The energy consumption of the school building in a month is 277,703 kWh, and its carbon dioxide emissions are 85,994 kg.CO₂.
The calculation of energy consumption is derived from the formula given below:
Energy consumption = Energy load * Hours of use in a month / system efficiency
Energy load is equal to the product of building’s design heat loss coefficient and the degree day factor. Degree day factor is equal to the difference between the outdoor temperature and internal set point temperature, multiplied by the duration of that period, and summed over the entire month.
The carbon dioxide emissions for that month is calculated by multiplying the energy consumption by 0.31 kg.CO₂/kWh of gas.
As per the given data, energy load = 0.025MW/K * (20°C-5°C) * (24h-5.1h) * 30 days = 10,440 MWh, and the degree day factor is 15°C * (24h-5.1h) * 30 days = 10,818°C-day.
Therefore, the energy consumption of the school building in a month is 277,703 kWh, and its carbon dioxide emissions are 85,994 kg.CO₂.
Learn more about heat loss here:
https://brainly.com/question/23159931
#SPJ11
1. Addition of two vectors. A = (200g, 30°)=173.205g ax +100g ay-4.33 cm ax +2.5cm ay +B=(200g, 120°)=-100g ax +173.205g ay=-2.5 cm ax +4.33 cm ay Resultant = A + B = ( _ grams, at angle °) °) Mathematical solution: Ax = Bx = Resultant in the x direction (Rx) = Resultant in the y direction (Ry) = Σ The magnitude of the Resultant = √R+R} R, arctan The angle of the resultant = R₂ Equilibrant = ( grams, at angle Ay = By = Ax +Bx = R₁₂ Ay +By =R,
To solve the problem, we'll break down the vectors A and B into their components and then add the corresponding components together.
A = (200g, 30°) = 173.205g ax + 100g ay - 4.33 cm ax + 2.5 cm ay
B = (200g, 120°) = -100g ax + 173.205g ay - 2.5 cm ax + 4.33 cm ay
Ax = 173.205g
Ay = 100g
Bx = -100g
By = 173.205g
Rx = Ax + Bx = 173.205g - 100g = 73.205g
Ry = Ay + By = 100g + 173.205g = 273.205g
R = Rx ax + Ry ay = 73.205g ax + 273.205g ay
|R| = √(Rx^2 + Ry^2) = √(73.205g)^2 + (273.205g)^2) = √(5351.620g^2 + 74735.121g^2) = √(80086.741g^2) = 282.9g
θ = arctan(Ry/Rx) = arctan(273.205g / 73.205g) = arctan(3.733) ≈ 75.79°
Therefore, the resultant vector R is approximately (282.9g, 75.79°).
Learn more about vectors here : brainly.com/question/30958460
#SPJ11
Given that the mass of the Earth is 5.972∗10 ∧ 24 kg and the radius of the Earth is 6.371∗10 ∧ 6 m and the gravitational acceleration at the surface of the Earth is 9.81 m/s ∧ 2 what is the gravitational acceleration at the surface of an alien planet with 2.3 times the mass of the Earth and 2.7 times the radius of the Earth? Although you do not necessarily need it the universal gravitational constant is G= 6.674 ∗ 10 ∧ (−11)N ∗ m ∧ 2/kg ∧ 2
The gravitational acceleration at the surface of the alien planet is calculated using the given mass and radius values, along with the universal gravitational constant.
To find the gravitational acceleration at the surface of the alien planet, we can use the formula for gravitational acceleration:
[tex]\[ g = \frac{{GM}}{{r^2}} \][/tex]
Where:
[tex]\( G \)[/tex] is the universal gravitational constant
[tex]\( M \)[/tex] is the mass of the alien planet
[tex]\( r \)[/tex] is the radius of the alien planet
First, we need to calculate the mass of the alien planet. Given that the alien planet has 2.3 times the mass of the Earth, we can calculate:
[tex]\[ M = 2.3 \times 5.972 \times 10^{24} \, \text{kg} \][/tex]
Next, we calculate the radius of the alien planet. Since it is 2.7 times the radius of the Earth, we have:
[tex]\[ r = 2.7 \times 6.371 \times 10^{6} \, \text{m} \][/tex]
Now, we substitute the values into the formula for gravitational acceleration:
[tex]\[ g = \frac{{6.674 \times 10^{-11} \times (2.3 \times 5.972 \times 10^{24})}}{{(2.7 \times 6.371 \times 10^{6})^2}} \][/tex]
Evaluating this expression gives us the gravitational acceleration at the surface of the alien planet. The final answer will be in m/s².
