An electron has a kinetic energy of 10.1 eV. The electron is incident upon a rectangular barrier of height 18.2 eV and width 1.00 nm. If the electron absorbed all the energy of a photon of green light (with wavelength 546 nm) at the instant it reached the barrier, by what factor would the electron's probability of tunneling through the barrier increase

Answers

Answer 1

Answer:

factor that the electron's probability of tunneling through the barrier increase 2.02029

Explanation:

given data

kinetic energy = 10.1 eV

height = 18.2 eV

width = 1.00 nm

wavelength = 546 nm

solution

we know that probability of tunneling is express as

probability of tunneling = [tex]e^{-2CL}[/tex]   .................1

here C is = [tex]\frac{\sqrt{2m(U-E}}{h}[/tex]

here h is Planck's constant

c = [tex]\frac{\sqrt{2\times 9.11 \times 10^{-31} (18.2-10.1) \times (1.60 \times 10^{-19}}}{6.626\times 10^{-34}}[/tex]  

c = 2319130863.06

and proton have hf = [tex]\frac{hc}{\lambda } = {1240}{546}[/tex] = 2.27 ev

so electron K.E = 10.1 + 2.27

KE = 12.37 eV

so decay coefficient inside barrier is

c' = [tex]\frac{\sqrt{2m(U-E}}{h}[/tex]

c' = [tex]\frac{\sqrt{2\times 9.11 \times 10^{-31} (18.2-12.37) \times (1.60 \times 10^{-19}}}{6.626\times 10^{-34}}[/tex]  

c' = 1967510340

so

the factor of incerease in transmisson probability is

probability = [tex]e^{2L(c-c')}[/tex]

probability = [tex]e^{2\times 1\times 10^{-9} \times (351620523.06)}[/tex]

factor probability = 2.02029


Related Questions

Question 4
3 pts
I am approaching a traffic light at a speed of 135 km/h when I suddenly notice that
the light is red. I slam on my brakes and come to a stop in 4.29 seconds. What is the
acceleration of the car as I screech to a complete stop? (Note that an object that slows down
simply has a negative acceleration.)
& show work please I want to also understand

Answers

Answer:

The deceleration of the car is [tex]\approx -0.065m/s^{2}[/tex]

Explanation:

to solve this, we will have to apply the knowledge that will be got from the equations of motion.

There are several equations of motion, and depending on the parameters given in the problem, we can choose the perfect equation that can best be used to solve the problem.

In this case, since we are given the velocity and time, and we are solving for the acceleration, we will use this formula

[tex]v = u +at[/tex]

where v= final velocity = 0

u = initial velocity = 135Km/h [tex]\approx 0.278 m/s[/tex]

t= time = 4.29 seconds.

[tex]a = \frac{v - u}{t}[/tex]

[tex]a =\frac{0-0.278}{4.29} \approx 0.065m/s^{2}[/tex]

Hence, the deceleration of the car is [tex]\approx -0.065m/s^{2}[/tex]

How much force is needed to cause a 15 kilogram bicycle to accelerate at a rate of 10
meters per second per second?
O A. 15 newtons
OB. 1.5 newtons
C. 150 newtons
OD. 10 newtons

Answers

Net force = (mass) x (acceleration)... that’s Newton’s 2nd law of motion.
Net force = (15kg) x (10 m/s squared)
Net force = 150 Newtons.

Four fixed point charges are at the corners of a square with sides of length L. Q1 is positive and at (OL) Q2 is positive and at (LL) Q3 is positive and at (4,0) Q4 is negative and at (0,0) A) Draw and label a diagram of the described arrangement described above (include a coordinate system). B) Determine the force that charge Q1 exerts on charge Qz. C) Determine the force that charge Q3 exerts on charge Q2. D) Determine the force that charge Q4 exerts on charge Q2. E) Now assume that all the charges have the same magnitude (Q) and determine the net force on charge Q2 due to the other three charges. Reduce this to the simplest form (but don't put in the numerical value for the force constant).

Answers

Answer:

A) See Annex

B) Fq₁₂ = K *  Q₁*Q₂ /16 [N] (repulsion force)

C)  Fq₃₂  = K * Q₃*Q₂ /16 [N] (repulsion force)

D) Fq₄₂ = K * Q₄*Q₂ /32 [N] (attraction force)

E) Net force (its components)

Fnx = (2,59/64 )* K*Q²  [N] in direction of original Fq₃₂

Fny =(2,59/64 )* K*Q² [N] in direction of original Fq₁₂

Explanation:

For calculation of d (diagonal of the square, we apply Pythagoras Theorem)

d² = L² + L²    ⇒  d² = 2*L²     ⇒ d = √2*L²   ⇒ d= (√2 )*L

d = 4√2 units of length   (we will assume meters, to work with MKS system of units)

B) Force of Q₁ exerts on charge Q₂

Fq₁₂  = K * Q₁*Q₂ /(L)²     Fq₁₂ = K *  Q₁*Q₂ /16 (repulsion force in the direction indicated in annex)

C) Force of Q₃ exerts on charge Q₂

Fq₃₂  = K * Q₃*Q₂ /(L)²     Fq₃₂  = K * Q₃*Q₂ /16  (repulsion force in the direction indicated in annex)

D) Force of -Q₄ exerts on charge Q₂

Fq₄₂ = K * Q₄*Q₂ / (d)²      Fq₄₂ = K * Q₄*Q₂ /32 (Attraction force in the direction indicated in annex)

E) Net force in the case all charges have the same magnitude Q (keeping the negative sign in Q₄)

Let´s take the force that  Q₄ exerts on Q₂  and Q₂ = Q  ( magnitude) and

Q₄ = -Q

Then the force is:

F₄₂ = K * Q*Q / 32       F₄₂  = K* Q²/32  [N]

We should get its components

F₄₂(x) = [K*Q²/32 ]* √2/2   and so is F₄₂(y)  =  [K*Q²/32 ]* √2/2

Note that this components have opposite direction than forces  Fq₁₂  and

Fq₃₂  respectively, and that Fq₁₂ and Fq₃₂ are bigger than F₄₂(x) and  F₄₂(y) respectively

