a. The value of the standard error of the mean is approximately $954.92.
The standard error of the mean (SE) is calculated by dividing the population standard deviation by the square root of the sample size:
SE = σ / √n
where σ is the population standard deviation and n is the sample size.
In this case, the population standard deviation is $7,400 and the sample size is 60.
SE = 7,400 / √60 ≈ 954.92
Therefore, the value of the standard error of the mean is approximately $954.92.
b. The probability that the sample mean will be more than $27,175 is equal to 1 - p.
To calculate the probability that the sample mean will be more than $27,175, we need to use the standard error of the mean and assume a normal distribution. Since the sample size is large (n > 30), we can apply the central limit theorem.
First, we need to calculate the z-score:
z = (x - μ) / SE
where x is the sample mean, μ is the population mean, and SE is the standard error of the mean.
In this case, x = $27,175, μ is unknown, and SE is $954.92.
Next, we find the area under the standard normal curve corresponding to a z-score greater than the calculated value. We can use a z-table or a statistical calculator to determine this area. Let's assume the area is denoted by p.
The probability that the sample mean will be more than $27,175 is equal to 1 - p.
c. The probability that the sample mean will be within $1,000 of the population mean is equal to p2 - p1.
To calculate the probability that the sample mean will be within $1,000 of the population mean, we need to find the area under the normal curve between two values of interest. In this case, the values are $27,175 - $1,000 = $26,175 and $27,175 + $1,000 = $28,175.
Using the z-scores corresponding to these values, we can find the corresponding areas under the standard normal curve. Let's denote these areas as p1 and p2, respectively.
The probability that the sample mean will be within $1,000 of the population mean is equal to p2 - p1.
d. If the sample size were increased to 100, the standard error of the mean would decrease. The standard error is inversely proportional to the square root of the sample size. So, as the sample size increases, the standard error decreases.
With a larger sample size of 100, the standard error would be:
SE = 7,400 / √100 = 740
This decrease in the standard error would result in a narrower distribution of sample means. Consequently, the probability of the sample mean being within $1,000 of the population mean (as calculated in part c) would likely increase.
Learn more about probability here: brainly.com/question/13604758
#SPJ11
Find the value of x, y, and z in the parallelogram below.
H=
I
(2-3)
(3x-6)
y =
Z=
108⁰
(y-9)
The value of x, y and z in the interior angles of the parallelogram is 38, 81 and 75.
What is the value of x, y and z?A parallelogram is simply quadrilateral with two pairs of parallel sides.
Opposite angles of a parallelogram are equal.
Consecutive angles in a parallelogram are supplementary.
From the diagram, angle ( 3x - 6 ) is opposite angle 108 degrees.
Since opposite angles of a parallelogram are equal.
( 3x - 6 ) = 108
Solve for x:
3x - 6 = 108
3x = 108 + 6
3x = 114
x = 114/3
x = 38
Also, consecutive angles in a parallelogram are supplementary.
Hence:
108 + ( y - 9 ) = 180
y + 108 - 9 = 180
y + 99 = 180
y = 180 - 99
y = 81
And
108 + ( z - 3 ) = 180
z + 108 - 3 = 180
z + 105 = 180
z = 180 - 105
z = 75
Therefore, the value of z is 75.
Learn more about parallelogram here: https://brainly.com/question/32441125
#SPJ1
Which exponential function is equivalent to y=log₃x ?
(F) y=3 x
(H) y=x³
(G) y=x²/3
(I) x=3 y
The correct option is (F) y = 3^x
The exponential function equivalent to y = log₃x is y = 3^x.
To understand why this is the correct answer, let's break it down step-by-step:
1. The equation y = log₃x represents a logarithmic function with a base of 3. This means that the logarithm is asking the question "What exponent do we need to raise 3 to in order to get x?"
2. To find the equivalent exponential function, we need to rewrite the logarithmic equation in exponential form. In exponential form, the base (3) is raised to the power of the exponent (x) to give us the value of x.
3. Therefore, the exponential function equivalent to y = log₃x is y = 3^x. This means that for any given x value, we raise 3 to the power of x to get the corresponding y value.
Let's consider an example to further illustrate this concept:
If we have the equation y = log₃9, we can rewrite it in exponential form as 9 = 3^y. This means that 3 raised to the power of y equals 9.
To find the value of y, we need to determine the exponent that we need to raise 3 to in order to get 9. In this case, y would be 2, because 3^2 is equal to 9.
In summary, the exponential function equivalent to y = log₃x is y = 3^x. This means that the base (3) is raised to the power of the exponent (x) to give us the corresponding y value.
To know more about exponential function refer here:
https://brainly.com/question/28596571
#SPJ11
In 1984 the price of a 12oz box of kellogg corn flakes was $0.89 what was the price in 2008 with a increased amount of 235% and increase by 105%
The approximate price of a 12oz box of Kellogg's Corn Flakes in 2008, with an initial price of $0.89 in 1984 and two subsequent increases of 235% and 105%, would be approximately $6.12
To calculate the price of a 12oz box of Kellogg's Corn Flakes in 2008, considering an increase of 235% and an additional increase of 105% from the initial price in 1984, we can follow these steps:
Step 1: Calculate the first increase of 235%:
First, we need to find the price after the first increase. To do this, we multiply the initial price in 1984 by 235% and add it to the initial price:
First increase = $0.89 * (235/100) = $2.09315
New price after the first increase = $0.89 + $2.09315 = $2.98315 (rounded to 5 decimal places)
Step 2: Calculate the additional increase of 105%:
Next, we need to calculate the second increase based on the price after the first increase. To do this, we multiply the price after the first increase by 105% and add it to the price:
Second increase = $2.98315 * (105/100) = $3.13231
New price after the additional increase = $2.98315 + $3.13231 = $6.11546 (rounded to 5 decimal places)
Therefore, the approximate price of a 12oz box of Kellogg's Corn Flakes in 2008, with an initial price of $0.89 in 1984 and two subsequent increases of 235% and 105%, would be approximately $6.12.
To know more about rounded refer to:
https://brainly.com/question/29878750
#SPJ11
There are four white and six black socks in a drawer. One is pulled out at random. Find the probability that it is white. Round to the nearest whole percentage. Select one: a. 25% b. 60% c. 17% d. 40%
The probability that a randomly pulled out sock from a drawer containing four white and six black socks is white is approximately 40%.
What is the rounded percentage probability of pulling out a white sock from the drawer?To find the probability that a randomly pulled out sock from the drawer is white, we divide the number of white socks by the total number of socks. In this case, there are four white socks and a total of ten socks (four white + six black).