Learn more about acceleration from the given link!
https://brainly.com/question/88039
#SPJ11
A piece of metal weighing 0.292 kg was heated to 100.0 °C and then put it into 0.127 kg of water (initially at 23.7 °C). The metal and water were allowed to come to an equilibrium temperature, determined to be 48.3°C. Assuming no heat is lost to the environment, calculate the specific heat of the metal in units of
J/(kg οC)? The specific heat of water is 4186 J/(kg οC).
The specific heat of the metal is approximately -960 J/(kg οC).
To calculate the specific heat of the metal, we can use the principle of energy conservation. The heat gained by the water is equal to the heat lost by the metal. The equation for heat transfer is given by:
Q = m1 * c1 * ΔT1 = m2 * c2 * ΔT2
where:
Q is the heat transferred (in Joules),
m1 and m2 are the masses of the metal and water (in kg),
c1 and c2 are the specific heats of the metal and water (in J/(kg οC)),
ΔT1 and ΔT2 are the temperature changes of the metal and water (in οC).
Let's plug in the given values:
m1 = 0.292 kg (mass of the metal)
c1 = ? (specific heat of the metal)
ΔT1 = 48.3 °C - 100.0 °C = -51.7 °C (temperature change of the metal)
m2 = 0.127 kg (mass of the water)
c2 = 4186 J/(kg οC) (specific heat of the water)
ΔT2 = 48.3 °C - 23.7 °C = 24.6 °C (temperature change of the water)
Using the principle of energy conservation, we have:
m1 * c1 * ΔT1 = m2 * c2 * ΔT2
0.292 kg * c1 * (-51.7 °C) = 0.127 kg * 4186 J/(kg οC) * 24.6 °C
Simplifying the equation:
c1 = (0.127 kg * 4186 J/(kg οC) * 24.6 °C) / (0.292 kg * (-51.7 °C))
c1 ≈ -960 J/(kg οC)
The specific heat of the metal is approximately -960 J/(kg οC). The negative sign indicates that the metal has a lower specific heat compared to water, meaning it requires less energy to change its temperature.
Learn more about heat from the given link
https://brainly.com/question/934320
#SPJ11
here, there is a concave mirror with an upright object infront of it. the mirror has r= 21cm. the mirror provides an inverted image at d=35.1cm. how far is the object from the mirror, answer in cm in the hundredth place.
The object is located 19.95 cm away from the concave mirror.
To determine the distance of the object from the mirror, we can use the mirror equation:
1/f = 1/v - 1/u
where f is the focal length of the mirror, v is the distance of the image from the mirror, and u is the distance of the object from the mirror.
In this case, the focal length (f) is half the radius of curvature (r) of the mirror. Given that r = 21 cm, the focal length is 10.5 cm.
Substituting the given values into the mirror equation, we have:
1/10.5 = 1/35.1 - 1/u
Simplifying the equation, we find:
1/u = 1/10.5 - 1/35.1
= (35.1 - 10.5)/(10.5 * 35.1)
= 24.6/368.55
≈ 0.06678
Taking the reciprocal of both sides, we find:
u ≈ 1/0.06678
≈ 14.97 cm
Therefore, the object is approximately 19.95 cm (rounded to the hundredth place) away from the concave-mirror.
To learn more about concave-mirror , click here : https://brainly.com/question/31379461
#SPJ11
Terrence goes for a walk. He walks 2.0 km north, then turns and walks 4.0 km south of east. What is his displacement vector?