In new conditions

Fq₁₂ = K *  Q₁*Q₂ /16    becomes  Fq₁₂ = K * Q²/ 16 [N]   and

Fq₃₂ = K* Q₃*Q₂ /16      becomes   Fq₃₂ = K* Q² /16  [N]

Note that Fq₁₂ and Fq₃₂ are bigger than F₄₂(x) and  F₄₂(y) respectively

Then over x-axis we subtract Fq₃₂ - F₄₂(x)  = Fnx

and over y-axis, we subtract   Fq₁₂ - F₄₂(y) = Fny

And we get:

Fnx = K* Q² /16 - [K*Q²/32 ]* √2/2  ⇒  Fnx =  K*Q² [1/16 - √2/64]

Fnx = (2,59/64 )* K*Q²

Fny has the same magnitude  then

Fny =(2,59/64 )* K*Q²

The fact that Fq₁₂ and Fq₃₂ are bigger than F₄₂(x) and  F₄₂(y) respectively, means that Fnx and Fny remains as repulsion forces

In a device called the ballistic pendulum, a compressed spring is used to launch a steel ball horizontally into a soft target hanging from a string. The ball embeds in the target and the two swing together from the string. Describe the energy transfers and/or transformations that take place during the use of the ballistic pendulum and at what points they occur

Answers

Answer:

When the spring in the ballistic pendulum is compressed, energy is stored up in the spring as potential energy. When the steel ball is launched by the spring, the stored up potential energy of the compressed spring is transformed and transferred into the kinetic energy of the steel ball as it flies off to hit its target. On hitting the soft target, some of the kinetic energy of the steel ball is transferred to the soft target (since they stick together), and they both start to swing together. During the process of swinging, the system's energy is transformed between kinetic and potential energy. At the maximum  displacement of the ball from its point of rest, all the energy is converted to potential energy of the system. At the lowest point of travel (at the rest point), all the energy of the system is transformed into kinetic energy. In between these two points, energy the energy of the system is a combination of both kinetic and potential energy.

In the end, all the energy will be transformed and lost as heat to the surrounding; due to the air resistance around; bringing the system to a halt.

Potential difference of a battery is 2.2 V when it is connected
across a resistance of 5 ohm, if suddenly the potential difference
falls to 1.8V, its internal resistance will be​

Answers

Answer:

1.1ohms

Explanation:

According to ohms law E = IR

If potential difference of a battery is 2.2 V when it is connected across a resistance of 5 ohm and if suddenly the voltage Falls to 1.8V then the current in the 5ohms resistor I = V/R = 1.8/5

I = 0.36A (This will be the load current).

Before we can calculate the value of the internal resistance, we need to know the voltage drop across the internal resistance.

Voltage drop = 2.2V - 1.8V = 0.4V

Then we calculate the internal resistance using ohms law.

According to the law, V = Ir

V= voltage drop

I is the load current

r = internal resistance

0.4 = 0.36r

r = 0.4/0.36

r = 1.1 ohms

Two conductors made of the same material are connected across the same potential difference. Conductor A has seven times the diameter and seven times the length of conductor B. What is the ratio of the power delivere

Answers

Complete question:

Two conductors made of the same material are connected across the same potential difference. Conductor A has seven times the diameter and seven times the length of conductor B. What is the ratio of the power delivered to A to power delivered to B.

Answer:

The ratio of the power delivered to A to power delivered to B is 7 : 1

Explanation:

Cross sectional area of a wire is calculated as;

[tex]A = \frac{\pi d^2}{4}[/tex]

Resistance of a wire is calculated as;

[tex]R = \frac{\rho L}{A} \\\\R = \frac{4\rho L}{\pi d^2} \\\\[/tex]

Resistance in wire A;

[tex]R = \frac{4\rho _AL_A}{\pi d_A^2}[/tex]

Resistance in wire B;

[tex]R = \frac{4\rho _BL_B}{\pi d_B^2}[/tex]

Power delivered in wire;

[tex]P = \frac{V^2}{R}[/tex]

Power delivered in wire A;

[tex]P = \frac{V^2_A}{R_A}[/tex]

Power delivered in wire B;

[tex]P = \frac{V^2_B}{R_B}[/tex]

Substitute in the value of R in Power delivered in wire A;

[tex]P_A = \frac{V^2_A}{R_A} = \frac{V^2_A \pi d^2_A}{4 \rho_A L_A}[/tex]

Substitute in the value of R in Power delivered in wire B;

[tex]P_B = \frac{V^2_B}{R_B} = \frac{V^2_B \pi d^2_B}{4 \rho_B L_B}[/tex]

Take the ratio of power delivered to A to power delivered to B;

[tex]\frac{P_A}{P_B} = (\frac{V^2_A \pi d^2_A}{4\rho_AL_A} ) *(\frac{4\rho_BL_B}{V^2_B \pi d^2_B})\\\\ \frac{P_A}{P_B} = (\frac{V^2_A d^2_A}{\rho_AL_A} )*(\frac{\rho_BL_B}{V^2_B d^2_B})\\\\[/tex]

The wires are made of the same material, [tex]\rho _A = \rho_B[/tex]

[tex]\frac{P_A}{P_B} = (\frac{V^2_A d^2_A}{L_A} )*(\frac{L_B}{V^2_B d^2_B})\\\\[/tex]

The wires are connected across the same potential; [tex]V_A = V_B[/tex]

[tex]\frac{P_A}{P_B} = (\frac{ d^2_A}{L_A} )* (\frac{L_B}{d^2_B} )[/tex]

wire A has seven times the diameter and seven times the length of wire B;

[tex]\frac{P_A}{P_B} = (\frac{ (7d_B)^2}{7L_B} )* (\frac{L_B}{d^2_B} )\\\\\frac{P_A}{P_B} = \frac{49d_B^2}{7L_B} *\frac{L_B}{d^2_B} \\\\\frac{P_A}{P_B} =\frac{49}{7} \\\\\frac{P_A}{P_B} = 7\\\\P_A : P_B = 7:1[/tex]

Therefore, the ratio of the power delivered to A to power delivered to B is

7 : 1

A 25 kg box is 220 N pulled at constant speed up a frictionless inclined plane by a force that is parallel to the incline. If the plane is inclined at an angle of 25o above the horizontal, the magnitude of the applied force is

Answers

Answer:

F = 103.54N

Explanation:

In order to calculate the magnitude of the applied force, you take into account that the forces on the box are the applied force F and the weight of the box W.

