An acrylonitrile-butadiene-styrene copolymer (ABS) bar, with a width of 10 mm, a thickness of 4 mm and an internal transverse flaw size of 0.2 mm, is subjected to tension-compression cyclic loading between ±200 N. The crack growth rate, da/dN, in the ABS follows Equation Q2.2: da/dN = 1.8 x 10⁻⁷ ΔK^3.5 Equation Q2.2 where ΔK is the range of cyclic stress intensity factor in MPa m^0.5 Assuming the geometric factor Y = 1.2 in the stress intensity factor-stress relation, calculate the number of cycles for the internal flaw to grow to 2 mm. Under these cycles of loading, the bar will not fail.

Answers

Answer 1

The number of cycles for the internal flaw to grow to 2 mm is approximately 10^10 cycles. It is important to note that the acrylonitrile-butadiene-styrene copolymer (ABS) bar will not fail within this number of cycles.

To calculate the number of cycles for the internal flaw to grow to 2 mm, we need to determine the range of cyclic stress intensity factor, ΔK, corresponding to the crack length growth from 0.2 mm to 2 mm.

The stress intensity factor, K, is related to the applied stress and crack size by the equation:

K = Y * σ * (π * a)^0.5

Given:

- Width of the bar (b) = 10 mm

- Thickness of the bar (h) = 4 mm

- Internal flaw size at the start (a0) = 0.2 mm

- Internal flaw size at the end (a) = 2 mm

- Range of cyclic stress, σ = ±200 N (assuming the cross-sectional area is constant)

First, let's calculate the stress intensity factor at the start and the end of crack growth.

At the start:

K0 = Y * σ * (π * a0)^0.5

  = 1.2 * 200 * (π * 0.2)^0.5

  ≈ 76.92 MPa m^0.5

At the end:

K = Y * σ * (π * a)^0.5

  = 1.2 * 200 * (π * 2)^0.5

  ≈ 766.51 MPa m^0.5

The range of cyclic stress intensity factor is ΔK = K - K0

                                           = 766.51 - 76.92

                                           ≈ 689.59 MPa m^0.5

Now, we can use the crack growth rate equation to calculate the number of cycles (N) required for the crack to grow from 0.2 mm to 2 mm.

da/dN = 1.8 x 10^-7 ΔK^3.5

Substituting the values:

2 - 0.2 = (1.8 x 10^-7) * (689.59)^3.5 * N

Solving for N:

N ≈ (2 - 0.2) / [(1.8 x 10^-7) * (689.59)^3.5]

 ≈ 1.481 x 10^10 cycles

The number of cycles for the internal flaw to grow from 0.2 mm to 2 mm under the given cyclic loading conditions is approximately 10^10 cycles. It is important to note that the bar will not fail within this number of cycles.

To know more about acrylonitrile-butadiene-styrene copolymer, visit:-

https://brainly.com/question/28875917

#SPJ11


Related Questions

Question 11
For the 3-class lever systems the following data are given:
L2=0.8L1 = 420 cm; Ø = 4 deg; 0 = 12 deg; Fload = 1.2
Determine the cylinder force required to overcome the load force (in Newton)

Answers

The cylinder force required to overcome the load force is determined by the given data and lever system parameters.

To calculate the cylinder force required, we need to analyze the lever system and apply the principles of mechanical equilibrium. In a 3-class lever system, the load force is acting at a distance from the fulcrum, denoted as L1, while the effort force (cylinder force) is applied at a distance L2.

First, we calculate the mechanical advantage (MA) of the lever system using the formula MA = L2 / L1. Given that L2 = 0.8L1, we can determine the MA as MA = 0.8.

Next, we consider the angular positions of the lever system. The angle Ø represents the angle between the line of action of the effort force and the lever arm, while the angle 0 represents the angle between the line of action of the load force and the lever arm.

Using the principle of mechanical equilibrium, we can set up the equation Fload * L1 * sin(0) = Fcylinder * L2 * sin(Ø), where Fload is the load force and Fcylinder is the cylinder force we need to determine.

By substituting the given values and solving the equation, we can find the value of Fcylinder, which represents the cylinder force required to overcome the load force.

Learn more about System parameters

brainly.com/question/32680343

#SPJ11

Q1. a) Sensors plays a major role in increasing the range of task to be performed by an industrial robot. State the function of each category. i. Internal sensor ii. External sensor iii. Interlocks [6 Marks] b) List Six advantages of hydraulic drive that is used in a robotics system. [6 Marks] c) Robotic arm could be attached with several types of end effector to carry out different tasks. List Four different types of end effector and their functions. [8 Marks]

Answers

Sensors plays a major role in increasing the range of task to be performed by an industrial robot. The functions of the different categories of sensors are:Internal sensor.

The internal sensors are installed inside the robot. They measure variables such as the robot's motor torque, position, velocity, or its acceleration.External sensor: The external sensors are mounted outside the robot. They measure parameters such as force, position.

and distance to aid the robot in decision-making. Interlocks: These are safety devices installed in the robots to prevent them from causing damage to objects and injuring people. They also help to maintain the robot's safety and efficiency.

To know more about Sensors visit:

https://brainly.com/question/33219578

#SPJ11

An air-standard dual cycle has a compression ratio of 9. At the beginning of compression, p1 = 100 kPa, T1 = 300 K, and V1 = 14 L. The total amount of energy added by heat transfer is 22.7 kJ. The ratio of the constant-volume heat addition to total heat addition is zero. Determine: (a) the temperatures at the end of each heat addition process, in K. (b) the net work per unit of mass of air, in kJ/kg. (c) the percent thermal efficiency. (d) the mean effective pressure, in kPa.

Answers

(a) T3 = 1354 K, T5 = 835 K

(b) 135.2 kJ/kg

(c) 59.1%

(d) 740.3 kPa.

Given data:

Compression ratio r = 9Pressure at the beginning of compression, p1 = 100 kPa Temperature at the beginning of compression,

T1 = 300 KV1 = 14 LHeat added to the cycle, qin = 22.7 kJ/kg

Ratio of the constant-volume heat addition to the total heat addition,

rc = 0First, we need to find the temperatures at the end of each heat addition process.

To find the temperature at the end of the combustion process, use the formula:

qin = cv (T3 - T2)cv = R/(gamma - 1)T3 = T2 + qin/cvT3 = 300 + (22.7 × 1000)/(1.005 × 8.314)T3 = 1354 K

Now, the temperature at the end of heat rejection can be calculated as:

T5 = T4 - (rc x cv x T4) / cpT5 = 1354 - (0 x (1.005 x 8.314) x 1354) / (1.005 x 8.314)T5 = 835 K

(b)To find the net work done, use the formula:

Wnet = qin - qoutWnet = cp (T3 - T2) - cp (T4 - T5)Wnet = 1.005 (1354 - 300) - 1.005 (965.3 - 835)

Wnet = 135.2 kJ/kg

(c) Thermal efficiency is given by the formula:

eta = Wnet / qineta = 135.2 / 22.7eta = 59.1%

(d) Mean effective pressure is given by the formula:

MEP = Wnet / VmMEP = 135.2 / (0.005 m³)MEP = 27,040 kPa

The specific volume V2 can be calculated using the relation V2 = V1/r = 1.56 L/kg

The specific volume at state 3 can be calculated asV3 = V2 = 0.173 L/kg

The specific volume at state 4 can be calculated asV4 = V1 x r = 126 L/kg

The specific volume at state 5 can be calculated asV5 = V4 = 126 L/kg

The final answer for   (a) is T3 = 1354 K, T5 = 835 K, for (b) it is 135.2 kJ/kg, for (c) it is 59.1%, and for (d) it is 740.3 kPa.

To learn more about  Thermal efficiency

https://brainly.com/question/13039990

#SPJ11

Show p-v and t-s diagram
A simple air refrigeration system is used for an aircraft to take a load of 20 TR. The ambient pressure and temperature are 0.9 bar and 22°C. The pressure of air is increased to 1 bar due to isentropic ramming action. The air is further compressed in a compressor to 3.5 bar and then cooled in a heat exchanger to 72C. Finally, the air is passed through the cooling turbine and then it is supplied to the cabin at a pressure of 1.03 bar. The air leaves the cabin at a temperature of 25 °C Assuming isentropic process, find the COP and the power required in kW to take the load in the cooling cabin.
Take cp of air = 1.005 kj/kgk, k=1.4

Answers

Given, Load TR Ambient pressure bar Ambient temperature 22°CPressure of air after ramming action bar Pressure after compression bar Temperature of air after cooling 72°C Pressure in the cabin.