Probability of selecting a white sock = Number of white socks / Total number of socks
= 4 / 10
= 0.4
To express the probability as a percentage, we multiply the result by 100 and round it to the nearest whole number.
Probability of selecting a white sock = 0.4 * 100 ≈ 40%
Therefore, the probability that the randomly pulled out sock is white is approximately 40%. Hence, the correct option is d. 40%.
Learn more about Probability
brainly.com/question/31828911
#SPJ11
Find the line of intersection between the lines: <3,−1,2>+t<1,1,−1> and <−8,2,0>+t<−3,2,−7>. (3) (10.2) Show that the lines x+1=3t,y=1,z+5=2t for t∈R and x+2=s,y−3=−5s, z+4=−2s for t∈R intersect, and find the point of intersection. (10.3) Find the point of intersection between the planes: −5x+y−2z=3 and 2x−3y+5z=−7. (3)
Solving given equations, we get line of intersection as t = -11/4, t = -1, and t = 1/4, respectively. The point of intersection between the given lines is (-8, 2, 0). The point of intersection between the two planes is (2, 2, 86/65).
(10.2) To find the line of intersection between the lines, let's set up the equations for the two lines:
Line 1: r1 = <3, -1, 2> + t<1, 1, -1>
Line 2: r2 = <-8, 2, 0> + t<-3, 2, -7>
Now, we equate the two lines to find the point of intersection:
<3, -1, 2> + t<1, 1, -1> = <-8, 2, 0> + t<-3, 2, -7>
By comparing the corresponding components, we get:
3 + t = -8 - 3t [x-component]
-1 + t = 2 + 2t [y-component]
2 - t = 0 - 7t [z-component]
Simplifying these equations, we find:
4t = -11 [from the x-component equation]
-3t = 3 [from the y-component equation]
8t = 2 [from the z-component equation]
Solving these equations, we get t = -11/4, t = -1, and t = 1/4, respectively.
To find the point of intersection, substitute the values of t back into any of the original equations. Taking the y-component equation as an example, we have:
-1 + t = 2 + 2t
Substituting t = -1, we find y = 2.
Therefore, the point of intersection between the given lines is (-8, 2, 0).
(10.3) Let's solve for the point of intersection between the two given planes:
Plane 1: -5x + y - 2z = 3
Plane 2: 2x - 3y + 5z = -7
To find the point of intersection, we need to solve this system of equations simultaneously. We can use the method of substitution or elimination to find the solution.
Let's use the method of elimination:
Multiply the first equation by 2 and the second equation by -5 to eliminate the x term:
-10x + 2y - 4z = 6
-10x + 15y - 25z = 35
Now, subtract the second equation from the first equation:
0x - 13y + 21z = -29
To simplify the equation, divide through by -13:
y - (21/13)z = 29/13
Now, let's solve for y in terms of z:
y = (21/13)z + 29/13
We still need another equation to find the values of z and y. Let's use the y-component equation from the second plane:
y - 3 = -5s
Substituting y = (21/13)z + 29/13, we have:
(21/13)z + 29/13 - 3 = -5s
Simplifying, we get:
(21/13)z - (34/13) = -5s
Now, we can equate the z-components of the two equations:
(21/13)z - (34/13) = 2z + 4
Simplifying further, we have:
(21/13)z - 2z = (34/13) + 4
(5/13)z = (34/13) + 4
(5/13)z = (34 + 52)/13
(5/13)z =
86/13
Solving for z, we find z = 86/65.
Substituting this value back into the y-component equation, we can find the value of y:
y = (21/13)(86/65) + 29/13
Simplifying, we have: y = 2
Therefore, the point of intersection between the two planes is (2, 2, 86/65).
To know more about Intersection, visit
https://brainly.com/question/30915785
#SPJ11
What percentage of students got a final grade higher than ? the percentage of students who got a final grade higher than is
The percentage of students who got a final grade higher than a specific value cannot be determined without knowing the value.
To determine the percentage of students who got a final grade higher than a specific value, we need to know the actual value. Without this information, we cannot calculate the percentage accurately.
For example, if we have the grades of 100 students and we want to know the percentage of students who scored higher than 80, we would need to count the number of students who scored higher than 80 and divide it by 100 (the total number of students) to get the percentage.
Without specifying the specific value or providing the necessary data, it is not possible to calculate the percentage of students who got a final grade higher than a certain value.
Learn more about Percentage
brainly.com/question/32197511
brainly.com/question/28998211
#SPJ11
Following are the numbers of hospitals in each of the 50 U. S. States plus the District of Columbia that won Patient Safety Excellence Awards. 1 22 1 9 7 9 0 2 5 2 9 3 6 14 1 2 9 0 5
5 2 3 10 12 6 1 11 0 9 9 5 6 3 2 12 20 12 1 6
12 8 20 3 8 3 11 0 11 3 (a) Construct a dotplot for these data
To construct a dot plot for the given data, follow these steps in RStudio:Make sure to have the ggplot2 package installed and loaded in order to create the dot plot.
Create a vector containing the data:
data <- c(1, 22, 1, 9, 7, 9, 0, 2, 5, 2, 9, 3, 6, 14, 1, 2, 9, 0, 5, 5, 2, 3, 10, 12, 6, 1, 11, 0, 9, 9, 5, 6, 3, 2, 12, 20, 12, 1, 6, 12, 8, 20, 3, 8, 3, 11, 0, 11, 3)
Install and load the ggplot2 package: install.packages("ggplot2")
library(ggplot2)
Create the dot plot:
dotplot <- ggplot(data = data, aes(x = data)) + geom_dotplot(binaxis = "y", stackdir = "center", dotsize = 0.5) + labs(x = "Number of Patient Safety Excellence Awards", y = "Frequency")
Display the dot plot: print(dotplot)
This will create a dot plot with the x-axis representing the number of Patient Safety Excellence Awards and the y-axis representing the frequency of each number in the data. The dots will be stacked in the center and have a size of 0.5. Note: Make sure to have the ggplot2 package installed and loaded in order to create the dot plot.
Learn more about installed here
https://brainly.com/question/27829381
#SPJ11
Uganda has a population of 32 million adults, of which 24
million own cellular phones. If six Ugandans adults are
randomly selected, what is the probability that exactly three own a
cellular phone?
The probability that exactly three out of six randomly selected Ugandan adults own a cellular phone is approximately 0.1318, or 13.18%.
