong to a real function.
Calculate the surface area of the following shape. Round all calculations to the nearest whole number
Answer:
total surface area = 672 cm^2
Step-by-step explanation:
radius of hemisphere, r = 7 cm
radius of base of cone, r = 7 cm
height of cone, h = 22-7 = 15 cm
slant length of cone, L = sqrt(7^2+15^2) = sqrt(274)
Area of the cone
= pi r L
= pi * 7 * sqrt(274)
= 115.87 pi
= 364.02 cm^2
Area of hemisphere
= 2 pi r^2
= 2 pi * 7^2
= 307.88 cm^2
Total surface area = 364.02 + 307.88 = 671.89 cm^2
what is the difference of rational expressions below 6x/x-3 - 5/x
Answer:
[tex]$ \frac{6x^2-5x+15 }{x^2-3x} $[/tex]
Step-by-step explanation:
[tex]$\frac{6x}{x-3} -\frac{5}{x} $[/tex]
[tex]$\frac{6x(x)}{x(x-3)} -\frac{5(x-3)}{x(x-3)} $[/tex]
[tex]$\frac{6x^2}{x^2-3x} -\frac{5x-15}{x^2-3x} $[/tex]
[tex]$ \frac{6x^2-5x+15 }{x^2-3x} $[/tex]
What are the divisors of 60?
Answer:
Step-by-step explanation:
The divisors of a number are the numbers that divide it exactly.
60/2
2/30
3/3
5/5
one
divisors = 1,2,3,, 4,5,6,10,12,15,20,30,60.
answer:
1, 2, 3, 6, 10, 30, 60
Step-by-step explanation:
i am pretty sure!
Albert is growing tomato plants and studying their heights. He measured Plant A at 3 7/8 feet. He measure Plant B at 2 1/4 feet. He said that Plant B is 1 6/4 feet smaller than Plant A. Is Albert correct? Why or Why not?
Answer: Albert is wrong
Step-by-step explanation:
You first have to subtract Plant B's measurement from Plant A's measurement.
3 7/8-2 1/4 => 3 7/8-2 2/8
If you solve it you get 1 5/8. Since it cannot be reduced this is the final answer.
Precalc experts! I need your help!
Answer:
[tex]f(x)\to 1[/tex]
Step-by-step explanation:
The function approaches its horizontal asymptote in both directions as the magnitude of x gets large. The limit is y = 1.
Pamela is 7years older than jiri. The sum of their age is 91. What is Jori’s age
Answer:
[tex]\boxed{\sf \ \ \text{Jori is 42} \ \ }[/tex]
Step-by-step explanation:
Hello,
Let's not J Jori's age
Pamela is 7 years older than Jori so here age is J + 7
The sum of their age is 91 so
J + ( J + 7 ) = 91
<=>
2J + 7 = 91 subtract 7
2J = 91 - 7 = 84 divide by 2
J = 84/2 = 42
So Jori is 42 and Pamela is 49
hope this helps
A- y=-2x-4
B- y=2x+4
C- y=-2x+4
D- y= 2x-4
Answer:
A. y=-2x-4
Step-by-step explanation:
The slope is negative when the line is going down from up.
Options B and D are wrong.
The y-intercept is (0, -4) as shown in the graph.
Option C is wrong.
y = mx + b
y = -2x - 4
QUESTION 2
Find Percent Increase:
The original price for a product is $53.93 and the sale's tax rate is 29%. Find the amount of tax and the total selling price. Round to the nearest cent.
A $15.64 and $69.57
B. $38.29 and 592.22
C. $15.64 and $38.29
D. $16.78 and $70.21
QUESTION 3
Find Future Value Using Simple Interest Formula:
Chad got a student loan for $10,000 at 8% annual simple interest. How much does he owe after two years?
A $12,800
B. $10,800
C. $11,600
D. $11,664
Answer:
QUESTION 2 -> Correct option: A.