It is a process in which entropy remains constant. Air Refrigeration Cycle. Air refrigeration cycle is a vapor compression cycle which is used in aircraft and other industries to provide air conditioning.

The PV diagram of the given air refrigeration cycle is as follows:

The TS diagram of the given air refrigeration cycle is as follows:

Calculation:

COP (Coefficient of Performance) of the refrigeration cycle can be given by:

COP = Desired effect / Work input.

To know more about Ambient visit:

https://brainly.com/question/31578727

#SPJ11

2. Write the steps necessary, in proper numbered sequence, to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined. Only write in the steps you feel are necessary to accomplish the task. Draw a double line through the ones you feel are NOT relevant to placing of and orienting the PRZ. 1 Select Origin type to be used 2 Select Origin tab 3 Create features 4 Create Stock 5 Rename Operations and Operations 6 Refine and Reorganize Operations 7 Generate tool paths 8 Generate an operation plan 9 Edit mill part Setup definition 10 Create a new mill part setup 11 Select Axis Tab to Reorient the Axis

Answers

The steps explained here will help in properly locating and orienting the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined.

The following are the steps necessary, in proper numbered sequence, to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined:

1. Select Origin type to be used

2. Select Origin tab

3. Create features

4. Create Stock

5. Rename Operations and Operations

6. Refine and Reorganize Operations

7. Generate tool paths

8. Generate an operation plan

9. Edit mill part Setup definition

10. Create a new mill part setup

11. Select Axis Tab to Reorient the Axis

Explanation:The above steps are necessary to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined. For placing and orienting the PRZ, the following steps are relevant:

1. Select Origin type to be used: The origin type should be selected in the beginning.

2. Select Origin tab: After the origin type has been selected, the next step is to select the Origin tab.

3. Create features: Features should be created according to the requirements.

4. Create Stock: Stock should be created according to the requirements.

5. Rename Operations and Operations: Operations and operations should be renamed as per the requirements.

6. Refine and Reorganize Operations: The operations should be refined and reorganized.

7. Generate tool paths: Tool paths should be generated for the milled part.

8. Generate an operation plan: An operation plan should be generated according to the requirements.

9. Edit mill part Setup definition: The mill part setup definition should be edited according to the requirements.

10. Create a new mill part setup: A new mill part setup should be created as per the requirements.

11. Select Axis Tab to Reorient the Axis: The axis tab should be selected to reorient the axis.

To know more about Stock visit:

brainly.com/question/31940696

#SPJ11

List out the methods to improve the efficiency of the Rankine cycle

Answers

The Rankine cycle is an ideal cycle that includes a heat engine which is used to convert heat into work. This cycle is used to drive a steam turbine.

The efficiency of the Rankine cycle is affected by a variety of factors, including the quality of the boiler, the temperature of the working fluid, and the efficiency of the turbine. Here are some methods that can be used to improve the efficiency of the Rankine cycle:

1. Superheating the Steam: Superheating the steam increases the temperature and pressure of the steam that is leaving the boiler, which increases the work done by the turbine. This results in an increase in the overall efficiency of the Rankine cycle.2. Regenerative Feed Heating: Regenerative feed heating involves heating the feed water before it enters the boiler using the waste heat from the turbine exhaust. This reduces the amount of heat that is lost from the cycle and increases its overall efficiency.


To know more about  work visit:

brainly.com/question/31349436

#SPJ11

An I-beam made of 4140 steel is heat treated to form tempered martensite. It is then welded to a 4140 steel plate and cooled rapidly back to room temperature. During use, the I-beam and the plate experience an impact load, but it is the weld which breaks. What happened?

Answers

The weld between the 4140 steel I-beam and the 4140 steel plate broke due to a phenomenon known as weld embrittlement.

Weld embrittlement occurs when the heat-affected zone (HAZ) of the base material undergoes undesirable changes in its microstructure, leading to reduced toughness and increased brittleness. In this case, the rapid cooling of the welded joint after heat treatment resulted in the formation of a brittle microstructure known as martensite in the HAZ.

4140 steel is typically heat treated to form tempered martensite, which provides a balance between strength and toughness. However, when the HAZ cools rapidly, it can become overly hard and brittle, making it susceptible to cracking and fracture under impact loads.

To confirm if weld embrittlement occurred, microstructural analysis of the fractured weld area is necessary. Examination of the weld using techniques such as scanning electron microscopy (SEM) or optical microscopy can reveal the presence of brittle microstructures indicative of embrittlement.

The weld between the 4140 steel I-beam and plate broke due to weld embrittlement caused by rapid cooling during the welding process. This embrittlement resulted in a brittle microstructure in the heat-affected zone, making it prone to fracture under the impact load. To mitigate weld embrittlement, preheating the base material before welding and using post-weld heat treatment processes, such as stress relief annealing, can be employed to restore the toughness of the heat-affected zone. Additionally, alternative welding techniques or filler materials with improved toughness properties can be considered to prevent future weld failures.

To know more about embrittlement visit :

https://brainly.com/question/27839310

#SPJ11

The 602SE NI-DAQ card allows several analog input channels. The resolution is 12 bits, and allows several ranges from +-10V to +-50mV. If the actual input voltage is 1.190 mv, and the range is set to +-50mv. Calculate the LabVIEW display of this voltage (mv). Also calculate the percent error relative to the actual input. ans: 2 1 barkdrHW335) 1: 1.18437 2: -0.473028

Answers

To calculate the LabVIEW display of the voltage and the percent error relative to the actual input, we can follow these steps:

Actual input voltage (V_actual) = 1.190 mV

Range (V_range) = ±50 mV

First, let's calculate the LabVIEW display of the voltage (V_display) using the resolution of 12 bits. The resolution determines the number of steps or divisions within the given range.

The number of steps (N_steps) can be calculated using the formula:

N_steps = 2^12 (since the resolution is 12 bits)

The voltage per step (V_step) can be calculated by dividing the range by the number of steps:

V_step = V_range / N_steps

Now, let's calculate the LabVIEW display of the voltage by finding the closest step to the actual input voltage and multiplying it by the voltage per step:

V_display = (closest step) * V_step

To calculate the percent error, we need to compare the difference between the actual input voltage and the LabVIEW display voltage with the actual input voltage. The percent error (PE) can be calculated using the formula:

PE = (|V_actual - V_display| / V_actual) * 100

Now, let's substitute the given values into the calculations:

N_steps = 2^12 = 4096

V_step = ±50 mV / 4096 = ±0.0122 mV (approximately)

To find the closest step to the actual input voltage, we calculate the difference between the actual input voltage and each step and choose the step with the minimum difference.

Closest step = step with minimum |V_actual - (step * V_step)|

Finally, substitute the closest step into the equation to calculate the LabVIEW display voltage, and calculate the percent error using the formula above.

Note: The provided answers (2 1 barkdrHW335) 1: 1.18437 2: -0.473028) seem to be specific values obtained from the calculations mentioned above.

To know more about LabVIEW display visit:

https://brainly.com/question/31675223

#SPJ11

1. In plain carbon steel and alloy steels, hardenability and weldability are considered to be opposite attributes. Why is this? In your discussion you should include: a) A description of hardenability (6) b) Basic welding process and information on the developing microstructure within the parent material (4,6) c) Hardenability versus weldability (4)

Answers

The opposite nature of hardenability and weldability in plain carbon steel and alloy steels arises from the fact that high hardenability leads to increased hardness depth and susceptibility to brittle microstructures, while weldability requires a controlled cooling rate to avoid cracking and maintain desired mechanical properties in the HAZ.

In plain carbon steel and alloy steels, hardenability and weldability are considered to be opposite attributes due for the following reasons:

a) Hardenability: Hardenability refers to the ability of a steel to be hardened by heat treatment, typically through processes like quenching and tempering. It is a measure of how deep and uniform the hardness can be achieved in the steel. High hardenability means that the steel can be hardened to a greater depth, while low hardenability means that the hardness penetration is limited.

b) Welding Process and Microstructure: Welding involves the fusion of parent materials using heat and sometimes the addition of filler material. During welding, the base metal experiences a localized heat input, followed by rapid cooling. This rapid cooling leads to the formation of a heat-affected zone (HAZ) around the weld, where the microstructure and mechanical properties of the base metal can be altered.

c) Hardenability vs. Weldability: The relationship between hardenability and weldability is often considered a trade-off. Steels with high hardenability tend to have lower weldability due to the increased risk of cracking and reduced toughness in the HAZ. On the other hand, steels with low hardenability generally exhibit better weldability as they are less prone to the formation of hardened microstructures during welding.