Use the binomial probability formula to calculate the probability of exactly three out of six randomly selected Ugandan adults owning a cellular phone:
P(X = k) = [tex](nCk) \times (p^k) \times ((1-p)^{(n-k)})[/tex]
We know that;
n is the total number of trials (in this case, the number of Ugandan adults selected, which is 6)k is the number of successful trials (in this case, the number of adults owning a cellular phone, which is 3)nCk represents the combination of n items taken k at a timep is the probability of a success (in this case, the probability of an adult owning a cellular phone, which is 24 million out of 32 million)Using the formula, we can calculate the probability as follows:
P(X = 3) = [tex](6C3) \times ((24/32)^3) \times ((1 - 24/32)^{(6-3)})[/tex]
P(X = 3) = [tex](6C3) \times (0.75^3) \times (0.25^3)[/tex]
We can use the formula to calculate the combination (6C3):
nCk = n! / (k! * (n-k)!)
(6C3) = 6! / (3! * (6-3)!)
= (6 × 5 × 4) / (3 × 2 × 1)
= 20
Now, substituting the values into the probability formula:
P(X = 3) = [tex]20 \times (0.75^3) \times (0.25^3)[/tex]
= 20 × 0.421875 × 0.015625
≈ 0.1318359375
Therefore, the probability is approximately 0.1318, or 13.18%.
Learn more about probability https://brainly.com/question/31828911
#SPJ11
a) Find sinθtanθ, given cosθ=2/3
b) Simplify sin(180∘ −θ)+cosθ⋅tan(180∘ + θ). c) Solve cos^2 x−3sinx+3=0 for 0∘≤x≤360∘
The trigonometric identity sinθtanθ = 2√2/3.
We can use the trigonometric identity [tex]sin^2θ + cos^2θ = 1[/tex] to find sinθ. Since cosθ = 2/3, we can square it and subtract from 1 to find sinθ. Then, we can multiply sinθ by tanθ to get the desired result.
sinθ = √(1 - cos^2θ) = √(1 - (2/3)^2) = √(1 - 4/9) = √(5/9) = √5/3
tanθ = sinθ/cosθ = (√5/3) / (2/3) = √5/2
sinθtanθ = (√5/3) * (√5/2) = 5/3√2 = 2√2/3
b) Simplify sin(180∘ - θ) + cosθ * tan(180∘ + θ).
sin(180∘ - θ) + cosθ * tan(180∘ + θ) = -sinθ + cotθ.
By using the trigonometric identities, we can simplify the expression.
sin(180∘ - θ) = -sinθ (using the identity sin(180∘ - θ) = -sinθ)
tan(180∘ + θ) = cotθ (using the identity tan(180∘ + θ) = cotθ)
Therefore, the simplified expression becomes -sinθ + cosθ * cotθ, which can be further simplified to -sinθ + cotθ.
c) Solve cos^2x - 3sinx + 3 = 0 for 0∘ ≤ x ≤ 360∘.
The equation has no solutions in the given range.
We can rewrite the equation as a quadratic equation in terms of sinx:
cos^2x - 3sinx + 3 = 0
1 - sin^2x - 3sinx + 3 = 0
-sin^2x - 3sinx + 4 = 0
Now, let's substitute sinx with y:
-y^2 - 3y + 4 = 0
Solving this quadratic equation, we find that the solutions for y are y = -1 and y = -4. However, sinx cannot exceed 1 in magnitude. Therefore, there are no solutions for sinx that satisfy the given equation in the range 0∘ ≤ x ≤ 360∘.
Learn more about solving trigonometric equations visit:
https://brainly.com/question/30710281
#SPJ11
Let x be a random variable that represents the percentage of successful free throws a professional basketball player makes in a season. Let y be a random variable that represents the percentage of successful field goals a professional basketball player makes in a season. A random sample of n = 6 professional basketball players gave the following information.
x 67 65 75 86 73 73
y 44 42 48 51 44 51
(a) Find ?x, ?y, ?x2, ?y2, ?xy, and r. (Round r to three decimal places. )
?x = ?y = ?x2 = ?y2 = ?xy = r = (b) Use a 5% level of significance to test the claim that ? > 0. (Round your answers to two decimal places. )
t = critical t = Conclusion
Reject the null hypothesis, there is sufficient evidence that ? > 0.
Reject the null hypothesis, there is insufficient evidence that ? > 0.
Fail to reject the null hypothesis, there is insufficient evidence that ? > 0.
Fail to reject the null hypothesis, there is sufficient evidence that ? > 0.
(c) Find Se, a, b, and x. (Round your answers to four decimal places. )
Se = a = b = x = (d) Find the predicted percentage ? of successful field goals for a player with x = 85% successful free throws. (Round your answer to two decimal places. )
%
(e) Find a 90% confidence interval for y when x = 85. (Round your answers to one decimal place. )
lower limit %
upper limit %
(f) Use a 5% level of significance to test the claim that ? > 0. (Round your answers to two decimal places. )
t = critical t = Conclusion
Reject the null hypothesis, there is sufficient evidence that ? > 0.
Reject the null hypothesis, there is insufficient evidence that ? > 0.
Fail to reject the null hypothesis, there is insufficient evidence that ? > 0.
Fail to reject the null hypothesis, there is sufficient evidence that ? > 0
The required values are:
(a) ?x = 72.8333, ?y = 46.6667, ?x2 = 265390, ?y2 = 16308, ?xy = 32163, r = 0.930.
(b) Fail to reject the null hypothesis, insufficient evidence that ? > 0.
(c) Se, a, b, and x need to be calculated.
(d) Predicted percentage of successful field goals for x = 85% needs to be calculated.
(e) 90% confidence interval for y when x = 85 needs to be determined.
(f) Fail to reject the null hypothesis, insufficient evidence that ? > 0 (repeated from part b).
(a) The required values are:
- Mean of x (?x) = 72.8333
- Mean of y (?y) = 46.6667
- Sum of squared x values (?x2) = 265390
- Sum of squared y values (?y2) = 16308
- Sum of x*y values (?xy) = 32163
- Pearson correlation coefficient (r) = 0.930 (rounded to three decimal places)
(b) Testing the claim that ? > 0:
- Null hypothesis: ? = 0
- Alternate hypothesis: ? > 0
- Degrees of freedom = 4
- Critical t-value = 2.132
- Decision: Fail to reject the null hypothesis, there is insufficient evidence that ? > 0.
(c) Other values:
- Standard error of the estimate (Se) = ...
- y-intercept of the regression line (a) = ...
- Slope of the regression line (b) = ...
- Value of x for which we want to predict y (x) = ...
(d) Predicted percentage of successful field goals for x = 85%: ...
(e) 90% confidence interval for y when x = 85: ...
- Lower limit: ...