The box moves with a constant velocity. By the Newton second law you have that the sum of forces must be equal to zero.

Furthermore, you have that the sum of forces are given by:

[tex]F-Wsin\theta=0[/tex]                (1)

F: applied force = ?

W: weight of the box = Mg = (25kg)(9.8m/s^2) = 245N

θ: degree of the incline = 25°

You solve the equation (1) for F:

[tex]F=Wsin\theta=(245N)sin(25\°)=103.54N[/tex]          (2)

The applied force on the box is 103.54N

A helium nucleus (charge = 2e, mass = 6.63 10-27 kg) traveling at 6.20 105 m/s enters an electric field, traveling from point circled A, at a potential of 1.50 103 V, to point circled B, at 4.00 103 V. What is its speed at point circled B?

Answers

Answer:

[tex]v_B=3.78\times 10^5\ m/s[/tex]

Explanation:

It is given that,

Charge on helium nucleus is 2e and its mass is [tex]6.63\times 10^{-27}\ kg[/tex]

Speed of nucleus at A is [tex]v_A=6.2\times 10^5\ m/s[/tex]

Potential at point A, [tex]V_A=1.5\times 10^3\ V[/tex]

Potential at point B, [tex]V_B=4\times 10^3\ V[/tex]

We need to find the speed at point B on the circle. It is based on the concept of conservation of energy such that :

increase in kinetic energy = increase in potential×charge

[tex]\dfrac{1}{2}m(v_A^2-v_B^2)=(V_B-V_A)q\\\\\dfrac{1}{2}m(v_A^2-v_B^2)={(4\times 10^3-1.5\times 10^3)}\times 2\times 1.6\times 10^{-19}=8\times 10^{-16}\\\\v_A^2-v_B^2=\dfrac{2\times 8\times 10^{-16}}{6.63\times 10^{-27}}\\\\v_A^2-v_B^2=2.41\times 10^{11}\\\\v_B^2=(6.2\times 10^5)^2-2.41\times 10^{11}\\\\v_B=3.78\times 10^5\ m/s[/tex]

So, the speed at point B is [tex]3.78\times 10^5\ m/s[/tex].

A bowling ball traveling with constant speed hits pins at the end of a bowling lane 16.5m long. The bowler hears the sound of the ball hitting the pins 2.65s after the ball is release from her hand. What is the speed of the ball down the lane, assuming that the speed of sound is 340.0m/s

Answers

Answer: The speed of the ball is 7.64 m/s.

Explanation:

The distance between the player and the pins is 16.5m

if the velocity of the ball is V, then the time in which the ball reaches the pins is:

T = 16.5/V

Now, after this point, the sound needs

T' = 16,5/340 = 0.049 seconds to reach the player, this means that the time in that the ball needs to reach te pins is:

2.65 s - 0.49s = 2.16s

Then we have:

T = 2.16s = 16.5/V

V = 16.5/2.16 m/s = 7.64 m/s

The robot HooRU is lost in space, floating around aimlessly, and radiates heat into the depths of the cosmos at the rate of 13.1 W. HooRU's surface area is 1.55 m2 and the emissivity of its surface is 0.287. Ignoring the radiation that HooRU absorbs from the cold universe, what is HooRU's temperature T?

Answers

Answer:

The temperature is  [tex]T = 168.44 \ K[/tex]

Explanation:

From the question ewe are told that

   The rate of heat transferred is    [tex]P = 13.1 \ W[/tex]

     The surface area is  [tex]A = 1.55 \ m^2[/tex]

      The emissivity of its surface is  [tex]e = 0.287[/tex]

Generally, the rate of heat transfer is mathematically represented as

           [tex]H = A e \sigma T^{4}[/tex]

=>         [tex]T = \sqrt[4]{\frac{P}{e* \sigma } }[/tex]

where  [tex]\sigma[/tex] is the Boltzmann constant with value  [tex]\sigma = 5.67*10^{-8} \ W\cdot m^{-2} \cdot K^{-4}.[/tex]

substituting value  

             [tex]T = \sqrt[4]{\frac{13.1}{ 0.287* 5.67 *10^{-8} } }[/tex]

            [tex]T = 168.44 \ K[/tex]

Two metal spheres are hanging from nylon threads. When you bring the spheres close to each other, they tend to attract. Based on this information alone, discuss all the possible ways that the spheres could be charged. Is it possible that after the spheres touch, they will cling together? Explain.

Answers

Explanation:

In the given question, the two metal spheres were hanged with the nylon thread.

When these two spheres were brought close together, they attracted each other. The attraction between these spheres is the result of the opposite charges between them.

The possible ways by which these two metal spheres can be charged are by induction that is touching the metal or by rubbing them.

During induction, the same charges are transferred to each sphere. In this case, either both the spheres will be negatively charged or positively charged.

It is not possible that after the sphere touch each other they will cling together because the same charge repels each other and during touching, if one sphere is neutral, then the charged one will transfer the same charge. And as we know that same charge repel each other therefore they will repel each other.

Two guitarists attempt to play the same note of wavelength 6.50 cm at the same time, but one of the instruments is slightly out of tune. Consequently, a 17.0-Hz beat frequency is heard between the two instruments. What were the possible wavelengths of the out-of-tune guitar’s note? Express your answers, separated by commas, in centimeters to three significant figures IN cm.