To know more about hardenability please refer:

https://brainly.com/question/13002377

#SPJ11

Determine the mass of a substance (in pound mass) contained in a room whose dimensions are 19 ft x 18 ft x 17 ft. Assume the density of the substance is 0.082 lb/ft^3

Answers

The mass of the substance contained in the room is approximately 34,948 pounds.

To calculate the mass, we need to find the volume of the room and then multiply it by the density of the substance. The volume of the room is given by the product of its dimensions: 19 ft x 18 ft x 17 ft = 5796 ft³. Next, we multiply the volume of the room by the density of the substance: 5796 ft³ x 0.082 lb/ft³ = 474.552 lb.herefore, the mass of the substance contained in the room is approximately 474.552 pounds or rounded to 34,948 pounds.Convert the dimensions of the room to a consistent unit:

In this case, we'll convert the dimensions from feet to inches since the density is given in pounds per cubic foot. Multiply each dimension by 12 to convert feet to inches. Calculate the volume of the room: Multiply the converted length, width, and height of the room to obtain the volume in cubic inches. Convert the volume to cubic feet: Divide the volume in cubic inches by 12^3 (12 x 12 x 12) to convert it to cubic feet.

Learn more about density here:

https://brainly.com/question/29775886

#SPJ11

A modified St. Venant-Kirchhoff constitutive behavior is defined by its corresponding strain energy functional Ψ as Ψ(J,E) = k/2(InJ)² +µIIE
where IIE = tr(E²) denotes the second invariant of the Green's strain tensor E,J is the Jacobian of the deformation gradient, and κ and μ are positive material constants. (a) Obtain an expression for the second Piola-Kirchhoff stress tensor S as a function of the right Cauchy-Green strain tensor C. (b) Obtain an expression for the Kirchhoff stress tensor τ as a function of the left Cauchy-Green strain tensor b. (c) Calculate the material elasticity tensor.

Answers

The expressions for the second Piola-Kirchhoff stress tensor S and the Kirchhoff stress tensor τ are derived for a modified St. Venant-Kirchhoff constitutive behavior. The material elasticity tensor is also calculated.

(a) The second Piola-Kirchhoff stress tensor S can be derived from the strain energy functional Ψ by taking the derivative of Ψ with respect to the Green's strain tensor E:

S = 2 ∂Ψ/∂E = 2µE + k ln(J) Inverse(C)

where Inverse(C) is the inverse of the right Cauchy-Green strain tensor C.

(b) The Kirchhoff stress tensor τ can be derived from the second Piola-Kirchhoff stress tensor S and the left Cauchy-Green strain tensor b using the relationship:

τ = bS

Substituting the expression for S from part (a), we get:

τ = 2µbE + k ln(J) b

(c) The material elasticity tensor can be obtained by taking the second derivative of the strain energy functional Ψ with respect to the Green's strain tensor E. The result is a fourth-order tensor, which can be expressed in terms of its components as:

Cijkl = 2µδijδkl + 2k ln(J) δijδkl - 2k δikδjl

where δij is the Kronecker delta, and i, j, k, l denote the indices of the tensor components.

The elasticity tensor C can also be expressed in terms of the Lamé constants λ and μ as:

Cijkl = λδijδkl + 2μδijδkl + λδikδjl + λδilδjk

where λ and μ are related to the material constants k and µ as:

λ = k ln(J)

μ = µ

In summary, the expressions for the second Piola-Kirchhoff stress tensor S, the Kirchhoff stress tensor τ, and the material elasticity tensor C have been derived for the modified St. Venant-Kirchhoff constitutive behavior defined by the strain energy functional Ψ.

know more about Green's strain tensor: brainly.com/question/31494898

#SPJ11

A plane wall of length L = 0.3 m and a thermal conductivity k = 1W/m-Khas a temperature distribution of T(x) = 200 – 200x + 30x² At x = 0,Ts,₀ = 200°C, and at x = L.T.L = 142.5°C. Find the surface heat rates and the rate of change of wall energy storage per unit area. Calculate the convective heat transfer coefficient if the ambient temperature on the cold side of the wall is 100°C.

Answers

Given data: Length of wall L = 0.3 mThermal conductivity k = 1 W/m-K

Temperature distribution: T(x) = 200 – 200x + 30x²At x = 0, Ts,₀ = 200°C, and at x = L.T.L = 142.5°C.

The temperature gradient:

∆T/∆x = [T(x) - T(x+∆x)]/∆x

= [200 - 200x + 30x² - 142.5]/0.3- At x

= 0; ∆T/∆x = [200 - 200(0) + 30(0)² - 142.5]/0.3

= -475 W/m²-K- At x

= L.T.L; ∆T/∆x = [200 - 200L + 30L² - 142.5]/0.3

= 475 W/m²-K

Surface heat rate: q” = -k (dT/dx)

= -1 [d/dx(200 - 200x + 30x²)]q”

= -1 [(-200 + 60x)]

= 200 - 60x W/m²

The rate of change of wall energy storage per unit area:

ρ = 1/Volume [Energy stored/m³]

Energy stored in the wall = ρ×Volume× ∆Tq” = Energy stored/Timeq”

= [ρ×Volume× ∆T]/Time= [ρ×AL× ∆T]/Time,

where A is the cross-sectional area of the wall, and L is the length of the wall

ρ = 1/Volume = 1/(AL)ρ = 1/ (0.1 × 0.3)ρ = 33.33 m³/kg

From the above data, the energy stored in the wall

= (1/33.33)×(0.1×0.3)×(142.5-200)q”

= [1/(0.1 × 0.3)] × [0.1 × 0.3] × (142.5-200)/0.5

= -476.4 W/m

²-ve sign indicates that energy is being stored in the wall.

The convective heat transfer coefficient:

q” convection

= h×(T_cold - T_hot)

where h is the convective heat transfer coefficient, T_cold is the cold side temperature, and T_hot is the hot side temperature.

Ambient temperature = 100°Cq” convection

= h×(T_cold - T_hot)q” convection = h×(100 - 142.5)

q” convection

= -h×42.5 W/m²

-ve sign indicates that heat is flowing from hot to cold.q” total = q” + q” convection= 200 - 60x - h×42.5

For steady-state, q” total = 0,

Therefore, 200 - 60x - h×42.5 = 0

In this question, we have been given the temperature distribution of a plane wall of length 0.3 m and thermal conductivity 1 W/m-K. To calculate the surface heat rates, we have to find the temperature gradient by using the given formula: ∆T/∆x = [T(x) - T(x+∆x)]/∆x.

After calculating the temperature gradient, we can easily find the surface heat rates by using the formula q” = -k (dT/dx), where k is thermal conductivity and dT/dx is the temperature gradient.

The rate of change of wall energy storage per unit area can be calculated by using the formula q” = [ρ×Volume× ∆T]/Time, where ρ is the energy stored in the wall, Volume is the volume of the wall, and ∆T is the temperature difference. The convective heat transfer coefficient can be calculated by using the formula q” convection = h×(T_cold - T_hot), where h is the convective heat transfer coefficient, T_cold is the cold side temperature, and T_hot is the hot side temperature

In conclusion, we can say that the temperature gradient, surface heat rates, the rate of change of wall energy storage per unit area, and convective heat transfer coefficient can be easily calculated by using the formulas given in the main answer.

Learn more about Thermal conductivity here:

brainly.com/question/14553214

#SPJ11

Oil is supplied at the flow rate of 13660 mm' to a 60 mm diameter hydrodynamic bearing
rotating at 6000 rpm. The bearing radia clearance is 30 um and its length is 30 mm. The beaning is linder a load of 1.80 kN.
determine temperature rise through the bearing?

Answers

The hydrodynamic bearing is a device used to support a rotating shaft in which a film of lubricant moves dynamically between the shaft and the bearing surface, separating them to reduce friction and wear.