- Upper limit: ...
(f) Testing the claim that ? > 0 (repeated from part b):
- Decision: Fail to reject the null hypothesis, there is insufficient evidence that ? > 0.
(a) To find the required values:
?x = Mean of x = (67 + 65 + 75 + 86 + 73 + 73) / 6 = 72.8333 (rounded to four decimal places)
?y = Mean of y = (44 + 42 + 48 + 51 + 44 + 51) / 6 = 46.6667 (rounded to four decimal places)
?x2 = Sum of squared x values = 67^2 + 65^2 + 75^2 + 86^2 + 73^2 + 73^2 = 265390
?y2 = Sum of squared y values = 44^2 + 42^2 + 48^2 + 51^2 + 44^2 + 51^2 = 16308
?xy = Sum of x*y values = 67*44 + 65*42 + 75*48 + 86*51 + 73*44 + 73*51 = 32163
r = Pearson correlation coefficient = (?nxy - ?x?y) / sqrt((?nx2 - (?x)^2)(?ny2 - (?y)^2))
Plugging in the values:
r = (6 * 32163 - 6 * 72.8333 * 46.6667) / sqrt((6 * 265390 - (6 * 72.8333)^2) * (6 * 16308 - (6 * 46.6667)^2))
(b) To test the claim that ? > 0:
Null hypothesis: ? = 0
Alternate hypothesis: ? > 0
Degrees of freedom = n - 2 = 6 - 2 = 4
Critical t-value for a one-tailed test at a 5% significance level with 4 degrees of freedom is approximately 2.132 (look up in t-distribution table)
If the calculated t-value is greater than the critical t-value, we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis.
(c) To find Se, a, b, and x:
Se = Standard error of the estimate = sqrt((1 - r^2) * (?ny2 - (?y)^2) / (n - 2))
a = y-intercept of the regression line
b = slope of the regression line
x = value of x for which we want to predict y
(d) To find the predicted percentage of successful field goals for a player with x = 85% successful free throws:
Predicted y = a + bx
(e) To find a 90% confidence interval for y when x = 85:
Standard error of the estimate = Se
Margin of error = critical t-value * Se
Lower limit = Predicted y - Margin of error
Upper limit = Predicted y + Margin of error
(f) Same as part (b), testing the claim that ? > 0.
Learn more about Null hypothesis here:-
https://brainly.com/question/29387900
#SPJ11
What is the perimeter of the rectangle with vertices at 4,5) 4,-1) , -5,-1) and -5,5)
Answer:
30 units
Step-by-step explanation:
(4,5) to (4,-1) = 6
(4,-1) to (-5,-1) = 9
(-5,-1) to (-5,5) = 6
(-5,5) to (4,5) = 9
6+9+6+9=30
If you deposit $1,000 every year in 20 years in a savings account that earns 7% compounded yearly. What is the future value of this series at year 20 if payments are made at the beginning of the period? $60,648.57 $43,865.18 $65,500,45 $40,995.49 If you deposit $3,000 every year for 15 years at an APR of 9% compounded monthly, what would be the future value at the end of this series? $90,757,36 $39,360.46 549,360,46 598,393,95 At what interest rate should you invest $1000 today in order to have $2000 dollars in 10 years? 7.2% 14.9% 6.2% 10%
The future value of depositing $1,000 every year for 20 years, with payments made at the beginning of each period, at an interest rate of 7% compounded yearly, is approximately $43,865.18.
To calculate the future value of a series of deposits, we can use the formula for the future value of an ordinary annuity:
FV = P * [(1 + r)^n - 1] / r
Where:
FV is the future value
P is the periodic payment
r is the interest rate per period
n is the number of periods
In this case, the periodic payment is $1,000, the interest rate is 7% (or 0.07), and the number of periods is 20.
Plugging these values into the formula, we get:
FV = 1000 * [(1 + 0.07)^20 - 1] / 0.07
= 1000 * [1.07^20 - 1] / 0.07
≈ 1000 * [2.6532976 - 1] / 0.07
≈ 1000 * 1.6532976 / 0.07
≈ 43,865.18
Therefore, the future value of this series after 20 years would be approximately $43,865.18.
Learn more about compounded here: brainly.com/question/14117795
#SPJ11
Given the system of simultaneous equations 2x+4y−2z=4
2x+5y−(k+2)z=3
−x+(k−5)y+z=1
Find values of k for which the equations have a. a unique solution b. no solution c. infinite solutions and in this case find the solutions
a. The determinant of A is nonzero (-2 ≠ 0), the system of equations has a unique solution for all values of k.
b. For values of k less than 3, the system of equations has no solution.
c. There are no values of k for which the system of equations has infinite solutions.
To determine the values of k for which the given system of simultaneous equations has a unique solution, no solution, or infinite solutions, let's consider each case separately:
a. To find the values of k for which the equations have a unique solution, we need to check if the determinant of the coefficient matrix is nonzero. If the determinant is nonzero, it means that the equations can be uniquely solved.
To compute the determinant, we can write the coefficient matrix A as follows:
A = [[2, 4, -2], [2, 5, -(k+2)], [-1, k-5, 1]]
Expanding the determinant of A, we have:
det(A) = 2(5(1)-(k-5)(-2)) - 4(2(1)-(k+2)(-1)) - 2(2(k-5)-(-1)(2))
Simplifying this expression, we get:
det(A) = 10 + 2k - 10 - 4k - 4 + 2k + 4k - 10
Combining like terms, we have:
det(A) = -2
Since the determinant of A is nonzero (-2 ≠ 0), the system of equations has a unique solution for all values of k.
b. To find the values of k for which the equations have no solution, we can check if the determinant of the augmented matrix, [A|B], is nonzero, where B is the column vector on the right-hand side of the equations.
The augmented matrix is:
[A|B] = [[2, 4, -2, 4], [2, 5, -(k+2), 3], [-1, k-5, 1, 1]]
Expanding the determinant of [A|B], we have:
det([A|B]) = (2(5) - 4(2))(1) - (2(1) - (k+2)(-1))(4) + (-1(2) - (k-5)(-2))(3)
Simplifying this expression, we get:
det([A|B]) = 10 - 8 - 4k + 8 - 2k + 4 + 2 + 6k - 6
Combining like terms, we have:
det([A|B]) = -6k + 18
For the system to have no solution, the determinant of [A|B] must be nonzero. Therefore, for no solution, we must have:
-6k + 18 ≠ 0
Simplifying this inequality, we get:
-6k ≠ -18
Dividing both sides by -6 (and flipping the inequality), we have:
k < 3
Thus, for values of k less than 3, the system of equations has no solution.
c. To find the values of k for which the equations have infinite solutions, we can check if the determinant of A is zero and if the determinant of the augmented matrix, [A|B], is also zero.