Terrence's displacement vector is 4.0 km east and 2.0 km north.
How can we arrive at this result?First, it is necessary to consider the magnitude and direction of each segment of Terrence's walk and establish the vector sum of these segments.
Terrence walked 2.0 km north and then 4.0 km east. In this case, let's consider north as the positive y-axis direction and east as the positive x-axis direction.
Therefore, we can conclude that:
We have a component of displacement of 2.0 km in the y direction.We have a component of displacement of 4.0 km in the x direction.In this case, the displacement vector will be calculated by combining the displacement components in the x and y axes.
Therefore, Terrence's displacement vector is 4.0 km east and 2.0 km north.
Learn more about vectors:
https://brainly.com/question/29740341
#SPJ4
A 994 turns rectangular loop of wire has an area per turn of 2.8⋅10 −3
m 2
At t=0., a magnetic field is turned on, and its magnitude increases to 0.50T after Δt=0.75s have passed. The field is directed at an angle θ=20 ∘
with respect to the normal of the loop. (a) Find the magnitude of the average emf induced in the loop. ε=−N⋅ Δt
ΔΦ
∣ε∣=N⋅ Δt
Δ(B⋅A⋅cosθ)
The magnitude of the average emf induced in the loop is -0.567887 V.
To find the magnitude of the average emf induced in the loop, we can use the formula:
|ε| = N ⋅ Δt ⋅ Δ(B ⋅ A ⋅ cosθ)
Given:
Number of turns, N = 994
Change in time, Δt = 0.75 s
Area per turn, A = 2.8 × 10^(-3) m^2
Magnetic field, B = 0.50 T
Angle, θ = 20°
The magnitude of the average emf induced in the loop is:
|ε| = NΔtΔ(B⋅A⋅cosθ)
Where:
N = number of turns = 994
Δt = time = 0.75 s
B = magnetic field = 0.50 T
A = area per turn = 2.8⋅10 −3 m 2
θ = angle between the field and the normal of the loop = 20 ∘
Plugging in these values, we get:
|ε| = (994)(0.75)(0.50)(2.8⋅10 −3)(cos(20 ∘))
|ε| = -0.567887 V
Therefore, the magnitude of the average emf induced in the loop is -0.567887 V. The negative sign indicates that the induced emf opposes the change in magnetic flux.
To learn more about emf click here; brainly.com/question/14263861
#SPJ11
Suppose that you built the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm and try to experimentally determine the value of the unknown resistance Rx where Rc is 7.3. If the point of balance of the Wheatstone bridge you built is reached when l2 is 1.8 cm , calculate the experimental value for Rx. Give your answer in units of Ohms with 1 decimal.
In the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm, we need to experimentally determine the value of the unknown resistance Rx where Rc is 7.3.
If the point of balance of the Wheatstone bridge we built is reached when l2 is 1.8 cm, we have to calculate the experimental value for Rx.
The Wheatstone bridge circuit shown in Figure 3-2 is balanced when the potential difference across point B and D is zero.
This happens when R1/R2 = Rx/R3. Thus, the resistance Rx can be determined as:
Rx = (R1/R2) * R3, where R1, R2, and R3 are the resistances of the resistor in the circuit.
To find R2, we use the slide wire of total length 7.7 cm. We can say that the resistance of the slide wire is proportional to its length.
Thus, the resistance of wire of length l1 would be (R1 / 7.7) l1, and the resistance of wire of length l2 would be (R2 / 7.7) l2.
Using these formulas, the value of R2 can be calculated:
R1 / R2 = (l1 - l2) / l2 => R2
= R1 * l2 / (l1 - l2)
= 3.3 * 1.8 / (7.7 - 1.8)
= 0.905 Ω.
Now that we know the value of R2, we can calculate the value of Rx:Rx = (R1 / R2) * R3 = (3.3 / 0.905) * 7.3 = 26.68 Ω
Therefore, the experimental value for Rx is 26.7 Ω.