QUESTION 3 -> Correct option: C.
Step-by-step explanation:
QUESTION 2
To find the amount of tax we just need to multiply the tax rate by the original price of the product:
[tex]Tax = 29\% * 53.93[/tex]
[tex]Tax = 0.29 * 53.93[/tex]
[tex]Tax =\$15.64[/tex]
Then, to find the total selling price, we need to sum the original price to the tax value:
[tex]Total = tax + price[/tex]
[tex]Total = 15.64 + 53.93[/tex]
[tex]Total = \$69.57[/tex]
Correct option: A.
QUESTION 3
To find the final value after 2 years, we can use the formula:
[tex]P = Po * (1 + r*t)[/tex]
Where P is the final value, Po is the inicial value, r is the interest and t is the amount of time. Then, we have that:
[tex]P = 10000 * (1 + 0.08 * 2)[/tex]
[tex]P = \$11600[/tex]
Correct option: C.
Solve the system by graphing (Simplify your answer completely.)
Will someone please help me with this and give an explanation on how you got it? I don’t understand.
{x+y=8
{x-y=4
Answer:
(6,2)
Step-by-step explanation:
1) convert both equations to slope intercept form:
y=-x+8
and
y=x-4
now graph both equations separately by intercepts:
x int: 0=-x+8
-8=-x
8=x
y int: y=0+8
y=8
so the two coordinate points for first equation are (0,8) and (8,0)
lets move on two second equation: y=x-4
x int: 0=x-4
4=x
y int y=0-4
y=-4
so the 2 coordinate points are (4,0) and (0,4)
lets graph these two equations and see where they intersect:
(see graph below), the intersection is at (6,2) so (6,2) is our answer
hope this helps
A random variable X counts the number of successes in 20 independent trials. The probability that any one trial is unsuccessful is 0.42. What is the probability of exactly eight successful trials
Answer:
[tex] P(X=8)[/tex]
And using the probability mass function we got:
[tex]P(X=8)=(20C8)(0.58)^8 (1-0.58)^{20-8}=0.0486[/tex]
Step-by-step explanation:
Let X the random variable of interest, on this case we now that:
[tex]X \sim Binom(n=20, p=1-0.42=0.58)[/tex]
The probability mass function for the Binomial distribution is given as:
[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]
Where (nCx) means combinatory and it's given by this formula:
[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]
And we want to find this probability:
[tex] P(X=8)[/tex]
And using the probability mass function we got:
[tex]P(X=8)=(20C8)(0.58)^8 (1-0.58)^{20-8}=0.0486[/tex]
The probability of exactly eight successful trials is 0.0486 and this can be determined by using the formula of the probability mass function.
Given :
A random variable X counts the number of successes in 20 independent trials.The probability that any one trial is unsuccessful is 0.42.According to the binomial distribution, the probability mass function is given by:
[tex]\rm P(X) = \; (^nC_x )(p^x)(1-p)^{n-x}[/tex]
where the value of n is 20 and the value of (p = 1 - 0.42 = 0.58).
Now, substitute the values of known terms in the above expression of probability mass function.
[tex]\rm P(X=8) = \; (^{20}C_8 )((0.58)^8)(1-0.58)^{20-8}[/tex]
Simplify the above expression in order to determine the probability of exactly eight successful trials.
P(X = 8) = 0.0486
For more information, refer to the link given below:
https://brainly.com/question/23017717
g On a certain daily flight, Air Northeast has a policy of booking as many as 22 people on an airplane that can seat only 19. Past studies have revealed that only 89% of the booked passengers actually arrive for the flight. If the airline books 22 people on a flight, find the probability that there will not be enough seats available for all booked passengers. Show sufficient work to justify answer
Answer:
55.82% probability that there will not be enough seats available for all booked passengers.