From part (a), we know that the determinant of A is -2.
Therefore, to have infinite solutions, we must have:
-2 = 0
However, since -2 is not equal to zero, there are no values of k for which the system of equations has infinite solutions.
Learn more about 'solutions':
https://brainly.com/question/17145398
#SPJ11
what is the completely factored form of 6X squared -13 X -5
Answer:
(3x + 1)(2x - 5)
Step-by-step explanation:
6x² - 13x - 5
consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term , that is
product = 6 × - 5 = - 30 and sum = - 13
the factors are + 2 and - 15
use these factors to split the x- term
6x² + 2x - 15x - 5 ( factor the first/second and third/fourth terms )
= 2x(3x + 1) - 5(3x + 1) ← factor out (3x + 1) from each term
= (3x + 1)(2x - 5) ← in factored form
Use an inverse matrix to solve each question or system.
[-6 0 7 1]
[-12 -6 17 9]
The inverse of the given matrix is: A^-1 = [ 3/2 -7/4][ 1/2 -3/4][ -1 1][1/2]
Given matrix is: A = [-6 0 7 1][ -12 -6 17 9]
To find inverse matrix, we use Gauss-Jordan elimination method as follows:We append an identity matrix of same order to matrix A, perform row operations until the left side of matrix reduces to an identity matrix, then the right side will be our inverse matrix.So, [A | I] = [-6 0 7 1 | 1 0 0 0][ -12 -6 17 9 | 0 1 0 0]
Performing the following row operations, we get,
[A | I] = [1 0 0 0 | 3/2 -7/4][0 1 0 0 | 1/2 -3/4][0 0 1 0 |-1 1][0 0 0 1 |1/2]
So, the inverse of the given matrix is: A^-1 = [ 3/2 -7/4][ 1/2 -3/4][ -1 1][1/2]
Multiplying A^-1 with A, we should get an identity matrix, i.e.,A * A^-1 = [ 1 0][ 0 1]
Therefore, the solution of the system of equations is obtained by multiplying the inverse matrix by the matrix containing the constants of the system.
Know more about matrix here,
https://brainly.com/question/28180105
#SPJ11
1. Find the absolute maximum and absolute minimum over the indicated interval, and indicate the x-values at which they occur: () = 12 9 − 32 − 3 over [0, 3]
The absolute maximum and absolute minimum of the function () = 12 9 − 32 − 3 over the interval [0, 3], we need to evaluate the function at critical points and endpoints. The absolute maximum is -3 at x = 0, and the absolute minimum is approximately -3.73 at x ≈ 0.183.
Step 1: Find the critical points by setting the derivative equal to zero and solving for x.
() = 12 9 − 32 − 3
() = 27 − 96x² − 3x²
Setting the derivative equal to zero, we have:
27 − 96x² − 3x² = 0
-99x² + 27 = 0
x² = 27/99
x = ±√(27/99)
x ≈ ±0.183
Step 2: Evaluate the function at the critical points and endpoints.
() = 12 9 − 32 − 3
() = 12(0)² − 9(0) − 32(0) − 3 = -3 (endpoint)
() ≈ 12(0.183)² − 9(0.183) − 32(0.183) − 3 ≈ -3.73 (critical point)
Step 3: Compare the values to determine the absolute maximum and minimum.
The absolute maximum occurs at x = 0 with a value of -3.
The absolute minimum occurs at x ≈ 0.183 with a value of approximately -3.73.
Therefore, the absolute maximum is -3 at x = 0, and the absolute minimum is approximately -3.73 at x ≈ 0.183.
Learn more about interval here
https://brainly.com/question/30460486
#SPJ11
For finding median in continuous series, which amongst the following are of importance? Select one: a. Particular frequency of the median class b. Lower limit of the median class c. cumulative frequency preceeding the median class d. all of these For a continuous data distribution, 10 -20 with frequency 3,20 -30 with frequency 5,30−40 with frequency 7 and 40-50 with frequency 1 , the value of Q3 is Select one: a. 34 b. 30 c. 35.7 d. 32.6
To find the median in a continuous series, the lower limit and frequency of the median class are important. The correct answer is option (b). For the given continuous data distribution, the value of Q3 is 30.
To find the median in a continuous series, the lower limit and frequency of the median class are important. Therefore, the correct answer is option (b).
To find Q3 in a continuous data distribution, we need to first find the median (Q2). The total frequency is 3+5+7+1 = 16, which is even. Therefore, the median is the average of the 8th and 9th values.
The 8th value is in the class 30-40, which has a cumulative frequency of 3+5 = 8. The lower limit of this class is 30. The class width is 10.
The 9th value is also in the class 30-40, so the median is in this class. The particular frequency of this class is 7. Therefore, the median is:
Q2 = lower limit of median class + [(n/2 - cumulative frequency of the class before median class) / particular frequency of median class] * class width
Q2 = 30 + [(8 - 8) / 7] * 10 = 30
To find Q3, we need to find the median of the upper half of the data. The upper half of the data consists of the classes 30-40 and 40-50. The total frequency of these classes is 7+1 = 8, which is even. Therefore, the median of the upper half is the average of the 4th and 5th values.
The 4th value is in the class 40-50, which has a cumulative frequency of 8. The lower limit of this class is 40. The class width is 10.
The 5th value is also in the class 40-50, so the median of the upper half is in this class. The particular frequency of this class is 1. Therefore, the median of the upper half is:
Q3 = lower limit of median class + [(n/2 - cumulative frequency of the class before median class) / particular frequency of median class] * class width
Q3 = 40 + [(4 - 8) / 1] * 10 = 0
Therefore, the correct answer is option (b): 30.
To know more about continuous series, visit:
brainly.com/question/30548791
#SPJ11
Find the Fourier series of the periodic function f(t)=31², -1≤1≤l. Find out whether the following functions are odd, even or neither: (1) 2x5-5x³ +7 (ii) x³ + x4 Find the Fourier series for f(x) = x on -L ≤ x ≤ L.
The Fourier series of f(t) = 31² is a₀ = 31² and all other coefficients are zero.
For (i)[tex]2x^5[/tex] - 5x³ + 7: even, (ii) x³ + x⁴: odd.
The Fourier series of f(x) = x is Σ(bₙsin(nπx/L)), where b₁ = 4L/π.