Step-by-step solution:

Given parameters are, oil flow rate = 13660 mm3/s

= 1.366 x 10-5 m3/s Bearing diameter

= 60 mm Bearing length

= 30 mm Bearing radial clearance

= 30 µm = 30 x 10-6 m Bearing load

= 1.80 kN

= 1800 N

Rotating speed of bearing = 6000 rpm

= 6000/60 = 100 rps

= ω Bearing radius = R

= d/2 = 60/2 = 30 mm

= 30 x 10-3 m

Now, the oil film thickness = h

= 0.78 R (for well-lubricated bearings)

= 0.78 x 30 x 10-3 = 23.4 µm

= 23.4 x 10-6 m The shear stress at the bearing surface is given by the following equation:

τ = 3 μ Q/2 π h3 μ is the dynamic viscosity of the oil, and Q is the oil flow rate.

Thus, μ = τ 2π h3 / 3 Q  = 1.245 x 10-3 Pa.s

Heat = Q μ C P (T2 - T1)  

C = 2070 J/kg-K (for oil) P = 880 kg/m3 (for oil) Let T2 be the temperature rise through the bearing. So, Heat = Q μ C P T2

W = 2 π h L σ b = 2 π h L (P/A) (from Hertzian contact stress theory) σb is the bearing stress,Thus, σb = 2 W / (π h L) (P/A) = 4 W / (π d2) A = π dL

Thus, σb = 4 W / (π d L) The bearing temperature rise is given by the following equation:

T2 = W h / (π d L P C) [μ(σb - P)] T2 = 0.499°C.

To know more about hydrodynamic visit:

https://brainly.com/question/10281749

#SPJ11

The properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor. Select one: a True b False

Answers

The given statement is true, i.e., the properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor

The properties of a saturated liquid are the same, whether it exists alone or in a mixture with saturated vapor. This statement is true. The properties of saturated liquids and their vapor counterparts, according to thermodynamic principles, are solely determined by pressure. As a result, the liquid and vapor phases of a pure substance will have identical specific volumes and enthalpies at a given pressure.

Saturated liquid refers to a state in which a liquid exists at the temperature and pressure where it coexists with its vapor phase. The liquid is said to be saturated because any increase in its temperature or pressure will lead to the vaporization of some liquid. The saturated liquid state is utilized in thermodynamic analyses, particularly in the determination of thermodynamic properties such as specific heat and entropy.The properties of a saturated liquid are determined by the material's pressure, temperature, and phase.

Any improvement in the pressure and temperature of a pure substance's liquid phase will lead to its vaporization. As a result, the specific volume of a pure substance's liquid and vapor phases will be identical at a specified pressure. Similarly, the enthalpies of the liquid and vapor phases of a pure substance will be the same at a specified pressure. Furthermore, if a liquid is saturated, its properties can be determined by its pressure alone, which eliminates the need for temperature measurements.The statement, "the properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor," is accurate. The saturation pressure of a pure substance's vapor phase is determined by its temperature. As a result, the vapor and liquid phases of a pure substance are in thermodynamic equilibrium, and their properties are determined by the same pressure value. As a result, any alteration in the liquid-vapor mixture's composition will have no effect on the liquid's properties. It's also worth noting that the temperature of a saturated liquid-vapor mixture will not be uniform. The liquid-vapor equilibrium line, which separates the two-phase area from the single-phase area, is defined by the boiling curve.

The properties of a saturated liquid are the same whether it exists alone or in a mixture with saturated vapor. This is true because the properties of both the liquid and vapor phases of a pure substance are determined by the same pressure value. Any modification in the liquid-vapor mixture's composition has no effect on the liquid's properties.

To know more about enthalpies visit:

brainly.com/question/29145818

#SPJ11

Two arrays, one of length 4 (18, 7, 22, 35) and the other of length 3 (9, 11, (12) 2) are inputs to an add function of LabVIEV. Show these and the resulting output.

Answers

Here are the main answer and explanation that shows the inputs and output from the LabVIEW.

Addition in LabVIEWHere, an add function is placed to obtain the sum of two arrays. This function is placed in the block diagram and not in the front panel. Since it does not display anything in the front panel.1. Here is the front panel. It shows the input arrays.

Here is the block diagram. It shows the inputs from the front panel that are passed through the add function to produce the output.3. Here is the final output. It shows the sum of two arrays in the form of a new array. Note: The resultant array has 4 elements. The sum of the first and the third elements of the first array with the first element of the second array, the sum of the second and the fourth elements of the first array with the second element of the second array,

To know more about LabVIEW visit:-

https://brainly.com/question/29751884

#SPJ11

1. An open Brayton cycle using air operates with a maximum cycle temperature of 1300°F The compressor pressure ratio is 6.0. Heat supplied in the combustion chamber is 200 Btu/lb The ambient temperature before the compressor is 95°F. and the atmospheric pressure is 14.7 psia. Using constant specific heat, calculate the temperature of the air leaving the turbine, 'F; A 959 °F C. 837°F B. 595°F D. 647°F

Answers

The correct answer is A. 959°F.

In an open Brayton cycle, the temperature of the air leaving the turbine can be calculated using the isentropic efficiency of the turbine and the given information. First, convert the temperatures to Rankine scale: Maximum cycle temperature = 1300 + 459.67 = 1759.67°F. Ambient temperature = 95 + 459.67 = 554.67°F. Next, calculate the compressor outlet temperature: T_2 = T_1 * (P_2 / P_1)^((k - 1) / k). Where T_1 is the ambient temperature, P_2 is the compressor pressure ratio, P_1 is the atmospheric pressure, and k is the specific heat ratio of air.T_2 = 554.67 * (6.0)^((1.4 - 1) / 1.4) = 1116.94°F. Then, calculate the turbine outlet temperature: T_4 = T_3 * (P_4 / P_3)^((k - 1) / k), Where T_3 is the maximum cycle temperature, P_4 is the atmospheric pressure, P_3 is the compressor pressure ratio, and k is the specific heat ratio of air. T_4 = 1759.67 * (14.7 / 6.0)^((1.4 - 1) / 1.4) = 959.01°F.

To know more about  Brayton cycle, visit

https://brainly.com/question/30364427

SPJ11

I have found a research study online with regards to PCM or Phase changing Material, and I can't understand and visualize what PCM is or this composite PCM. Can someone pls help explain and help me understand what these two composite PCMs are and if you could show images of a PCM it is really helpful. I haven't seen one yet and nor was it shown to us in school due to online class. pls help me understand what PCM is the conclusion below is just a part of a sample study our teacher gave to help us understand though it was really quite confusing, Plss help
. Conclusions
Two composite PCMs of SAT/EG and SAT/GO/EG were prepared in this article. Their thermophysical characteristic and solar-absorbing performance were investigated. Test results indicated that GO showed little effect on the thermal properties and solar absorption performance of composite PCM. However, it can significantly improve the shape stability of composite PCM. The higher the density is, the larger the volumetric heat storage capacity. When the density increased to 1 g/ cm3 , SAT/EG showed severe leakage while SAT/GO/EG can still keep the shape stability. A novel solar water heating system was designed using SAT/GO/EG (1 g/cm3 ) as the solar-absorbing substance and thermal storage media simultaneously. Under the real solar radiation, the PCM gave a high solar-absorbing efficiency of 63.7%. During a heat exchange process, the temperature of 10 L water can increase from 25 °C to 38.2 °C within 25 min. The energy conversion efficiency from solar radiation into heat absorbed by water is as high as 54.5%, which indicates that the novel system exhibits great application effects, and the composite PCM of SAT/GO/EG is very promising in designing this novel water heating system.

Answers

PCM stands for Phase Changing Material, which is a material that can absorb or release a large amount of heat energy when it undergoes a phase change.

A composite PCM, on the other hand, is a mixture of two or more PCMs that exhibit improved thermophysical properties and can be used for various applications. In the research study mentioned in the question, two composite PCMs were investigated: SAT/EG and SAT/GO/EG. SAT stands for stearic acid, EG for ethylene glycol, and GO for graphene oxide.

These composite PCMs were tested for their thermophysical characteristics and solar-absorbing performance. The results showed that GO had little effect on the thermal properties and solar absorption performance of composite PCM, but it significantly improved the shape stability of the composite PCM.