Step-by-step explanation:
For each booked passenger, there are only two possible outcomes. Either they arrive for the flight, or they do not arrive. The probability of a booked passenger arriving is independent of other booked passengers. So we used the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
The airline books 22 people on a flight
This means that [tex]n = 22[/tex]
Past studies have revealed that only 89% of the booked passengers actually arrive for the flight.
This means that [tex]p = 0.89[/tex]
Find the probability that there will not be enough seats available for all booked passengers.
The airplane seats 19, so this is the probability of more than 19 passengers arriving.
[tex]P(X > 19) = P(X = 20) + P(X = 21) + P(X = 22)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 20) = C_{22,20}.(0.89)^{20}.(0.11)^{2} = 0.2718[/tex]
[tex]P(X = 21) = C_{22,21}.(0.89)^{21}.(0.11)^{1} = 0.2094[/tex]
[tex]P(X = 22) = C_{22,22}.(0.89)^{22}.(0.11)^{0} = 0.0770[/tex]
[tex]P(X > 19) = P(X = 20) + P(X = 21) + P(X = 22) = 0.2718 + 0.2094 + 0.0770 = 0.5582[/tex]
55.82% probability that there will not be enough seats available for all booked passengers.
Which statement describes the system of equations?
X+ 2y = 2
x-2y=-2
It has infinitely many solutions.
It has no solution.
It has one solution (0, 1).
It has one solution (4, -1).
Answer:
It has one solution (0, 1).
Step-by-step explanation:
Easiest and fastest way to solve the systems of equation is to graph them on a graphing calc and analyzing where the 2 graphs intersect (if they are not parallel).
Solve for x.
Simplify your answer as much as possible.
Prove the identity cos x/1 - sin x = sec x + tan x
Answer:
Proved
Step-by-step explanation:
Given
Prove that
[tex]\frac{cos x}{1 - sin x} = sec x + tan x[/tex]
[tex]\frac{cos x}{1 - sin x}[/tex]
Multiply the numerator and denominator by 1 + sinx
[tex]\frac{cos x}{1 - sin x} * \frac{1 + sin x}{1 + sin x}[/tex]
Combine both fractions to form 1
[tex]\frac{cos x (1 + sin x)}{(1 - sin x)(1 + sin x)}[/tex]
Expand the denominator using difference of two squares;
[tex]i.e.\ (a - b)(a + b) = a^2 - b^2[/tex]
The expression becomes
[tex]\frac{cos x (1 + sin x)}{(1^2 - sin^2 x)}[/tex]
[tex]\frac{cos x (1 + sin x)}{(1 - sin^2 x)}[/tex]
From trigonometry; [tex]1 - sin^2x = cos^2x[/tex]
The expression becomes
[tex]\frac{cos x (1 + sin x)}{(cos^2 x)}[/tex]
Divide the numerator and the denominator by cos x
[tex]\frac{(1 + sin x)}{(cos x)}[/tex]
Split fraction
[tex]\frac{1}{cos x} + \frac{sin x}{cos x}[/tex]
From trigonometry; [tex]\frac{1}{cos x} = sec x \ and\ \frac{sin\ x}{cos\ x} = tan\ x[/tex]
So;
[tex]\frac{1}{cos x} + \frac{sin x}{cos x}[/tex] = [tex]sec x + tan x[/tex]
Name the object that exhibits rotational symmetry. Question 7 options: sunglasses tent Ferris wheel a pair of scissors
The answer is Ferris wheel, since it is a circular object and will display symmetry even when rotated.
what is the axis of symmetry of f(x)=-3(x+2)^2+4
Answer:
line passes through the vertex
Step-by-step explanation:
f(x)=-3(x+2)^2+4
x=-2 it is the x of the vertex
The sum of the measures of the angles of a triangle is 180. The sum of the measures of the second and third angles is three times the measure of the first angle. The third angle is 21 more than the second. Let x, y, and z represent the measures of the first, second, and third angles, respectively. Find the measures of the three angles.