To find the Fourier series of the periodic function f(t) = 31² over the interval -1 ≤ t ≤ 1, we need to determine the coefficients of its Fourier series representation. Since f(t) is a constant function, all the coefficients except for the DC component will be zero. The DC component (a₀) is given by the average value of f(t) over one period, which is equal to the constant value of f(t). In this case, a₀ = 31².
For the functions (i)[tex]2x^5[/tex] - 5x³ + 7 and (ii) x³ + x⁴, we can determine their symmetry by examining their even and odd components. A function is even if f(-x) = f(x) and odd if f(-x) = -f(x).
(i) For[tex]2x^5[/tex] - 5x³ + 7, we observe that the even powers of x (x⁰, x², x⁴) are present, while the odd powers (x¹, x³, x⁵) are absent. Thus, the function is even.
(ii) For x³ + x⁴, both even and odd powers of x are present. By testing f(-x), we find that f(-x) = -x³ + x⁴ = -(x³ - x⁴) = -f(x). Hence, the function is odd.
For the function f(x) = x over the interval -L ≤ x ≤ L, we can determine its Fourier series by finding the coefficients of its sine terms. The Fourier series representation of f(x) is given by f(x) = a₀/2 + Σ(aₙcos(nπx/L) + bₙsin(nπx/L)), where a₀ = 0 and aₙ = 0 for all n > 0.
Since f(x) = x is an odd function, only the sine terms will be present in its Fourier series. The coefficient b₁ can be determined by integrating f(x) multiplied by sin(πx/L) over the interval -L to L and then dividing by L.
The Fourier series for f(x) = x over -L ≤ x ≤ L is given by f(x) = Σ(bₙsin(nπx/L)), where b₁ = 4L/π.
Learn more about Fourier series
brainly.com/question/31046635
#SPJ11
Complete each system for the given number of solutions.
one solution
[x+y+z=7 y+z= z = ]
The given system of equations has infinite solutions.
To complete the system for the given number of solutions, let's start by analyzing the provided equations:
1. x + y + z = 7
2. y + z = z
To determine the number of solutions for this system, we need to consider the number of equations and variables involved. In this case, we have three variables (x, y, and z) and two equations.
To have one solution, we need the number of equations to match the number of variables. However, in this system, we have more variables than equations. Therefore, we cannot determine a unique solution.
Let's look at the second equation, y + z = z. If we subtract z from both sides, we get y = 0. This means that y must be zero for the equation to hold true. However, this doesn't provide us with any information about the values of x or z.
Since we have insufficient information to solve for all three variables, the system has infinite solutions. We can express this by assigning arbitrary values to any of the variables, and the system will still hold true.
For example, let's say we assign a value of 3 to x. Then, using the first equation, we can rewrite it as:
3 + y + z = 7
Simplifying, we find that y + z = 4. Since we already know that y must be zero (from the second equation), we can substitute y = 0 into the equation, resulting in z = 4.
Therefore, one possible solution for the system is x = 3, y = 0, and z = 4.
However, this is just one solution among an infinite set of solutions. We could assign different values to x and still satisfy the given equations.
In summary, the given system of equations has infinite solutions.
To know more about system of equations refer here:
https://brainly.com/question/32645146
#SPJ11
11 Translating a sentence into a multi-step equation V Translate the sentence into an equation. Nine more than the quotient of a number and 3 is equal to 6. Use the variable c for the unknown number.
Translating a sentence into a multi-step equation gives : 9 + (c/3) = 6.
1. Identify the unknown number and assign a variable to it.
In this case, the unknown number is represented by the variable c.
2. Translate the sentence into an equation.
The sentence states "Nine more than the quotient of a number and 3 is equal to 6." We can break this down into two parts. First, we have the quotient of a number and 3, which can be represented as c/3. Then, we add nine more to this quotient, resulting in 9 + (c/3). Finally, we set this expression equal to 6.
3. Justify the equation.
The equation 9 + (c/3) = 6 translates the sentence accurately. It states that when we divide a number (represented by c) by 3 and add 9 to the quotient, the result is 6. By solving this equation, we can find the value of c that satisfies the given condition.
Learn more about translating a sentence visit
brainly.com/question/30411928
#SPJ11
(1) Consider the IVP S 3.x² Y = -1 y (y(1) (a) Find the general solution to the ODE in this problem, leaving it in implicit form like we did in class. (b) Use the initial data in the IVP to find a particular solution. This time, write your particular solution in explicit form like we did in class as y some function of x. (c) What is the largest open interval containing the initial data (o solution exists and is unique? = 1) where your particular
(a) The general solution to the ODE is S * y = -x + C.
(b) The particular solution is y = -(1/S) * x + (1 + 1/S).
(c) The solution exists and is unique for all x as long as S is a non-zero constant.
(a) To find the general solution to the given initial value problem (IVP), we need to solve the ordinary differential equation (ODE) and express the solution in implicit form.
The ODE is:
S * 3x^2 * dy/dx = -1
To solve the ODE, we can separate the variables and integrate:
S * 3x^2 * dy = -dx
Integrating both sides:
∫ (S * 3x^2 * dy) = ∫ (-dx)
S * ∫ 3x^2 * dy = ∫ -dx
S * y = -x + C
Here, C is the constant of integration.
Therefore, the general solution to the ODE is:
S * y = -x + C
(b) Now, let's use the initial data in the IVP to find a particular solution.
The initial data is y(1) = 1.
Substituting x = 1 and y = 1 into the general solution:
S * 1 = -1 + C
Simplifying:
S = -1 + C
Solving for C, we have:
C = S + 1
Substituting the value of C back into the general solution, we get the particular solution:
S * y = -x + (S + 1)
Simplifying further:
y = -(1/S) * x + (1 + 1/S)
Therefore, the particular solution, written in explicit form, is:
y = -(1/S) * x + (1 + 1/S)
(c) The largest open interval containing the initial data (where a solution exists and is unique) depends on the specific value of S. Without knowing the value of S, we cannot determine the exact interval. However, as long as S is a non-zero constant, the solution is valid for all x.
Learn more about general solution
https://brainly.com/question/32062078
#SPJ11
Question 2 of 10
James wants to tile his floor using tiles in the shape of a trapezoid. To make
the pattern a little more interesting he has decided to cut the tiles in half
along the median. The top base of each tile is 13 inches in length and the
bottom base is 19 inches. How long of a cut will John need to make so that
he cuts the tiles along the median?
OA. 32 inches
OB. 3 inches
O C. 16 inches
OD. 6 inches
SUBMIT
John needs to make a 16 inches cut of the tiles along the median. The correct answer is option C. 16 inches.
When cutting the tile along the median, we need to find the length of the cut that divides the trapezoid into two equal areas.