Answers

Answer:

The two value of the wavelength for the out of tune guitar is  

[tex]\lambda _2 = (6.48,6.52) \ cm[/tex]

Explanation:

From the question we are told that

     The wavelength of the note is [tex]\lambda = 6.50 \ cm = 0.065 \ m[/tex]

     The difference in beat frequency is [tex]\Delta f = 17.0 \ Hz[/tex]

     

Generally the frequency of the note played by the guitar that is in tune is  

        [tex]f_1 = \frac{v_s}{\lambda}[/tex]

Where [tex]v_s[/tex] is the speed of sound with a constant value [tex]v_s = 343 \ m/s[/tex]

       [tex]f_1 = \frac{343}{0.0065}[/tex]

      [tex]f_1 = 5276.9 \ Hz[/tex]

The difference in beat is mathematically represented as

       [tex]\Delta f = |f_1 - f_2|[/tex]

Where [tex]f_2[/tex] is the frequency of the sound from the out of tune guitar

     [tex]f_2 =f_1 \pm \Delta f[/tex]

substituting values

      [tex]f_2 =f_1 + \Delta f[/tex]

      [tex]f_2 = 5276.9 + 17.0[/tex]  

     [tex]f_2 = 5293.9 \ Hz[/tex]

The wavelength for this frequency is

      [tex]\lambda_2 = \frac{343 }{5293.9}[/tex]

     [tex]\lambda_2 = 0.0648 \ m[/tex]

    [tex]\lambda_2 = 6.48 \ cm[/tex]

For the second value of the second frequency

     [tex]f_2 = f_1 - \Delta f[/tex]

     [tex]f_2 = 5276.9 -17[/tex]

      [tex]f_2 = 5259.9 Hz[/tex]

The wavelength for this frequency is

   [tex]\lambda _2 = \frac{343}{5259.9}[/tex]

   [tex]\lambda _2 = 0.0652 \ m[/tex]

   [tex]\lambda _2 = 6.52 \ cm[/tex]

This question involves the concepts of beat frequency and wavelength.

The possible wavelengths of the out-of-tune guitar are "6.48 cm" and "6.52 cm".

The beat frequency is given by the following formula:

[tex]f_b=|f_1-f_2|\\\\[/tex]

f₂ = [tex]f_b[/tex] ± f₁

where,

f₂ = frequency of the out-of-tune guitar = ?

[tex]f_b[/tex] = beat frequency = 17 Hz

f₁ = frequency of in-tune guitar = [tex]\frac{speed\ of\ sound\ in\ air}{\lambda_1}=\frac{343\ m/s}{0.065\ m}=5276.9\ Hz[/tex]

Therefore,

f₂ = 5276.9 Hz ± 17 HZ

f₂ = 5293.9 Hz (OR) 5259.9 Hz

Now, calculating the possible wavelengths:

[tex]\lambda_2=\frac{speed\ of\ sound}{f_2}\\\\\lambda_2 = \frac{343\ m/s}{5293.9\ Hz}\ (OR)\ \frac{343\ m/s}{5259.9\ Hz}\\\\[/tex]

λ₂ = 6.48 cm (OR) 6.52 cm

Learn more about beat frequency here:

https://brainly.com/question/10703578?referrer=searchResults

A small, rigid object carries positive and negative 3.00 nC charges. It is oriented so that the positive charge has coordinates (−1.20 mm, 1.20 mm) and the negative charge is at the point (1.70 mm, −1.30 mm).

Required:
a. Find the electric dipole moment of the object.
b. The object is placed in an electric field E = (7.80 103 î − 4.90 103 ĵ). Find the torque acting on the object.
c. Find the potential energy of the object–field system when the object is in this orientation.
d. Assuming the orientation of the object can change, find the difference between the maximum and the minimum potential energies of the system,

Answers

Answer:

Umax = 105.8nJ

Umin =-105.8nJ

Umax-Umin = 211.6nJ

Explanation:

A man stands on a platform that is rotating (without friction) with an angular speed of 1.2 rev/s; his arms are outstretched and he holds a brick in each hand.The rotational inertia of the system consisting of the man, bricks, and platform about the central vertical axis of the platform is 6.0 k g times m squared. If by moving the bricks the man decreases the rotational inertia of the system to 2.0 k g times m squared, what is the resulting angular speed of the platform in rad/s

Answers

Answer:

resulting angular speed = 3.6 rev/s

Explanation:

We are given;

Initial angular speed; ω_i = 1.2 rev/s

Initial moment of inertia;I_i = 6 kg/m²

Final moment of inertia;I_f = 2 kg/m²

From conservation of angular momentum;

Initial angular momentum = Final angular momentum

Thus;

I_i × ω_i = I_f × ω_f

Making ω_f the subject, we have;

ω_f = (I_i × ω_i)/I_f

Plugging in the relevant values;

ω_f = (6 × 1.2)/2

ω_f = 3.6 rev/s

A fox locates rodents under the snow by the slight sounds they make. The fox then leaps straight into the air and burrows its nose into the snow to catch its meal. If a fox jumps up to a height of 85 cm , calculate the speed at which the fox leaves the snow and the amount of time the fox is in the air. Ignore air resistance.

Answers

Answer:

v = 4.08m/s₂

Explanation:

Two red blood cells each have a mass of 9.0 x 10-14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion from the excess charge prevents the cells from clumping together. One cell carries -2.5pC and the other -3.30 pC, and each cell can be modeled as a sphere 3.75 × 10-6 m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed.
1. What initial speed would each need so that they get close enough to just barely touch?
2. What is the maximum acceleration of the cells as they move toward each other and just barely touch?