Answer:
(x, y, z) = (45°, 57°, 78°)
Step-by-step explanation:
The problem statement tells you ...
x + y + z = 180
-3x +y +z = 0
0x -y +z = 21
__
Subtracting the second equation from the first gives ...
4x = 180
x = 45 . . . . . . divide by 4
Substituting this into the first equation and adding the third equation gives ...
(45 +y +z) +(-y +z) = (180) +(21)
2z = 156 . . . . simplify, subtract 45
z = 78 . . . . . . divide by 2
y = z -21 = 57
The angle measures are ...
(x, y, z) = (45°, 57°, 78°)
In the probability distribution to the right, the random variable X represents the number of marriages an individual aged 15 years or older has been involved in. Compute and interpret the mean of the random variable X.
The table of the probability is missing, so i have attached it.
Answer:
μ = 0.919
The interpretation of this is that;on the average, an individual aged 15 years or older has been involved in 0.919 marriages.
Step-by-step explanation:
The expected value which is also called mean value is denoted by the symbol μ. It is defined as the sum of the product of each possibility x with it's probability P(x) as the formula;
μ = Σx.P(x) = (0 × 0.272) + (1 × 0.575) + (2 × 0.121) + (3 × 0.027) + (4 × 0.004) + (5 × 0.001)
μ = 0.919
Thus, the interpretation of this is that;on the average, an individual aged 15 years or older has been involved in 0.919 marriages.
The interpretation of the mean of the random variable X is 0.919.
Calculation of the mean:
Here the interpretation should represent the average and it should be individual aged 15 years or more so it should be involved in 0.919 marriage.
Now the mean is
μ = Σx.P(x) = (0 × 0.272) + (1 × 0.575) + (2 × 0.121) + (3 × 0.027) + (4 × 0.004) + (5 × 0.001)
μ = 0.919
Hence, The interpretation of the mean of the random variable X is 0.919.
Learn more about mean here: https://brainly.com/question/20875379
7.1 A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, then she wins one-half of the value that appears on the die. Determine her expected winnings.
Answer:
1.875
Step-by-step explanation:
To find the expected winnings, we need to find the probability of all cases possible, multiply each case by the value of the case, and sum all these products.
In the die, we have 6 possible values, each one with a probability of 1/6, and the value of each output is half the value in the die, so we have:
[tex]E_1 = \frac{1}{6}\frac{1}{2} + \frac{1}{6}\frac{2}{2} +\frac{1}{6}\frac{3}{2} +\frac{1}{6}\frac{4}{2} +\frac{1}{6}\frac{5}{2} +\frac{1}{6}\frac{6}{2}[/tex]
[tex]E_1 = \frac{1}{12}(1+2+3+4+5+6)[/tex]
[tex]E_1 = \frac{21}{12} = \frac{7}{4}[/tex]
Now, analyzing the coin, we have heads or tails, each one with 1/2 probability. The value of the heads is 2 wins, and the value of the tails is the expected value of the die we calculated above, so we have:
[tex]E_2 = \frac{1}{2}2 + \frac{1}{2}E_1[/tex]
[tex]E_2 = 1 + \frac{1}{2}\frac{7}{4}[/tex]
[tex]E_2 = 1 + \frac{7}{8}[/tex]
[tex]E_2 = \frac{15}{8} = 1.875[/tex]
Sample annual salaries (in thousands of dollars) for employees at a company are listed. 51 53 48 62 34 34 51 53 48 30 62 51 46 (a) Find the sample mean and sample standard deviation. (b) Each employee in the sample is given a $5000 raise. Find the sample mean and sample standard deviation for the revised data set. (c) Each employee in the sample takes a pay cut of $2000 from their original salary. Find the sample mean and the sample standard deviation for the revised data set. (d) What can you conclude from the results of (a), (b), and (c)?