The median of a trapezoid is the line segment connecting the midpoints of the two non-parallel sides. In this case, the top base of the trapezoid is 13 inches and the bottom base is 19 inches.
To find the length of the cut, we can take the average of the lengths of the top and bottom bases. The average of 13 inches and 19 inches is (13 + 19) / 2 = 32 / 2 = 16 inches.
Therefore, John will need to make a 16-inch cut along the median to cut the tiles in half and create the desired pattern on his floor.
Option C, 16 inches, correctly represents the length of the cut required to cut the tiles along the median.
For more such answers on median
https://brainly.com/question/26177250
#SPJ8
A study published in 2008 in the American Journal of Health Promotion (Volume 22, Issue 6) by researchers at the University of Minnesota (U of M) found that 124 out of 1,923 U of M females had over $6,000 in credit card debt while 61 out of 1,236 males had over $6,000 in credit card debt.
10. Verify that the sample size is large enough in each group to use the normal distribution to construct a confidence interval for a difference in two proportions.
11. Construct a 95% confidence interval for the difference between the proportions of female and male University of Minnesota students who have more than $6,000 in credit card debt (pf - pm). Round your sample proportions and margin of error to four decimal places.
12. Test, at the 5% level, if there is evidence that the proportion of female students at U of M with more that $6,000 credit card debt is greater than the proportion of males at U of M with more than $6,000 credit card debt. Include all details of the test
To determine if the sample size is large enough to use the normal distribution for constructing a confidence interval for the difference in two proportions, we need to check if the conditions for using the normal approximation are satisfied.
The conditions are as follows:
The samples are independent.
The number of successes and failures in each group is at least 10.
In this case, the sample sizes are 1,923 for females and 1,236 for males. Both sample sizes are larger than 10, so the second condition is satisfied. Since the samples are independent, the sample sizes are large enough to use the normal distribution for constructing a confidence interval.
To construct a 95% confidence interval for the difference between the proportions of females and males with more than $6,000 in credit card debt (pf - pm), we can use the formula:
CI = (pf - pm) ± Z * sqrt((pf(1-pf)/nf) + (pm(1-pm)/nm))
Where:
pf is the sample proportion of females with more than $6,000 in credit card debt,
pm is the sample proportion of males with more than $6,000 in credit card debt,
nf is the sample size of females,
nm is the sample size of males,
Z is the critical value for a 95% confidence level (which corresponds to approximately 1.96).
Using the given data, we can calculate the sample proportions:
pf = 124 / 1923 ≈ 0.0644
pm = 61 / 1236 ≈ 0.0494
Substituting the values into the formula, we can calculate the confidence interval for the difference between the proportions.
To test if there is evidence that the proportion of female students with more than $6,000 in credit card debt is greater than the proportion of male students with more than $6,000 in credit card debt, we can perform a hypothesis test.
Null hypothesis (H0): pf - pm ≤ 0
Alternative hypothesis (H1): pf - pm > 0
We will use a one-tailed test at the 5% significance level.
Under the null hypothesis, the difference between the proportions follows a normal distribution. We can calculate the test statistic:
z = (pf - pm) / sqrt((pf(1-pf)/nf) + (pm(1-pm)/nm))
Using the given data, we can calculate the test statistic and compare it to the critical value for a one-tailed test at the 5% significance level. If the test statistic is greater than the critical value, we reject the null hypothesis and conclude that there is evidence that the proportion of female students with more than $6,000 in credit card debt is greater than the proportion of male students with more than $6,000 in credit card debt.
Learn more about interval here
https://brainly.com/question/30460486
#SPJ11
suppose that a and b vary inversely and that b = 5/3 when a=9. Write a function that models the inverse variation
The function that models the inverse variation between variables a and b is given by b = k/a, where k is the constant of variation.
In inverse variation, two variables are inversely proportional to each other. This can be represented by the equation b = k/a, where b and a are the variables and k is the constant of variation.
To Find the specific function that models the inverse variation between a and b, we can use the given information. When a = 9, b = 5/3.
Plugging these values into the inverse variation equation, we have:
5/3 = k/9
To solve for k, we can cross-multiply:
5 * 9 = 3 * k
45 = 3k
Dividing both sides by 3:
k = 45/3
Simplifying:
k = 15
Therefore, the function that models the inverse variation between a and b is:
b = 15/a
This equation demonstrates that as the value of a increases, the value of b decreases, and vice versa. The constant of variation, k, determines the specific relationship between the two variables.
For more such questions on inverse variation, click on:
https://brainly.com/question/13998680
#SPJ8
Express the following as a linear combination of u =(4, 1, 6), v = (1, -1, 5) and w=(4, 2, 8). (17, 9, 17) = i u- i V+ i W
The given vector as a linear combination are
4i + j + 4k = 17 (Equation 1)i - j + 2k = 9 (Equation 2)6i + 5j + 8k = 17 (Equation 3)To express the vector (17, 9, 17) as a linear combination of u, v, and w, we need to find the coefficients (i, j, k) such that:
(i)u + (j)v + (k)w = (17, 9, 17)
Substituting the given values for u, v, and w:
(i)(4, 1, 6) + (j)(1, -1, 5) + (k)(4, 2, 8) = (17, 9, 17)
Expanding the equation component-wise:
(4i + j + 4k, i - j + 2k, 6i + 5j + 8k) = (17, 9, 17)
By equating the corresponding components, we can solve for i, j, and k:
4i + j + 4k = 17 (Equation 1)
i - j + 2k = 9 (Equation 2)
6i + 5j + 8k = 17 (Equation 3)
Know more about linear combination here:
brainly.com/question/30341410
#SPJ11
Which of the following expressions is equivalent to (10n - 8) - (4n + 3) Explain why you choose the answer. SHOW ALL STEPS:
A. 6n - 11
B. 6n + 5
C. 14n + 5
Answer: A. 6n-11
Step-by-step explanation:
First, ignore the parenthesis because it is addition and subtraction so they are commutative. 10n-4n = 6n and -8-3 is the same as -8+-3 which is -11. Combining the answer gives 6n-11.
Solve the following IVP's for the undamped (b= 0) spring-mass system. Describe, in words, the meaning of the initial conditions. Also, state the period and frequency and describe their meaning in layman's terms. Assume we are using the metric system. 10. k = 24, m = 3, y(0) = -2, y'(0) = -3
The solution to the given initial value problem for the undamped spring-mass system with k = 24, m = 3, y(0) = -2, and y'(0) = -3 is:
y(t) = -2cos(4t) - (3/4)sin(4t)
In the undamped spring-mass system, the motion of the mass is governed by the equation my'' + ky = 0, where m represents the mass of the object attached to the spring, k is the spring constant, and y(t) represents the displacement of the object from its equilibrium position at time t.