Answers

Answer:

Explanation:

Given that:

The mass of the cell is 9.0 x 10^-14 kg

The charges of the cell is -2.5pC and the other -3.30 pC

[tex]q_1=-2.5\times10^{-12}C \ \ and \ \ q_2=-3.75\times10^{-12}C[/tex]

Radius is  3.75 × 10-6 m

The final distance is twice the radius

i.e [tex]2*(3.75 \times 10^{-6}) = 7.5*10^{-6}m[/tex]

The formula for the velocity of the cell is

[tex]mv^2=\frac{q_1q_2}{4\pi \epsilon 2 r} \\[/tex]

[tex]v=\sqrt{\frac{q_1q_2}{4\pi \epsilon 2 r} }[/tex]

[tex]=\sqrt{\frac{(-2.5\times10^{-12})(-3.3\times10^{-12}}{4(3.14)(8.85\times10^{-112}(2\times3.75\times10^{-6})(9\times10^{-14})} } \\\\=\sqrt{\frac{(-8.25\times10^{-24})}{(7503.03\times10^{-32})} } \\\\=\sqrt{109955.5779} \\\\=331.60m/s[/tex]

The maximum acceleration of the cells as they move toward each other and just barely touch is

[tex]ma= \frac{q_1q_2}{4\pi \epsilon (2r)^2} \\\\a= \frac{q_1q_2}{4\pi \epsilon (2r)^2(m)}[/tex]

[tex]=\frac{(-2.5\times10^{-12})(-3.3\times10^{-12})}{4(3.14)(8.85\times10^{-12})(2\times3.75\times10^{-6})^2(9\times10^{-14})}[/tex]

[tex]=\frac{(-8.25\times10^{-24})}{(56272.725\times10^{-38})} \\\\=1.47\times10^{10}m/s^2[/tex]

The answers obtained are;

1. The initial speed of each of the red blood cells is [tex]v= 331.66\,m/s[/tex].

2. The maximum acceleration of the cells is [tex]a=1.47\times 10^{10}\,m/s^2[/tex].

The answer is explained as shown below.

We have, the mass of the red blood cell;

[tex]m=9\times 10^{-14}\,kg[/tex]

Also, the charges of the cells are;

[tex]q_1=-2.5\times 10^{-12}\,C[/tex] and[tex]q_2=-3.30\times 10^{-12}\,C[/tex]

The distance between the charges when they barely touch will be two times the radius of each charge.

[tex]r=2\times r\,'=2\times3.75\times10^{-6}\,m=7.5\times10^{-6}\,m[/tex]

Kinetic Energy of moving charges

1. As both the cells are negatively charged they will repel each other.

So, for the cells to come nearly close, their kinetic energies must be equal to the electric potential between them.[tex]\frac{1}{2}mv^2+ \frac{1}{2}mv^2=k\frac{q_1 q_2}{r^2}[/tex]Where, [tex]k=9\times10^9\,Nm^2/C^2[/tex] is the Coulomb's constant.

Now, substituting all the known values in the equation, we get;

[tex](9\times 10^{-14}\,kg)\times v^2=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{7.5\times10^{-6}\,m}[/tex]

[tex]v^2=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{7.5\times10^{-6}\,m\times(9\times 10^{-14}\,kg)} =110000\,m^2/s^2[/tex]

[tex]\implies v=\sqrt{110000\,m^2/s^2}=331.66\,m/s[/tex]

Electrostatic force between two charges

2. Also as the force between them is repulsive, there must be an acceleration to make them barely touch each other.

[tex]ma=k\frac{q_1 q_2}{r^2}[/tex]

Substituting the known values, we get;

[tex](9\times 10^{-14}\,kg)\times a=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{(7.5\times10^{-6}\,m)^2}[/tex]

[tex]\implies a=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{(7.5\times10^{-6}\,m)^2\times(9\times 10^{-14}\,kg) }[/tex]

[tex]a=1.47\times 10^{10}\,m/s^2[/tex]

Find out more information about moving charges here:

https://brainly.com/question/14632877

A nonuniform electric field is given by the expression = ay î + bz ĵ + cx , where a, b, and c are constants. Determine the electric flux (in the +z direction) through a rectangular surface in the xy plane, extending from x = 0 to x = w and from y = 0 to y = h. (Use any variable or symbol stated above as necessary.)

Answers

English please. I don’t under this. Is it Czechish Orr???

A heavy, 6 m long uniform plank has a mass of 30 kg. It is positioned so that 4 m is supported on the deck of a ship and 2 m sticks out over the water. It is held in place only by its own weight. You have a mass of 70 kg and walk the plank past the edge of the ship. How far past the edge do you get before the plank starts to tip, in m

Answers

Answer:

about 1 meter

Explanation:

   

The distance past the edge that the man will get before the plank starts to tip is; 0.4285 m

We are given;

Mass of plank; m = 30 kg

Length of plank; L = 6m

Mass of man; M = 70 kg

Since the plank has 2 supports which are the deck of the ship, then it means that, we can take moments about the right support before the 2m stick out of the plank.

Thus;

Moment of weight of plank about the right support;

τ_p = mg((L/2) - 2)

τ_p = 30 × 9.8((6/2) - 2)

τ_p = 294 N.m

Moment of weight of man about the right support;

τ_m = Mgx

where x is the distance past the edge the man will get before the plank starts to tip.

τ_m = 70 × 9.8x

τ_m = 686x

Now, moment of the board is counterclockwise while that of the man is clockwise. Thus;

τ_m = τ_p

686x = 294

x = 294/686

x = 0.4285 m

Read more at; https://brainly.com/question/22150651

13. Under what condition (if any) does a moving body experience no energy even though there
is a net force acting on it?
(2 marks)​

Answers

Answer:

When the Net Forces are equal to 0

Explanation:

Momentum of a body can be defined as product of mass and velocity. It is in the same direction as in velocity. When the momentum of a body doesn't change, it is said to be conserved. If the momentum of a body is constant, the the net forces acting on a body becomes zero. When net forces acting on a body is zero, it means that no kinetic energy is being lost or gained, hence the kinetic energy is also conserved. If no energy is being gained or lost, it means that the body will experience no energy.

At a pressure of one atmosphere oxygen boils at −182.9°C and freezes at −218.3°C. Consider a temperature scale where the boiling point of oxygen is 100.0°O and the freezing point is 0°O. Determine the temperature on the Oxygen scale that corresponds to the absolute zero point on the Kelvin scale.