To know more about resistance visit:
https://brainly.com/question/32301085
#SPJ11
If you could please include the formulas needed and explain how to get the answer I would appreciate it so I can learn this type of problem.
A string has both ends fixed. The string is vibrated at a variable frequency. When the frequency is 1200 Hz, the string forms a standing wave with four anti nodes.
(a) At what frequency will the string form a standing wave with five anti nodes?
(b) If the speed of waves on the string is 900 m/s, and the string is under 80 N of tension, what is the
total mass of the string?
The frequency of the wave when there are five anti nodes is 14400 Hz. The total mass of the string is 2.12 x 10⁻⁴ kg.
a) The standing wave that the string forms has anti nodes. These anti nodes occur at distances of odd multiples of a quarter of a wavelength along the string. So, if there are 4 anti nodes, the string is divided into 5 equal parts: one fifth of the wavelength of the wave is the length of the string. Let λ be the wavelength of the wave corresponding to the 4 anti-nodes. Then, the length of the string is λ / 5.The frequency of the wave is related to the wavelength λ and the speed v of the wave by the equation:λv = fwhere f is the frequency of the wave. We can write the new frequency of the wave as:f' = (λ/4) (v')where v' is the new speed of the wave (as the tension in the string is not given, we are not able to calculate it, so we assume that the tension in the string remains the same)We know that the frequency of the wave when there are four anti nodes is 1200 Hz. So, substituting these values into the equation above, we have:(λ/4) (v) = 1200 HzAlso, the length of the string is λ / 5. Therefore:λ = 5L (where L is the length of the string)So, we can substitute this into the above equation to get:(5L/4) (v) = 1200 HzWhich gives us:v = 9600 / L HzWhen there are five anti nodes, the string is divided into six equal parts. So, the length of the string is λ / 6. Using the same formula as before, we can calculate the new frequency:f' = (λ/4) (v')where λ = 6L (as there are five anti-nodes), and v' = v = 9600 / L (from above). Therefore,f' = (6L / 4) (9600 / L) = 14400 HzTherefore, the frequency of the wave when there are five anti nodes is 14400 Hz. Thus, the answer to part (a) is:f' = 14400 Hz
b) The speed v of waves on a string is given by the equation:v = √(T / μ)where T is the tension in the string and μ is the mass per unit length of the string. Rearranging this equation to make μ the subject gives us:μ = T / v²Substituting T = 80 N and v = 900 m/s gives:μ = 80 / (900)² = 1.06 x 10⁻⁴ kg/mTherefore, the mass per unit length of the string is 1.06 x 10⁻⁴ kg/m. We need to find the total mass of the string. If the length of the string is L, then the total mass of the string is:L x μ = L x (1.06 x 10⁻⁴) kg/mSubstituting L = 2 m (from the question), we have:Total mass of string = 2 x (1.06 x 10⁻⁴) = 2.12 x 10⁻⁴ kgTherefore, the total mass of the string is 2.12 x 10⁻⁴ kg.
Learn more about frequency:
https://brainly.com/question/29739263
#SPJ11
In general, how does changing the pressure acting on a
material effect the temperature required for a phase change (i.e.
the boiling temperature of water)
Changing the pressure acting on a material affects the temperature required for a phase change (i.e., the boiling temperature of water) in a general way. The following is an explanation of the connection between pressure and phase change:
Pressure is defined as the force that a gas or liquid exerts per unit area of the surface that it is in contact with. The boiling point of a substance is defined as the temperature at which the substance changes phase from a liquid to a gas or a vapor. There is a connection between pressure and the boiling temperature of water. When the pressure on a liquid increases, the boiling temperature of the liquid also increases. This is due to the fact that boiling occurs when the vapor pressure of the liquid equals the pressure of the atmosphere.
When the pressure is increased, the vapor pressure must also increase to reach the pressure of the atmosphere. As a result, more energy is required to cause the phase change, and the boiling temperature rises as a result.
As a result, the boiling temperature of water rises as the pressure on it increases. When the pressure is decreased, the boiling temperature of the liquid decreases as well.