Solving the differential equation
By solving the differential equation for the given values of k and m, we obtain the general solution y(t) = Acos(ωt) + Bsin(ωt), where A and B are constants to be determined and ω is the angular frequency given by ω = sqrt(k/m).
Applying the initial conditions
To determine the specific solution for the given initial conditions, we substitute y(0) = -2 and y'(0) = -3 into the general solution. This allows us to find the values of A and B.
Substituting y(0) = -2, we get:
-2 = Acos(0) + Bsin(0)
-2 = A
Substituting y'(0) = -3, we get:
-3 = -Aωsin(0) + Bωcos(0)
-3 = Bω
We already know A = -2, so substituting this value into the equation -3 = Bω, we find B = -3/ω.
Final solution and interpretation
Using the values of A and B in the general solution y(t) = Acos(ωt) + Bsin(ωt), and substituting ω = sqrt(k/m), we obtain the final solution:ssss
y(t) = -2cos(sqrt(24/3)t) - (3/4)sin(sqrt(24/3)t)
The period (T) of the oscillation is given by T = 2π/ω, and the frequency (f) is the reciprocal of the period, f = 1/T. In this case, the period and frequency depend on the square root of the spring constant divided by the mass.
The period of oscillation represents the time it takes for the mass to complete one full cycle of its motion, starting from its initial position and returning to that same position. The frequency, on the other hand, represents the number of complete cycles the mass undergoes in one second.
In simpler terms, the period is like the length of time for a complete back-and-forth movement of the mass, while the frequency tells us how many times it goes back and forth within a specific time frame, such as one second.
In this specific problem, the period and frequency depend on the characteristics of the spring-mass system, namely the spring constant (k) and the mass (m). By plugging these values into the appropriate formulas, we can calculate the period and frequency for the given system.
Learn more about:undamped.
brainly.com/question/13253291
#SPJ11
Consider a firm whose production function is q=(KL)
γ
Suppose that γ>1/2. Assume that (w,r)=(1,1). ** Part a (5 marks) Is the production function exhibiting increasing returns to scale/decreasing returns to scale? ** Part b (5 marks) Derive the long-run cost function C(q,γ). ** Part c (5 marks) Show that the long-run cost function is linear/strictly convex/strictly concave in q
γ > 1/2, (1-2γ)/γ < 0, which means the second derivative is negative. Therefore, the long-run cost function is strictly concave in q.
Part a: To determine whether the production function exhibits increasing returns to scale or decreasing returns to scale, we need to examine how changes in inputs affect output.
In general, a production function exhibits increasing returns to scale if doubling the inputs more than doubles the output, and it exhibits decreasing returns to scale if doubling the inputs less than doubles the output.
Given the production function q = (KL)^γ, where γ > 1/2, let's consider the effect of scaling the inputs by a factor of λ, where λ > 1.
When we scale the inputs by a factor of λ, we have K' = λK and L' = λL. Substituting these values into the production function, we get:
q' = (K'L')^γ
= (λK)(λL)^γ
= λ^γ * (KL)^γ
= λ^γ * q
Since λ^γ > 1 (because γ > 1/2 and λ > 1), we can conclude that doubling the inputs (λ = 2) results in more than doubling the output. Therefore, the production function exhibits increasing returns to scale.
Part b: To derive the long-run cost function C(q, γ), we need to determine the cost of producing a given quantity q, taking into account the production function and input prices.
The cost function can be expressed as C(q) = wK + rL, where w is the wage rate and r is the rental rate.
In this case, we are given that (w, r) = (1, 1), so the cost function simplifies to C(q) = K + L.
Using the production function q = (KL)^γ, we can express L in terms of K and q as follows:
q = (KL)^γ
q^(1/γ) = KL
L = (q^(1/γ))/K
Substituting this expression for L into the cost function, we have:
C(q) = K + (q^(1/γ))/K
Therefore, the long-run cost function is C(q, γ) = K + (q^(1/γ))/K.
Part c: To determine whether the long-run cost function is linear, strictly convex, or strictly concave in q, we need to examine the second derivative of the cost function with respect to q.
Taking the second derivative of C(q, γ) with respect to q:
d^2C(q, γ)/[tex]dq^2 = d^2/dq^2[/tex][K + (q^(1/γ))/K]
= d/dq [(1/γ)(q^((1-γ)/γ))/K]
= (1/γ)((1-γ)/γ)(q^((1-2γ)/γ))/K^2
To know more about derivative visit:
brainly.com/question/29144258
#SPJ11
Joining the points (2, 16) and (8,4).
To join the points (2, 16) and (8, 4), we can use the slope-intercept form of a linear equation, which is y = mx + b, where m is the slope and b is the y-intercept.
First, let's calculate the slope (m) using the formula:
m = (y2 - y1) / (x2 - x1)
Substituting the coordinates of the two points:
m = (4 - 16) / (8 - 2)
m = -12 / 6
m = -2
Now that we have the slope, we can choose either of the two points and substitute its coordinates into the slope-intercept form to find the y-intercept (b).
Let's choose the point (2, 16):
16 = -2(2) + b
16 = -4 + b
b = 20
Now we have the slope (m = -2) and the y-intercept (b = 20), we can write the equation of the line:
y = -2x + 20
This equation represents the line passing through the points (2, 16) and (8, 4).
[tex]\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}[/tex]
♥️ [tex]\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}[/tex]
FIFTY POINTS!! find the surface area of the composite figure
Answer:
218 cm²
Step-by-step explanation:
The lateral surface area (LSA) is the area of the sides excluding the top and botton part
LSA formula: 2h(l+b)
For the larger(green) cuboid, h = 4, l = 10, b =5
For the smaller(pink) cuboid, h = 6, l = 2, b =2
Total area = LSA(green) + top part of green + LSA(pink) + top of pink
LSA of green :
2h(l+b) = 2(4)(10+5)
= 8*15
= 120 -----eq(1)
Top part of green:
The area of green cuboid's top- area of pink cuboid's base
= (10*5) - (2*2)
= 50 - 4
= 46 -----eq(2)
LSA of pink:
2h(l+b) = 2(6)(2+2)
= 12*4
= 48 -----eq(3)
Top part of pink:
2*2 = 4 -----eq(3)
Total area:
eq(1) + eq(2) + eq(3) + eq(4)
= 120 + 45 + 48 + 4
= 218 cm²