Answers

Answer: -254.51°O

Explanation:

Ok, in our scale, we have:

-182.9°C corresponds to 100° O

-218.3°C corresponds to 0°

Then we can find the slope of this relation as:

S = (100° - 0°)/(-182.9°C - (-218.3°C)) = 2.82°O/°C

So we can have the linear relationship between the scales is:

Y = (2.82°O/°C)*X + B

in this relation, X is the temperature in Celcius and Y is the temperature in the new scale.

And we know that when X = -182.9°C, we must have Y = 0°O

then:

0 = (2.82°O/°C)*(-182.9°C) + B

B = ( 2.82°O/°C*189.9°C) = 515.778°O.

now, we want to find the 0 K in this scale, and we know that:

0 K = -273.15°C

So we can use X =  -273.15°C in our previous equation and get:

Y = (2.82°O/°C)*(-273.15°C) + 515.778°O = -254.51°O

what is the orbital speed for a satellite 3.5 x 10^8m from the center of mars? Mars mass is 6.4 x 10^23 kg

Answers

Answer:

v = 349.23 m/s

Explanation:

It is required to find the orbital speed for a satellite [tex]3.5\times 10^8\ m[/tex] from the center of mass.

Mass of Mars, [tex]M=6.4\times 10^{23}\ kg[/tex]

The orbital speed for a satellite is given by the formula as follows :

[tex]v=\sqrt{\dfrac{GM}{r}} \\\\v=\sqrt{\dfrac{6.67\times 10^{-11}\times 6.4\times 10^{23}}{3.5\times 10^8}} \\\\v=349.23\ m/s[/tex]

So, the orbital speed for a satellite is 349.23 m/s.

A charged particle q moves at constant velocity through a crossed electric and magnetic fields (E and B, which are both constant in magnitude and direction). Write the magnitude of the electric force on the particle in terms of the variables given. Do the same for the magnetic force

Answers

Answer:

The magnitude of the electric force on the particle in terms of the variables given is, F = qE

The magnitude of the magnetic force on the particle in terms of the variables given is, F = q (v x B)

Explanation:

Given;

a charged particle, q

magnitude of electric field, E

magnitude of magnetic field, B

The magnitude of the electric force on the particle in terms of the variables given;

F = qE

The magnitude of the magnetic force on the particle in terms of the variables given;

F = q (v x B)

where;

v is the constant velocity of the charged particle

Answer:

The magnitude of the electric force acting on a charged particle moving through an electric field = |qE|

The magnitude of the magnetic force of a charged particle moving at a particular velocity through a magnetic field = |qv × B|

Explanation:

The electric force acting on a charged particle, q, moving through an electric field, E, is given as a product of the charge on the particle (a scalar quantity) and the electric field (a vector quantity).

Electric force = qE

The magnitude of the electric force = |qE|

That is, magnitude of the product of the charge and the electric field vector.

The magnetic force acting on a charged particle, q, moving with a velocity, v, through a magnetic field, B is a vector product of qv [a product of the charge of the particle (a scalar quantity) and the velocity of the particle (a vector quantity)] and B (a vector quantity).

It is given mathematically as (qv × B)

The magnitude of the magnetic force is the magnitude of the vector product obtained.

Magnitude of the magnetic force = |qv × B|

Hope this Helps!!!

A 4.5 kg ball swings from a string in a vertical circle such that it has constant sum of kinetic and gravitational potential energy. Ignore any friction forces from the air or in the string. What is the difference in the tension between the lowest and highest points on the circle

Answers

Answer:

88.29 N

Explanation:

mass of the ball = 4.5 kg

weight of the ball will be = mass x acceleration due to gravity(9.81 m/s^2)

weight W = 4.5 x 9.81 = 44.145 N

centrifugal forces Tc act on the ball as it swings.

At the top point of the vertical swing,

Tension on the rope = Tc - W.

At the bottom point of the vertical swing,

Tension on the rope = Tc + W

therefore,

difference in tension between these two points will be;

Net tension = tension at bottom minus tension at the top

= Tc + W - (Tc - W) = Tc + W -Tc + W

= 2W

imputing the value of the weight W, we have

2W = 2 x 44.145 = 88.29 N

One kind of baseball pitching machine works by rotating a light and stiff rigid rod about a horizontal axis until the ball is moving toward the target. Suppose a 144 g baseball is held 82 cm from the axis of rotation and released at the major league pitching speed of 87 mph.

Required:
a. What is the ball's centripetal acceleration just before it is released?
b. What is the magnitude of the net force that is acting on the ball just before it is released?

Answers

Answer:

a. ac = 1844.66 m/s²

b. Fc = 265.63 N

Explanation:

a.

The centripetal acceleration of the ball is given as follows:

ac = v²/r

where,

ac = centripetal acceleration = ?

v = speed of ball = (87 mph)(1 h/ 3600 s)(1609.34 m / 1 mile) = 38.9 m/s

r = radius of path = 82 cm = 0.82 m

Therefore,

ac = (38.9 m/s)²/0.82 m  

ac = 1844.66 m/s²

b.

The centripetal force is given as:

Fc = (m)(ac)

Fc = (0.144 kg)(1844.66 m/s²)

Fc = 265.63 N

A block slides down a ramp with friction. The friction experienced by the block is 21 N. The mass of the block is 8 kg. The ramp is 6 meters long (meaning, the block slides across 6 meters of ramp with friction). The block is originally 2 meters vertically above the ground (the bottom of the ramp). What is the change in energy of the block due to friction, expressed in Joules

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

the change in energy of the block due to friction is  [tex]E = -126 \ J[/tex]

Explanation:

From the question we are told that

    The  frictional force is  [tex]F_f = 21 \ N[/tex]

    The mass of the block is  [tex]m_b = 8 \ kg[/tex]

    The length of the ramp is  [tex]l = 6 \ m[/tex]

    The height of the block is  [tex]h = 2 \ m[/tex]

The change in energy of the block due to friction is mathematically represented as

     [tex]\Delta E = - F_s * l[/tex]

The negative sign is to show that the frictional force is acting against the direction of the block movement

  Now substituting values

      [tex]\Delta E = -(21)* 6[/tex]

      [tex]\Delta E = -126 \ J[/tex]

A brass ring of diameter 10.00 cm at 19.0°C is heated and slipped over an aluminum rod with a diameter of 10.01 cm at 19.0°C. Assuming the average coefficients of linear expansion are constant. What if the aluminum rod were 10.02 cm in diameter?