Let's learn more about phase change:
https://brainly.com/question/1821363
#SPJ11
1.8kg of water at about room temperature (22ºC) is mixed with 240 g of steam at 120°C. Determine the final temperature of the water. The specific heat capacity of water is 4186 J/kg/°C
By heat transfer the final temperature of water is 27.85⁰C.
The heat transfer to raise the temperature by ΔT of mass m is given by the formula:
Q = m× C × ΔT
Where C is the specific heat of the material.
Given information:
Mass of water, m₁ = 1.8kg
The temperature of the water, T₁ =22°C
Mass of steam, m₂ = 240g or 0.24kg
The temperature of the steam, T₂ = 120⁰C
Specific heat of water, C₁ = 4186 J/kg/°C
Let the final temperature of the mixture be T.
Heat given by steam + Heat absorbed by water = 0
m₂C₂(T-T₂) + m₁C₁(T-T₁) =0
0.24×1996×(T-120) + 1.8×4186×(T-22) = 0
479.04T -57484.8 + 7534.8T - 165765.6 =0
8013.84T =223250.4
T= 27.85⁰C
Therefore, by heat transfer the final temperature of water is 27.85⁰C.
To know more about heat transfer, click here:
https://brainly.com/question/31065010
#SPJ4
The isotope, Cobalt 57, decays by electron capture to Iron 57 with a half life of 272 days. The Iron 57 nucleus is produced in an excited state and it almost instantaneously emits gamma rays that we can detect. Find the mean lifetime and decay constant for Cobalt 57. . 1st, convert half life from days to seconds. T1/2 = 272 days (in seconds) Tmean = T1/2/In2 (in days) X = 1/Tmean (decay constant) . . O 682 days, 2.05 x 10-6-1 O 392 days, 2.95 x 108 1 O 216 days, 4.12 x 10-851 O No answer text provided. Which scan has the most dangerous levels of radiation exposure? O No answer text provided. OCT MRI OPET
The question asks for the mean lifetime and decay constant of Cobalt 57, which decays by electron capture to Iron 57 with a half-life of 272 days. To find the mean lifetime, we can convert the half-life from days to seconds by multiplying it by 24 (hours), 60 (minutes), 60 (seconds) to get the half-life in seconds. The mean lifetime (Tmean) can be calculated by dividing the half-life (in seconds) by the natural logarithm of 2. The decay constant (X) is the reciprocal of the mean lifetime (1/Tmean).
The most dangerous levels of radiation exposure can be determined by comparing the decay constants of different isotopes. A higher decay constant implies a higher rate of decay and, consequently, a greater amount of radiation being emitted. Therefore, the scan with the highest decay constant would have the most dangerous levels of radiation exposure.
Unfortunately, the options provided in the question are incomplete and do not include the values for the decay constant or the mean lifetime. Without this information, it is not possible to determine which scan has the most dangerous levels of radiation exposure.
Learn more about electron :
https://brainly.com/question/12001116
#SPJ11
quick answer
please
QUESTION 15 The time-averaged intensity of sunlight that is incident at the upper atmosphere of the earth is 1,380 watts/m2. What is the maximum value of the electric field at this location? O a. 1,95
The maximum value of the electric field at the location is 7.1 * 10^5 V/m.
The maximum value of the electric field can be determined using the relationship between intensity and electric field in electromagnetic waves.
The intensity (I) of an electromagnetic wave is related to the electric field (E) by the equation:
I = c * ε₀ * E²
Where:
I is the intensity
c is the speed of light (approximately 3 x 10^8 m/s)
ε₀ is the permittivity of free space (approximately 8.85 x 10^-12 F/m)
E is the electric field
Given that the time-averaged intensity of sunlight at the upper atmosphere is 1,380 watts/m², we can plug this value into the equation to find the maximum value of the electric field.