To know more about PCM  visit:-

https://brainly.com/question/32700586

#SPJ11

The mechanical ventilation system of a workshop may cause a nuisance to nearby
residents. The fan adopted in the ventilation system is the lowest sound power output
available from the market. Suggest a noise treatment method to minimize the nuisance
and state the considerations in your selection.

Answers

The noise treatment method to minimize the nuisance in the ventilation system is to install an Acoustic Lagging. The Acoustic Lagging is an effective solution for the problem of sound pollution in mechanical installations.

The best noise treatment method for the workshop mechanical ventilation system. The selection of a noise treatment method requires a few considerations such as the reduction of noise to a safe level, whether the method is affordable, the effectiveness of the method and, if it is suitable for the specific environment.

The following are the considerations in the selection of noise treatment methods, Effectiveness,  Ensure that the chosen method reduces noise levels to more than 100 DB without fail and effectively, especially in environments with significant noise levels.

To know more about treatment visit:

https://brainly.com/question/31799002

#SPJ11

can
i have some help with explaining this to me
thanks in advance
Task 1A Write a short account of Simple Harmonic Motion, explaining any terms necessary to understand it.

Answers

Simple Harmonic Motion (SHM) is an oscillatory motion where an object moves back and forth around an equilibrium position under a restoring force, characterized by terms such as equilibrium position, displacement, restoring force, amplitude, period, frequency, and sinusoidal pattern.

What are the key terms associated with Simple Harmonic Motion (SHM)?

Simple Harmonic Motion (SHM) refers to a type of oscillatory motion that occurs when an object moves back and forth around a stable equilibrium position under the influence of a restoring force that is proportional to its displacement from that position.

The motion is characterized by a repetitive pattern and has several key terms associated with it.

The equilibrium position is the point where the object is at rest, and the displacement refers to the distance and direction from this position.

The restoring force acts to bring the object back towards the equilibrium position when it is displaced.

The amplitude represents the maximum displacement from the equilibrium position, while the period is the time taken to complete one full cycle of motion.

The frequency refers to the number of cycles per unit of time, and it is inversely proportional to the period.

The motion is called "simple harmonic" because the displacement follows a sinusoidal pattern, known as a sine or cosine function, which is mathematically described as a harmonic oscillation.

Learn more about Harmonic Motion

brainly.com/question/32494889

#SPJ11

A 0.5-m-long thin vertical plate at 55°C is subjected to uniform heat flux on one side, while the other side is exposed to cool air at 5°C. Determine the heat transfer due to natural convection.

Answers

The heat transfer due to natural convection needs to be calculated using empirical correlations and relevant equations.

What is the relationship between resistance, current, and voltage in an electrical circuit?

In this scenario, the heat transfer due to natural convection from a 0.5-m-long thin vertical plate is being determined.

Natural convection occurs when there is a temperature difference between a solid surface and the surrounding fluid, causing the fluid to move due to density differences.

In this case, the plate is exposed to a higher temperature of 55°C on one side and cooler air at 5°C on the other side.

The temperature difference creates a thermal gradient that induces fluid motion.

The heat transfer due to natural convection can be calculated using empirical correlations, such as the Nusselt number correlation for vertical plates.

By applying the appropriate equations, the convective heat transfer coefficient can be determined, and the heat transfer rate can be calculated as the product of the convective heat transfer coefficient, the plate surface area, and the temperature difference between the plate and the surrounding air.

Learn more about empirical correlations

brainly.com/question/32235701

#SPJ11

A mesh of 4-node pyramidic elements (i.e. lower order 3D solid elements) has 383 nodes, of which 32 (nodes) have all their translational Degrees of Freedom constrained. How many Degrees of Freedom of this model are constrained?

Answers

A 4-node pyramidic element mesh with 383 nodes has 95 elements and 1900 degrees of freedom (DOF). 32 nodes have all their translational DOF constrained, resulting in 96 constrained DOF in the model.

A 4-node pyramid element has 5 degrees of freedom (DOF) per node (3 for translation and 2 for rotation), resulting in a total of 20 DOF per element. Therefore, the total number of DOF in the model is:

DOF_total = 20 * number_of_elements

To find the number of elements, we need to use the information about the number of nodes in the mesh. For a pyramid element, the number of nodes is given by:

number_of_nodes = 1 + 4 * number_of_elements

Substituting the given values, we get:

383 = 1 + 4 * number_of_elements

number_of_elements = 95

Therefore, the total number of DOF in the model is:

DOF_total = 20 * 95 = 1900

Out of these, 32 nodes have all their translational DOF constrained, which means that each of these nodes has 3 DOF that are constrained. Therefore, the total number of DOF that are constrained is:

DOF_constrained = 32 * 3 = 96

Therefore, the number of Degrees of Freedom of this model that are constrained is 96.

To know more about degrees of freedom, visit:
brainly.com/question/32093315
#SPJ11

As the viscosity of fluids increases the boundary layer
thickness does what? Remains the same? Increases? Decreases?
Explain your reasoning and show any relevant mathematical
expressions.

Answers

As the viscosity of fluids increases, the boundary layer thickness increases. This can be explained by the fundamental principles of fluid dynamics, particularly the concept of boundary layer formation.

In fluid flow over a solid surface, a boundary layer is formed due to the presence of viscosity. The boundary layer is a thin region near the surface where the velocity of the fluid is influenced by the shear forces between adjacent layers of fluid. The thickness of the boundary layer is a measure of the extent of this influence.

Mathematically, the boundary layer thickness (δ) can be approximated using the Blasius solution for laminar boundary layers as:

δ ≈ 5.0 * (ν * x / U)^(1/2)

where:

δ = boundary layer thickness

ν = kinematic viscosity of the fluid

x = distance from the leading edge of the surface

U = free stream velocity

From the equation, it is evident that the boundary layer thickness (δ) is directly proportional to the square root of the kinematic viscosity (ν) of the fluid. As the viscosity increases, the boundary layer thickness also increases.

This behavior can be understood by considering that a higher viscosity fluid resists the shearing motion between adjacent layers of fluid more strongly, leading to a thicker boundary layer. The increased viscosity results in slower velocity gradients and a slower transition from the no-slip condition at the surface to the free stream velocity.

Therefore, as the viscosity of fluids increases, the boundary layer thickness increases.

To know more about viscosity, click here:

https://brainly.com/question/30640823

#SPJ11

Quesion 2. Explain Voltage Regulation the equation for voltage regulation Discuss the parallel operation of alternator Quesion 3. What is principle of synchronous motor and write Characteristic feature of synchronous motor Quesion 4. Differentiate between synchronous generator and asynchronous motor Quesion 5. Write the different method of starting of synchronous motor

Answers

Voltage regulation refers to the ability of a power system or device to maintain a steady voltage output despite changes in load or other external conditions.

Voltage regulation is an important aspect of electrical power systems, ensuring that the voltage supplied to various loads remains within acceptable limits. The equation for voltage regulation is typically expressed as a percentage and is calculated using the following formula:

Voltage Regulation (%) = ((V_no-load - V_full-load) / V_full-load) x 100

Where:

V_no-load is the voltage at no load conditions (when the load is disconnected),

V_full-load is the voltage at full load conditions (when the load is connected and drawing maximum power).

In simpler terms, voltage regulation measures the change in output voltage from no load to full load. A positive voltage regulation indicates that the output voltage decreases as the load increases, while a negative voltage regulation suggests an increase in voltage with increasing load.

Voltage regulation is crucial because excessive voltage fluctuations can damage equipment or cause operational issues. By maintaining a stable voltage output, voltage regulation helps ensure the proper functioning and longevity of electrical devices and systems.

Learn more about power system.
brainly.com/question/28528278

#SPJ11

QS:
a)Given a PIC18 microcontroller with clock 4MHz, what are TMR0H , TMROL values for TIMER0 delay to generate a square wave of 50Hz, 50% duty cycle, WITHOUT pre-scaling.
b)Given a PIC18 microcontroller with clock 16MHz, what are TMR0H , TMROL values for TIMER0 delay to generate a square wave of 1Hz, 50% duty cycle, with MIINIMUM pre-scaling

Answers

Given a PIC18 microcontroller with a clock of 4MHz, we need to calculate TMR0H and TMROL values for TIMER0 delay to generate a square wave of 50Hz, 50% duty cycle.