Answers

Answer:

the final temperature is [tex]\mathbf{T_f = -377.2^0 C}[/tex]

Explanation:

The change in length of a bar can be expressed with the relation;

[tex]\Delta L = L_f - L_i[/tex]   ---- (1)

Also ; the relative or fractional increase in length  is proportional to the change in temperature.

Mathematically;

ΔL/L_i ∝ kΔT

where;

k is replaced with ∝ (the proportionality constant )

[tex]\dfrac{ \Delta L}{L_i}=\alpha \Delta T[/tex]    ---- (2)

From (1) ;

[tex]L_f = \Delta L + L_i[/tex]  ---  (3)

from (2)

[tex]{ \Delta L}=\alpha \Delta T*{L_i}[/tex]  ---- (4)

replacing (4) into (3);we have;

[tex]L_f =(\alpha \Delta T*{L_i} ) + L_i[/tex]

On re-arrangement; we have

[tex]L_f = L_i + \alpha L_i (\Delta T )[/tex]

from the given question; we can say that :

[tex](L_f)_{brass}}} = (L_f)_{Al}[/tex]

So;

[tex]L_{brass} + \alpha _{brass} L_{brass}(\Delta T) = L_{Al} + \alpha _{Al} L_{Al}(\Delta T)[/tex]

Making the change in temperature the subject of the formula; we have:

[tex]\Delta T = \dfrac{L_{Al}-L_{brass}}{\alpha _ {brass} L_{brass}-\alpha _{Al}L_{Al}}[/tex]

where;

[tex]L_{Al}[/tex] = 10.02 cm

[tex]L_{brass}[/tex] = 10.00 cm

[tex]\alpha _{brass}[/tex] = 19 × 10⁻⁶ °C ⁻¹

[tex]\alpha_{Al}[/tex] = 24  × 10⁻⁶ °C ⁻¹

[tex]\Delta T = \dfrac{10.02-10.00}{19*10^{-6} \ \ {^0}C^{-1} *10.00 -24*10^{-6} \ \ {^0}C^{-1} *10.02}[/tex]

[tex]\Delta T[/tex] = −396.1965135 ° C

[tex]\Delta T[/tex] ≅ −396.20  °C

Given that the initial temperature [tex]T_i = 19^0 C[/tex]

Then ;

[tex]\Delta T = T_f - T_i[/tex]

[tex]T_f = \Delta T + T_I[/tex]

Thus;

[tex]T_f =(-396.20 + 19.0)^0 C[/tex]

[tex]\mathbf{T_f = -377.2^0 C}[/tex]

Thus; the final temperature is [tex]\mathbf{T_f = -377.2^0 C}[/tex]

Three masses are located in the x-y plane as follows: a mass of 6 kg is located at (0 m, 0 m), a mass of 4 kg is located at (3 m, 0 m), and a mass of 2 kg is located at (0 m, 3 m). Where is the center of mass of the system?
A. (1 m, 2 m)
B. (2 m, 1 m)
C. (1 m, 1 m)
D. (1 m, 0.5 m)
E. (0.5 m, 1 m)

Answers

Answer:

D. (1m, 0.5m)

Explanation:

The center of mass (or center of gravity) of a system of particles is the point where the weight acts when the individual particles are replaced by a single particle of equivalent mass. For the three masses, the coordinates of the center of mass C(x, y) is given by;

x = (m₁x₁ + m₂x₂ + m₃x₃) / M       ----------------(i)

y = (m₁y₁ + m₂y₂ + m₃y₃) / M       ----------------(ii)

Where;

M = sum of the masses

m₁ and x₁ = mass and position of first mass in the x direction.

m₂ and x₂ = mass and position of second mass in the x direction.

m₃ and x₃ = mass and position of third mass in the x direction.

y₁ , y₂ and y₃ = positions of the first, second and third masses respectively in the y direction.

From the question;

m₁ = 6kg

m₂ = 4kg

m₃ = 2kg

x₁ = 0m

x₂ = 3m

x₃ = 0m

y₁ = 0m

y₂ = 0m

y₃ = 3m

M = m₁ + m₂ + m₃ = 6 + 4 + 2 = 12kg

Substitute these values into equations (i) and (ii) as follows;

x = ((6x0) + (4x3) + (2x0)) / 12

x = 12 / 12

x = 1 m  

y = (6x0) + (4x0) + (2x3)) / 12

y = 6 / 12

y = 0.5m

Therefore, the center of mass of the system is at (1m, 0.5m)

a wall, a 55.6 kg painter is standing on a 3.15 m long homogeneous board that is resting on two saw horses. The board’s mass is 14.5 kg. The saw horse on the right is 1.00 m from the right. How far away can the painter walk from the saw horse on the right until the board begins to tip?

Answers

Answer:

0.15 m

Explanation:

First calculating the center of mass from the saw horse

[tex]\frac{3.15}{2} -1=0.575 m[/tex]

from the free body diagram we can write

Taking moment about the saw horse

55.9×9.81×y=14.5×0.575×9.81

y= 0.15 m

So, the painter walk from the saw horse on the right until the board begins to tip is 0.15 m far.

Two narrow slits, illuminated by light consisting of two distinct wavelengths, produce two overlapping colored interference patterns on a distant screen. The center of the eighth bright fringe in one pattern coincides with the center of the third bright fringe in the other pattern. What is the ratio of the two wavelengths?