Answer:
Mean increase or decrease (same quantity) according to the quantity of the increment or reduction
As all elements were equally affected the standard deviation will remain the same
Step-by-step explanation:
For the original set of salaries: ( In thousands of $ )
51, 53, 48, 62, 34, 34, 51, 53, 48, 30, 62, 51, 46
Mean = μ₀ = 47,92
Standard deviation = σ = 9,56
If we raise all salaries in the same amount ( 5 000 $ ), the nw set becomes
56,58,53,67,39,39,56,58,53,35,67,56,51
Mean = μ₀´ = 52,92
Standard deviation = σ´ = 9,56
And if we reduce salaries in the same quantity ( 2000 $ ) the set is
49,51,46,60,32,32,49,51,46,28,60,49,44
Mean μ₀´´ = 45,92
Standard deviation σ´´ = 9,56
What we observe
1.-The uniform increase of salaries, increase the mean in the same amount
2.-The uniform reduction of salaries, reduce the mean in the same quantity
3.-The standard deviation in all the sets remains the same.
We can describe the situation as a translation of the set along x-axis (salaries). If we normalized the three curves we will get a taller curve (in the first case) and a smaller one in the second, but the data spread around the mean will be the same
Any uniform change in the data will directly affect the mean value
Uniform changes in values in data set will keep standard deviation constant
4 builders are building some new classrooms at Trinity. It takes them 5 months to build the classrooms. How long will it take 10 builders?
Answer:
it takes
[tex]\boxed {\red {2 \: \: months}}[/tex]
for 10 builders
Step-by-step explanation:
[tex]4 \: \: \: builders = 5 \: month \\ 10 \: builders = x[/tex]
Let us solve
[tex]4 = 5 \\ 10 = x[/tex]
so
[tex]4 = x \\ 10 = 5[/tex]
use cross multiplication
[tex]5 \times 4 = 10 \times x \\ 20 = 10x \\ \frac{20}{10} = \frac{10x}{10} \\ \green {x = 2}[/tex]
Answer:
[tex]\boxed{2months}[/tex]
Step-by-step explanation:
B1 = 4
M1 = 5
B2 = 10
M2 = x (we have to find this)
Since it is an inverse proportion (more builders will take less time and vive versa), we'll write it in the order of
=> B1 : B2 = M2 : M1
=> 4:10 = x : 5
Product of Means = Product of Extremes
=> 10*x = 4*5
=> 10x = 20
Dividing both sides by 10
=> x = 2 months
So, it will take 2 months to build classrooms by 10 builders.
There are four different answers to the mathematical question: 3 + 2 * 3^2 = ?
This is because the answer is dependent on the order of precedence. Consider the order of precedence and how it affects mathematical calculations. The four answers are below.
• ((3 + 2) * 3)^2 = 225
• (3 + 2) * (3^2) = 45
• 3 + ((2 * 3)^2) = 39
• 3 +( 2 * (3^2)) = 21
Answer:
The order in which you solve the operations will provide different results and to be able to get the right answer you have to be familiar with the order of operations to know the appropiate steps to solve an operation. According to the order of operations in mathematics, exponents are given precedence over addition and multiplication. Because of that, the exponent is the first you have to solve.
3 + 2 * 3^2
3+2*9
Then, mutiplication is given precedence over addition:
3+18
Now, you can solve the addition and the result is: 21
Because of this, the answer is:
• 3 +( 2 * (3^2)) = 21
I NEED HELP PLEASE, THANKS! :)
A discus is thrown from a height of 4 feet with an initial velocity of 65 ft/s at an angle of 44° with the horizontal. How long will it take for the discus to reach the ground? (Show work)
Answer:
2.908 s
Step-by-step explanation:
The "work" is most easily done by a graphing calculator. We only need to tell it the equation of motion.
For speeds in feet per second, the appropriate equation for vertical ballistic motion is ...
h(t) = -16t² +v₀t +s₀
where v₀ is the initial vertical velocity in ft/s and s₀ is the initial height in feet. The vertical velocity is the vertical component of the initial velocity vector, so is (65 ft/s)(sin(44°)). We want to find t for h=0.