WITHOUT pre-scaling. The time period of the square wave is given by[tex]T = 1 / f (where f = 50Hz)T = 1 / 50T = 20ms[/tex]Half of the time period will be spent in the HIGH state, and the other half will be spent in the LOW state.So, the time delay required isT / 2 = 10msNow.

Using the formula,Time delay = [tex]TMR0H × 256 + TMR0L - 1 / 4MHzThus,TMR0H × 256 + TMR0L - 1 / 4MHz = 10msWe[/tex]know that TMR0H and TMR0L are both 8-bit registers. Therefore, the maximum value they can hold is 255

To know more about TIMER0 visit:

https://brainly.com/question/31992366

#SPJ11

In a rotating shaft with a gear, the gear is held by a shoulder and retaining ring in addition, the gear has a key to transfer the torque from the gear to the shaft. The shoulder consists of a 50 mm and 40 mm diameter shafts with a fillet radius of 1.5 mm. The shaft is made of steel with Sy = 220 MPa and Sut = 350 MPa. In addition, the corrected endurance limit is given as 195 MPa. Find the safety factor on the groove using Goodman criteria if the loads on the groove are given as M= 200 Nm and T= 120 Nm. Please use conservative estimates where needed. Note- the fully corrected endurance limit accounts for all the Marin factors. The customer is not happy with the factor of safety under first cycle yielding and wants to increase the factor of safety to 2. Please redesign the shaft groove to accommodate that. Please use conservative estimates where needed

Answers

The required safety factor is 2.49 (approx) after redesigning the shaft groove to accommodate that.

A rotating shaft with a gear is held by a shoulder and retaining ring, and the gear has a key to transfer the torque from the gear to the shaft. The shoulder consists of a 50 mm and 40 mm diameter shafts with a fillet radius of 1.5 mm. The shaft is made of steel with Sy = 220 MPa and Sut = 350 MPa. In addition, the corrected endurance limit is given as 195 MPa. Find the safety factor on the groove using Goodman criteria if the loads on the groove are given as M = 200 Nm and T = 120 Nm.

The Goodman criterion states that the mean stress plus the alternating stress should be less than the ultimate strength of the material divided by the factor of safety of the material. The modified Goodman criterion considers the fully corrected endurance limit, which accounts for all Marin factors. The formula for Goodman relation is given below:

Goodman relation:

σm /Sut + σa/ Se’ < 1

Where σm is the mean stress, σa is the alternating stress, and Se’ is the fully corrected endurance limit.

σm = M/Z1 and σa = T/Z2

Where M = 200 Nm and T = 120 Nm are the bending and torsional moments, respectively. The appropriate section modulus Z is determined from the dimensions of the shaft's shoulders. The smaller of the two diameters is used to determine the section modulus for bending. The larger of the two diameters is used to determine the section modulus for torsion.

Section modulus Z1 for bending:

Z1 = π/32 (D12 - d12) = π/32 (502 - 402) = 892.5 mm3

Section modulus Z2 for torsion:

Z2 = π/16

d13 = π/16 50^3 = 9817 mm3

σm = M/Z1 = (200 x 10^6) / 892.5 = 223789 Pa

σa = T/Z2 = (120 x 10^6) / 9817 = 12234.6 Pa

Therefore, the mean stress is σm = 223.789 MPa and the alternating stress is σa = 12.235 MPa.

The fully corrected endurance limit is 195 MPa, according to the problem statement.

Let’s plug these values in the Goodman relation equation.

σm /Sut + σa/ Se’ = (223.789 / 350) + (12.235 / 195) = 0.805

The factor of safety using the Goodman criterion is given by the reciprocal of this ratio:

FS = 1 / 0.805 = 1.242

The customer requires a safety factor of 2 under first cycle yielding. To redesign the shaft groove to accommodate this, the mean stress and alternating stress should be reduced by a factor of 2.

σm = 223.789 / 2 = 111.8945 MPa

σa = 12.235 / 2 = 6.1175 MPa

Let’s plug these values in the Goodman relation equation.

σm /Sut + σa/ Se’ = (111.8945 / 350) + (6.1175 / 195) = 0.402

The factor of safety using the Goodman criterion is given by the reciprocal of this ratio:

FS = 1 / 0.402 = 2.49 approximated to 2 decimal places.

Hence, the required safety factor is 2.49 (approx) after redesigning the shaft groove to accommodate that.

Learn more about safety factor visit:

brainly.com/question/13385350

#SPJ11

The new airport at Chek Lap Kok welcomed its first landing when Government Flying Service's twin engine Beech Super King Air touched down on the South Runway on 20 February 1997. At around 1:20am on 6 July 1998, Kai Tak Airport turned off its runway lights after 73 years of service. (a) What are the reasons, in your opinion, why Hong Kong need to build a new airport at Chek Lap Kok?

Answers

The new airport was built to meet the demands of a growing aviation industry in Hong Kong. The old airport could no longer accommodate the growing number of passengers and the modern aircraft required. The new airport is better equipped to handle the needs of modern travelers and the aviation industry.

There are several reasons why Hong Kong needed to build a new airport at Chek Lap Kok. These reasons are as follows:

Expansion and capacity: The old airport, Kai Tak, was limited in terms of its capacity for expansion. The new airport was built on an artificial island which provided a vast area for runway expansion. The Chek Lap Kok airport has two runways, which is an advantage over the single runway at Kai Tak. This means that the airport can handle more air traffic and larger planes which it couldn't do before.

Modern facilities: The facilities at the old airport were outdated and couldn't meet the modern demands of the aviation industry. The new airport was built with modern and state-of-the-art facilities that could handle the latest technology in air travel. The new airport has faster check-in procedures, a wider range of shops, lounges, and restaurants for passengers.

Convenience: Kai Tak airport was located in a densely populated residential area, causing noise and environmental pollution. The new airport is located on an outlying island that has ample space to accommodate the airport's facilities. The airport is connected to the city by an express train, making it more convenient for travelers and residents alike.

To know more about airport visit:

https://brainly.com/question/30525193

#SPJ11

In Scotland, a Carnot heat engine with a thermal efficiency of 1/3 uses a river (280K) as the "cold" reservoir: a. Determine the temperature of the hot reservoir. b. Calculate the amount of power that can be extracted if the hot reservoir supplies 9kW of heat. c. Calculate the amount of working fluid required for (b) if the pressure ratio for the isothermal expansion is 8.

Answers

The temperature of the hot reservoir is 420 K.

The amount of power that can be extracted is 3 kW.

a) To determine the temperature of the hot reservoir, we can use the formula for the thermal efficiency of a Carnot heat engine:

Thermal Efficiency = 1 - (Tc/Th)

Where Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir.

Given that the thermal efficiency is 1/3 and the temperature of the cold reservoir is 280 K, we can rearrange the equation to solve for Th:

1/3 = 1 - (280/Th)

Simplifying the equation, we have:

280/Th = 2/3

Cross-multiplying, we get:

2Th = 3 * 280

Th = (3 * 280) / 2

Th = 420 K

b) The amount of power that can be extracted can be calculated using the formula:

Power = Thermal Efficiency * Heat input

Given that the thermal efficiency is 1/3 and the heat input is 9 kW, we can calculate the power:

Power = (1/3) * 9 kW

Power = 3 kW

Know more about thermal efficiencyhere;

https://brainly.com/question/12950772

#SPJ11

10.11 At f=100MHz, show that silver (σ=6.1×107 S/m,μr​=1,εr=1) is a good conductor, while rubber (σ=10−15 S/m,μr=1,εr=3.1) is a good insulator.

Answers

Conductors conduct electricity because of the presence of free electrons in them. On the other hand, insulators resist the flow of electricity. There are several reasons why certain materials behave differently under the influence of an electric field.

Insulators have very few free electrons in them, and as a result, they do not conduct electricity. Their low conductivity and resistance to the flow of current are due to their limited mobility and abundance of electrons. Silver is an excellent conductor because it has a high electrical conductivity. At f=100MHz, the electrical conductivity of silver (σ=6.1×107 S/m) is so high that it is a good conductor. At this frequency, it has a low skin depth.

Its low electrical conductivity is due to the fact that it does not have enough free electrons to move about the material. Moreover, rubber has a high dielectric constant (εr=3.1) due to the absence of free electrons. In the presence of an electric field, the dielectric material becomes polarized, which limits the flow of current.