Answers

Answer:

The ration of the two wavelength is  [tex]\frac{\lambda_1}{\lambda_2} = \frac{8}{3}[/tex]

Explanation:

Generally two slit constructive interference can be mathematically represented as

      [tex]\frac{y}{L} = \frac{m * \lambda}{d}[/tex]

Where  y is the distance between fringe

           d  is the distance between the two slit

           L is the distance between the slit and the wall

           m is the order of the fringe

given that  y , L  , d  are constant  we have that

     [tex]\frac{m }{\lambda } = constant[/tex]

So  

    [tex]\frac{m_1 }{\lambda_1 } = \frac{m_2 }{\lambda_2 }[/tex]

So     [tex]m_1 = 8[/tex]

  and  [tex]m_2 = 3[/tex]

=>     [tex]\frac{m_2}{m_1} = \frac{\lambda_1}{\lambda_2}[/tex]

=>     [tex]\frac{8}{3} = \frac{\lambda_1}{\lambda_2}[/tex]

So

     [tex]\frac{\lambda_1}{\lambda_2} = \frac{8}{3}[/tex]

A Nearsighted Eye. A certain very nearsighted person cannot focus on anything farther than 36.0 cm from the eye. Consider the simplified model of the eye. In a simplified model of the human eye, the aqueous and vitreous humors and the lens all have a refractive index of 1.40, and all the refraction occurs at the cornea, whose vertex is 2.60 cm from the retina.

Required:
a. If the radius of curvature of the cornea is 0.65 cm when the eye is focusing on an object 36.0 cm from the cornea vertex and the indexes of refraction are as described before, what is the distance from the cornea vertex to the retina?
b. What does this tell you about the shape of the nearsighted eye?

1. This distance is greater than for the normal eye.
2. This distance is shorter than for the normal eye.

Answers

Answer:

a) The distance from the cornea vertex to the retina is 2.37 cm

b) This distance is shorter than for the normal eye.

Explanation:

a) Let refractive index of air,

n(air) = x = 1

Let refractive index of lens,

n(lens) = y = 1.4

Object distance, s = 36 cm

Radius of curvature, R = 0.65 cm

The distance from the cornea vertex to the retina is the image distance because image is formed in the retina.

Image distance, s' = ?

(x/s) + (y/s') = (y-x)/R

(1/36) + (1.4/s') = (1.4 - 1)/0.65

1.4/s' = 0.62 - 0.028

1.4/s' = 0.592

s' = 1.4/0.592

s' = 2.37 cm

Distance from the cornea vertex to the retina is 2.37 cm

(b) For a normal eye, the distance between the cornea vertex and the retina is 2.60 cm. Since 2.37 < 2.60, this distance is shorter than for normal eye.

Other Questions
In about 200 words, write your own description of a garden to create a powerful atmosphere. In your description: Cover as many senses as possible Use evocative, unusual, polysyllabic word A bricklayer charges $8 per square foot to lay a patio.How much would it cost for the bricklayer to lay a 12-foot-x 16-foot patio? Take the factors considered by earned value analysis and subtract those considered by tracking Gantt charts. The factor(s) you have remaining are: a. Cost and schedule. b. Performance. c. Schedule and performance. d. Cost. Solve log x = 4. x = 4 x = 40 x = 1,000 x = 10,000 The following scatter plot demonstrates the relationship between to two variables x and y. The scatter plot shows what. correlation between the variables 20 points brainlist and thanks please helppppp How do people find food in the complex and in todays time period? What are some common things people do in the complex and in todays time period for a living? Why do people live where in the complex and in todays time period live? A very large thin plate is centered in a gap of width 0.06 m with a different oils of unknown viscosities above and below; one viscosity is twice the other. When the plate is pulled at a velocity of 0.3 m/s, the resulting force on one square meter of plate due to the viscous shear on both sides is 29 N. Assuming viscous flow and neglecting all end effects calculate the viscosities of the oils. Abraham Lincoln suggests that the fight for freedom will be remembered by future generations and is worth sacrifice. Which passage from his Gettysburg address best supports Lincoln central idea? Why do reactions need to be balanced?A. Because the reactants must be the exact same as the productsB. Because of the conservation of energyC. Because the volume of reactants must equal the volume ofproductsD. Because atoms are not lost or gained in a chemical reaction Starting from rest the motor boat travels around the circular path (radius of curvature= 40 m),at a speed (v= 0.8 t m/s),where (t) is in seconds. The magnitude of the boat's velocity when it has traveled 20 m is In the diagram, m = 128 and m = 76. What is mABC? A. 104 B. 116 C. 128 D. 102 E. 96 A small, rigid object carries positive and negative 3.00 nC charges. It is oriented so that the positive charge has coordinates (1.20 mm, 1.20 mm) and the negative charge is at the point (1.70 mm, 1.30 mm).Required:a. Find the electric dipole moment of the object.b. The object is placed in an electric field E = (7.80 103 4.90 103 ). Find the torque acting on the object.c. Find the potential energy of the objectfield system when the object is in this orientation.d. Assuming the orientation of the object can change, find the difference between the maximum and the minimum potential energies of the system, (81,000)+(6100)+(210)+(41)+(31/100) Three-year-old Christian follows his father around with his toy tools while his father is making some home repairs and mimics his father's tool use. Christian is accomplishing tasks associated with Erikson's _____ stage of development. On November 1, Alan Company signed a 120-day, 12% note payable, with a face value of $15,300. What is the adjusting entry for the accrued interest at December 31 on the note What is the solution to the equation 2n3=n+145? Enter your answer in the box. n = All single-called organisms are referred to as? what happens after a mass extinction, such as an ice age or the extinction of the dinosaurs?A. the remaining species are able to live longer due to increased food supply.B. surviving populations reach a state of equilibrium due to decreased competition.C. the surviving species evolve more rapidly to fill the newly available niches.D. organisms evolve more slowly as they recover from the loss of diversity. 3z/10 - 4 = -6someone help? Which of the words below is the affirmative Uds. command form of the verbhacer?A. HazB. HaganC. HacenD. Haga