0 = -16t² +65sin(44°) +4
Dividing by -16 gives ...
0 = t^2 -2.82205t -0.2500
Using the quadratic formula, we find ...
t ≈ (2.82205 ±√(2.82205² -4(1)(-0.25))/2 ≈ 1.41103 +√2.24099
t ≈ 2.90802
It will take about 2.908 seconds for the discus to reach the ground.
_____
Comment on the question
You're apparently supposed to use the equation for ballistic motion even though we know a discus has a shape that allows it to "fly". It doesn't drop like a rock would.
g Suppose you wish to perform a hypothesis test for a population mean. Suppose that the population standard deviation is known, the population distribution is Normal, and the sample is small. Would you perform a z-test or t-test?
Answer:
z-test.
Step-by-step explanation:
We want to perform an hypothesis test for a population mean.
In the case that the standard deviation of the population is known and the population distribution is normal, even if the sample is small, we will use a z-test.
The usual case is to not know the standard deviation of the population, in which case a t-test is adequate instead of a z-test, taking into account the degrees of freedom of the sample.
. Please answer this correctly
Answer:
In both cases, the spider has already crawled up 3 feet. In order for the answer to be 0 the spider must crawl down 3 feet because 3 - 3 = 0, therefore the answer is the first story.
Answer:
Question 1
Step-by-step explanation:
1) The spider is 3 feet above the patio : +3
Now, due to strong wind, it crawls down 3 feet: -3
+ 3 - 3 = 0
(1 point) A random sample of 1600 home owners in a particular city found 736 home owners who had a swimming pool in their backyard. Find a 95% confidence interval for the true percent of home owners in this city who have a swimming pool in their backyard. Express your results to the nearest hundredth of a percent.
Answer:
Answer: (0.4356,0.4844)
Step-by-step explanation:
Use Ti 84
use function "1-PropZInt".
Enter x = 736
n = 1600
c= 0.95
Answer: (0.4356,0.4844)
What is the x-intercept of the graph?
Answer: (6,0)
Step-by-step explanation: To find the x-intercept, we plug a 0 in for y.
So we have 2x - 3(0) = 12.
Simplifying from here, we have 2x = 12.
Now divide both sides by 2 and we get x = 6.
So our x-intercept is 6.
This means that our line crosses the x-axis 6
units to the right of the origin or at the point (6,0).
Answer:
(6,0)
Step-by-step explanation:
The x intercept is where the graph crosses the x axis
Solve the following system of equations. Express your answer as an ordered
pair in the format (a,b), with no spaces between the numbers or symbols.
2x+7y=-7
-4x-3y=-19
Answer:
(7, -3)
Step-by-step explanation:
Isolate x for 2x +7y = -7:
x = (-7 - 7y)/2
Substitute:
-4((-7 - 7y) / 2) - 3y = -19
Solve for y:
-2(-7y - 7) - 3y =
14y + 14 - 3y =
11y + 14 = -19
11y = -33
y = -3
Substitute -3:
x = (-7 - 7(-3))/2
= 14/2
x = 7
Answer:
(7,-3)
Step-by-step explanation:
1 pizza costs £3.20 more than a bottle of coke. The total cost of the items is £19.40 for 3 pizzas and 1 bottle of coke How much does a pizza cost? How do you work this out please?
Answer:
Step-by-step explanation
p - the price of pizza
c- the price of a bottle of coke
p = c+3.2
3p + c=19.4
3* (c+3.2)+c=19.4
3*c+3*3.2+c=19.4
3c+c+9.6=19.4
4c+9.6=19.4
-9.6 -9.6
4c=9.8
:4. :4
c=2.45
p=2.45+3.2=5.65
verify : 3*5.65+2.45=16.95+2.45=19.40