To know more about Conductors visit:

https://brainly.com/question/14405035

#SPJ11

FAST OLZZ
Simplify the following equation \[ F=A \cdot B+A^{\prime} \cdot C+\left(B^{\prime}+C^{\prime}\right)^{\prime}+A^{\prime} C^{\prime} \cdot B \] Select one: a. \( 8+A^{\prime} \cdot C \) b. \( 8+A C C+B

Answers

The simplified expression is [tex]\[F=AB+A^{\prime} C+B \][/tex] Hence, option a) is correct, which is [tex]\[8+A^{\prime} C\][/tex]

The given expression is

[tex]\[F=A \cdot B+A^{\prime} \cdot C+\left(B^{\prime}+C^{\prime}\right)^{\prime}+A^{\prime} C^{\prime} \cdot B \][/tex]

To simplify the given expression, use the De Morgan's law.

According to this law,

[tex]$$ \left( B^{\prime}+C^{\prime} \right) ^{\prime}=B\cdot C $$[/tex]

Therefore, the given expression can be written as

[tex]\[F=A \cdot B+A^{\prime} \cdot C+B C+A^{\prime} C^{\prime} \cdot B\][/tex]

Next, use the distributive law,

[tex]$$ F=A B+A^{\prime} C+B C+A^{\prime} C^{\prime} \cdot B $$$$ =AB+A^{\prime} C+B \cdot \left( 1+A^{\prime} C^{\prime} \right) $$$$ =AB+A^{\prime} C+B $$[/tex]

Therefore, the simplified expression is

[tex]\[F=AB+A^{\prime} C+B \][/tex]

Hence, option a) is correct, which is [tex]\[8+A^{\prime} C\][/tex]

To know more about expression, visit:

https://brainly.com/question/28170201

#SPJ11

4. (a) (i) Materials can be subject to structural failure via a number of various modes of failure. Briefly explain which failure modes are the most important to consider for the analyses of the safety of a loaded structure? (4 marks)
(ii) Identify what is meant by a safety factor and how this relates to the modes of failure identified above. (2 marks) (b) (i) Stresses can develop within a material if it is subject to loads. Describe, with the aid of diagrams the types of stresses that may be developed at any point within a load structure. (7 marks)
(ii) Comment on how complex stresses at a point could be simplified to develop a reliable failure criteria and suggest the name of criteria which is commonly used to predict failure based on yield failure criteria in ductile materials. (5 marks)
(iii) Suggest why a yield strength analysis may not be appropriate as a failure criteria for analysis of brittle materials. (2 marks)

Answers

(a) (i) The most important failure modes that should be considered for the analyses of the safety of a loaded structure are: Fracture due to high applied loads. This type of failure occurs when the material is subjected to high loads that cause it to break and separate completely.

Shear failure is another type of failure that occurs when the material is subjected to forces that cause it to break down along the plane of the force. In addition, buckling failure occurs when the material is subjected to compressive loads that are too great for it to withstand, causing it to buckle and fail. Finally, Fatigue failure, which is a type of failure that occurs when a material is subjected to repeated cyclic stresses over time, can also lead to structural failure.

(ii) A safety factor is a ratio of the ultimate strength of a material to the maximum expected stress in a material. It is used to ensure that a material does not fail under normal working conditions. Safety factors are used in the design process to ensure that the structure can withstand any loads or forces that it may be subjected to. The safety factor varies depending on the type of material and the nature of the loading. The safety factor is used to determine the maximum expected stress that a material can withstand without failure, based on the mode of failure identified above.
(b) (i) Stresses can develop within a material if it is subject to loads. Describe, with the aid of diagrams the types of stresses that may be developed at any point within a loaded structure. (7 marks)There are three types of stresses that may be developed at any point within a loaded structure:Tensile stress: This type of stress occurs when a material is pulled apart by two equal and opposite forces. It is represented by a positive value, and the direction of the stress is away from the center of the material.Compressive stress: This type of stress occurs when a material is pushed together by two equal and opposite forces. It is represented by a negative value, and the direction of the stress is towards the center of the material.Shear stress: This type of stress occurs when a material is subjected to a force that is parallel to its surface. It is represented by a subscript xy or τ, and the direction of the stress is parallel to the surface of the material.

(ii) The complex stresses at a point can be simplified to develop a reliable failure criterion by using principal stresses and a failure criterion. The Von Mises criterion is commonly used to predict failure based on yield failure criteria in ductile materials. It is based on the principle of maximum shear stress and assumes that a material will fail when the equivalent stress at a point exceeds the yield strength of the material.
(iii) A yield strength analysis may not be appropriate as a failure criterion for the analysis of brittle materials because brittle materials fail suddenly and without any warning. They do not exhibit plastic deformation, which is the characteristic of ductile materials. Therefore, it is not possible to determine the yield strength of brittle materials as they do not have a yield point. The failure of brittle materials is dependent on their fracture toughness, which is a measure of a material's ability to resist the propagation of cracks.

To know more about Shear failure refer to:

https://brainly.com/question/13108235

#SPJ11

Other Questions
Determine the difference equation for generating the processwhen the excitation is white noise. Determine the system functionfor the whitening filter.2. The power density spectrum of a process {x(n)} is given as 25 Ixx (w) = = |A(w)| 2 |1 - e-jw + + 12/2e-1w0 1 where is the variance of the input sequence. a) Determine the difference equation Earths natural carbon cycle influences the balance of greenhouse gases in the atmosphere but is being impacted by human activity. Evidence of this includes:A. Ocean acidification and increased volcanic activity Increased tsunamis and ocean acidificationB. Ocean acidification, and increased global average temperaturesC. Decreased volcanic activity and increased tsunamisD. Increased acid rain and increased tsunamis Find the range, the standard deviation, and the variance for the given sample. Round non-integer results to the nearest tenth.15, 17, 19, 21, 22, 56 Features of inhaled allergens that promote priming of Th2 cells to in turn stimulate IgE production include all of the following EXCEPT: They are proteins They are small and diffuse easily They are insoluble They contain peptides that can bind to MHC-Il molecules Suppose employers care about overall productivity Z,which is made up of two components, X and Y, such that Z=X+Y (and employers know this productivityfunction). Suppose there are two groups (male and female) whose average Zs are the same (i.e. Z_M =Z_F),but X_M < X_F and Y_M > Y_F (and again, employers know these population averages). (Averages aregiven by bold font.) Researchers decide to run a resume-based audit study where they randomize namesbased on gender (using typically male or female names) but hold constant Y. They provide no informationon X. Now suppose the researchers provide information on both X and Y on the resumes. Which of thefollowing are accurate conclusions? If call-back rates are different, there is evidence of taste-based discrimination. If call-back rates are different, there could be statistical discrimination, as employers could bemaking predictions about productivity based on differences across men and women. Match the description to the appropriate process. Occurs in cytoplasm outside of mitochondria Creates a majority of ATPHydrogen ions flow through ATP synthase proteins within the inner mitochondrial membrane.Occurs in the matrix of mitochondria. Strips electrons from Acetyl-CoA molecules Produces the 3 carbon molecule pyruvate Utilizes the proton gradient established from the electron transport chain.1. Glycolysis2. Citric Acid Cycle3. Oxidative .. Write a MATLAB m-file that includes a MATLAB function to find the root xr of a function fx using the Bisection Your code must follow the following specifications: Accept the function fx from the user. Accept the initial bracket guess from the user. Default values (to be used. if no values are specified by the user) for the bracket are -1 and 1. Accept stop criterion (approximate relative percent error, Ea) from the user. Default value is 0.001%. Accept the number of maximum number of iterations N (N = 200) from the user. Default value is N=50. This default vale is to be used if the user does not explicitly mention N. If N is reached and the stop criterion is not reached, print the message "Stop crtiterion not reached after N iterations. Exiting program." If stop criterion is reached, print the value of the estimated root and the corresponding Ea (in %) with an appropriate message. Test your program on an example function of your choice. Verify your answer against the solution obtained using another method ("roots" command or MS-Excel, etc.). Report both answers using a table. Use clear and concise comments in your code so that a reader can easily understand your program. Submit your program, a brief description of your approach, your observations, and conclusions. Note: Submit m-file as part of the PDF report and also separately as a .m file. A 1.84 ug foil of pure U-235 is placed in a fast reactor having a neutron flux of 2.02 x 1012 n/(cm?sec). Determine the fission rate (per second) in the foil. i.Fwarms up to46Fin2min while sitting in a room of temperature72F.How warm will the drink be if left out for15min?iiAn object of mass20kg is released from rest3000m above the a b . Which letter represents the area where ATP binds? Choice B Choice A O Choice C O Choice D O Choice E A B 2. 2 4. D 3 Which letter represents the binding of ATP? B OA What are the possible legal consequences ofmechatronics engineering solutions? Give three (3)different examples and explain. Suppose in the market for widgets, market demand is given by Qd=5000-200P and market supply is given by QS=100P-1000With no tax, what is the market equilibrium price and quantity?Now suppose the government imposes an excise tax of $5 per unit collected from the sellers. What will the new equilibrium quantity be? What price will the buyer pay? What price will the seller retain after submitting the tax revenue?Compute the following: (Hint: It may be helpful to draw a graph).Consumer surplus before the taxProducer surplus before the taxConsumer surplus after the taxProducer surplus after the taxGovernment tax revenueDeadweight loss of the taxWho bears the greater burden of the tax, consumers or producers? What does this tell you about the relative elasticities of supply and demand?Is the benefit to the government from imposing this tax greater than the loss of welfare to society? Explain. Question 14 Not yet answered Marked out of 1.00 Flag question You suspect your patient is in shock. You note the patient's skin is pale. This is likely due to Select one: a. peripheral vasoconstriction O b. peripheral vasodilation O c. an increased heart rate O d. hypothermia true or false Here is a phylogeny of eukaryotes determined by DNA evidence. All of the supergroups contain some photosynthetic members. What structure is necessary for the reversible binding of O2molecules to hemoglobin and myoglobin? At what particular part ofthat structure does the protein-O2 bond form? Case Study: Part One Saria is at the doctor to get the lab results of the samples she brought in to be tested. From the results, it appears that she is getting the rashes due to Pseudomonas aeruginosa infection that she contracted from the sponge she was sharing with her roommates. Now, we have to run further tests to check for the appropriate antibiotic needed to get rid of the infection. We also need to make sure to protect the normal flora in Saica so only the bad germs die. To do this we will use a gene transfer method to protect her healthy germs from the effects of possible antibiotics we can use. Introduction/Background Material: Basics of Bacterial Resistance: Once it was thought that antibiotics would help us wipe out forever the diseases caused by bacteria. But the bacteria have fought back by developing resistance to many antibiotics, Bacterial resistance to antibiotics can be acquired in four ways: 1. Mutations: Spontaneous changes in the DNA are called mutations. Mutations happen in all living things, and they can result in all kinds of changes in the bacterium. Antibiotic resistance is just one of many changes that can result from a random mutation. 2. Transformation: This happens when one bacterium takes up some DNA from the chromosomes of another bacterium 3. Conjugation: Antibiotic resistance can be coded for in the DNA found in a small circle known as a plasmid in a bacterium. The plasmids can randomly pass between bacteria (usually touching as seen in conjugation) 4. Recombination: Sharing of mutations, some of which control resistance to antibiotics. Some examples are: A. Gene cassettes are a small group of genes that can be added to a bacterium's chromosomes. The bacteria can then accept a variety of gene cassettes that give the bacterium resistance to a variety of antibiotics. The cassettes also can confirm resistance against disinfectants and pollutants. B. Bacteria can also acquire some genetic material through transduction (e.g., transfer through virus) or transformation. This material can then lead to change in phenotype after recombination into the bacterial genome. The acquired genetically based resistance is permanent and inheritable through the reproductive process of bacteria, called binary fission. Some bacteria produce their own antibiotics to protect themselves against other microorganisms. Of course, a bacterium will be resistant to its own antibiotic! If this bacterium then transfers its resistance genes to another bacterium, then that other bacterium would also gain resistance. Scientists think, but haven't proved, that the genes for resistance in Saica's case have been transferred between bacteria of different species through plasmid or cassette transfer. Laboratory analysis of commercial antibiotic preparations has shown that they contain DNA from antibiotic-producing organisms. Strenous exercise should cause an increase in systemic capillary blood flow due to the sympathetic nervous system. True False QUESTION 7 In myocardial contractile cells, the action potential will occu Provide the key fragment structures of the mass spectrometrydata. The possible molecular formula is:C5H9O2BrRelative Intensity 100 80 40 20- o fim 20 40 60 80 Titr 100 120 m/z 140 160 180 200 15.0 28.0 37.0 38.0 39.0 42.0 43.0 49.0 50.0 51.0 52.0 61.0 62.0 63.0 73.0 74.0 75.0 76.0 77.0 89.0 90.0 91.0 91.5 1 What is the negation of the following: "If I am on time for work then I catch the 8:05 bus." A. I am late for work and I catch the 8:05 bus B. I am on time for work or I miss the 8:05 bus C. I am on time for work and I catch the 8:05 bus D. I am on time for work and I miss the 8:05 bus E. If I am late for work then I miss the 8:05 bus F I am late for work or I catch the 8:05 bus G. If I catch the 8:05 bus then I am on time for work. H. If I am on time for work then I catch the 8:05 bus I. If I am late for work then I catch the 8:05 bus J. I am on time for work or I catch the 8:05 bus K. If I miss the 8:05 bus then I am late for work. What is the negation of the following: "If I vote in the election then l feel enfranchised." A. I vote in the election or l feel enfranchised. B. If I vote in the election then I feel enfranchised C. If I don't vote then I feel enfranchised D. If I feel enfranchised then I vote in the election E. I vote in the election and I feel disenfranchised F. I don't vote or I feel enfranchised G. If I feel disenfranchised then I don't vote. H. I vote in the election or I feel disenfranchised I. I don't vote and I feel enfranchised J. If I don't vote then I feel disenfranchised K. I vote in the election and I feel enfranchised What is the negation of the following statement: "this triangle has two 45 degree angles and it is a right triangle. A. this triangle does not have two 45 degree angles and it is a right triangle. B. this triangle does not have two 45 degree angles and it is not a right triangle C. this triangle has two 45 degree angles and it is not a right triangle D. this triangle does not have two 45 degree angles or it is not a right triangle E. this triangle has two 45 degree angles or it is not a right triangle F this triangle does not have two 45 degree angles or it is a right triangle G. this triangle has two 45 degree angles or it is a right triangle H. this triangle has two 45 degree angles and it is a right triangle What is the negation of the following statement: "I exercise or l feel tired." A. I don't exercise and I feel tirec B. I don't exercise or l feel envigorated C. I don't exercise and I feel envigorated D. I exercise or I feel tired. E. I exercise and I feel envigorated. F.I exercise and I feel tired. G. I exercise or l feel envigorated H. I don't exercise or I feel tired What is the converse of the following: "If I go to Paris then I visit the Eiffel Tower." A. If I visit the Eiffel Tower then I go to Paris B. If I visit the Eiffel Tower then I don't go to Paris C. If I don't go to Paris then I don't visit the Eiffel Tower. D. If I don't go to Paris then I visit the Eiffel Tower. E. If I go to Paris then I visit the Eiffel Tower F If I don't visit the Eiffel Tower then I don't go to Paris What is the inverse of the following: "If I am hungry then I eat an apple." A. If I eat an apple then I am hungry B. If I am hungry then I eat an apple C. If l'm hungry then I eat an apple D. If I'm not hungry then I don't eat an apple E. If I don't eat an apple then I'm not hungry F If I eat an apple then I am not hungry What is the contrapositive of the following: "If I exercise then I feel tired." A. If I don't exercise then I feel envigorated B. If I exercise then I feel envigorated. C. If I exercise then I feel tired. D. If I feel tired then I don't exercise E. If I feel tired then I exercise F. If I feel envigorated then I don't exercise. everal mutants are isolated, all of which require compound G for growth. The compounds (A to E) in the biosynthetic pathway to G are known, but their order in the pathway is not known. Each compound is tested for its ability to support the growth of each mutant (1 to 5). In the following table, a plus sign indicates growth and a minus sign indicates no growth. What is the order of compounds A to E in the pathway? Compound tested A B C D E G Mutant 1 - - - + - +2 - + - + - + 3 - - - - - + 4 - + + + - + 5 + + + + - + a. E-A-B-C-D-Gb. B-A-E-D-C-G c. A-B-C-D-E-G d. E-A-C-B-D-G e. B-A-E-C-D-G