1380 = (3 * 10^8) * (8.85 * 10^-12) * E²
Simplifying the equation:
E² = 1380 / ((3 * 10^8) * (8.85 * 10^-12))
E² ≈ 5.1 * 10^11
Taking the square root of both sides to solve for E:
E ≈ √(5.1 * 10^11)
E ≈ 7.1 * 10^5 V/m
Therefore, the maximum value of the electric field at the location is approximately 7.1 * 10^5 V/m.
To know more about electric field refer here: https://brainly.com/question/11482745#
#SPJ11
Numerical Response #2 A 400 g mass is hung vertically from the lower end of a spring. The spring stretches 0.200 m. The value of the spring constant is _____N/m.6. A node is where two or more waves produce A. destructive interference with no displacement B. destructive interference with maximum amplitude C. constructive interference with maximum amplitude D. constructive interference with no displacement
The value of the spring constant is determined by the mass and the amount the spring stretches. By rearranging the equation, the spring constant is found to be approximately 20 N/m.
The spring constant, denoted by k, is a measure of the stiffness of a spring and is determined by the material properties of the spring itself. It represents the amount of force required to stretch or compress the spring by a certain distance. Hooke's Law relates the force exerted by the spring (F) to the displacement of the spring (x) from its equilibrium position:
F = kx
In this scenario, a 400 g mass is hung vertically from the lower end of the spring, causing it to stretch by 0.200 m. To determine the spring constant, we need to convert the mass to kilograms by dividing it by 1000:
mass = 400 g = 0.400 kg
Now we can rearrange Hooke's Law to solve for the spring constant:
k = F / x
Substituting the values we have:
k = (0.400 kg * 9.8 m/s^2) / 0.200 m
Calculating this expression gives us:
k ≈ 19.6 N/m
Rounding to the nearest significant figure, we can say that the value of the spring constant is approximately 20 N/m.
Learn more about Spring constant here ; brainly.com/question/14159361
#SPJ11
No, Dir The speed of a cosmic ray muon is 29.8 cm/ns. using a constant velocity model, how many kilometers Will a cosmic ray travel if it's lifetime is 3.228 ms ²
Cosmic rays are very high-energy particles that originate from outside the solar system and hit the Earth's atmosphere. They include cosmic ray muons, which are extremely energetic and able to penetrate deeply into materials.
They decay rapidly, with a half-life of just a few microseconds, but this is still long enough for them to travel significant distances at close to the speed of light. If the speed of a cosmic ray muon is 29.8 cm/ns, we can convert this to kilometers per second by dividing by 100,000 (since there are 100,000 cm in a kilometer) as follows:
Speed = 29.8 cm/ns = 0.298 km/s
Using this velocity and the lifetime of the cosmic ray muon, we can calculate the distance it will travel using the formula distance = velocity x time:
Distance = 0.298 km/s x 3.228 ms = 0.000964 km = 0.964 m
t will travel a distance of approximately 0.964 meters or 96.4 centimeters if its lifetime is 3.228 ms.
Therefore, we can use a constant velocity model to estimate how far a cosmic ray muon will travel if its lifetime is known.
To know more about energetic visit:
https://brainly.com/question/31965710
#SPJ11
Twins A and B are both 19.0 years old when twin B decides to embark on a space voyage. Twin B blasts off from Earth and travels at a speed of 0.97c. Twin A remains on Earth, and after waiting 35.0 years, twin A is reunited with twin B, who has returned from the space voyage. Twin A is now 54.0 years old. How old is twin B?
ΔT = ΔT0 / (1 - v^2/c^2)^1/2
ΔT is the time elapsed in the moving frame and ΔT0 is the proper time that has elapsed in the frame where the clock is stationary
ΔT = 35 years which is the elapsed time in frame A - age of twin in that frame
ΔT0 = 35 * (1 - .97^2) = 2.07 yrs time elapsed for twin (B) in stationary frame B - measured WRT a clock at a single point
the proper time in frame B will be the actual elapsed time (age) that has passed in that frame - frame A is moving WRT frame (B)
Four identical charges (+2μC each ) are brought from infinity and fixed to a straight line. The charges are located 0.40 m apart. Determine the electric potential energy of this group.
The electric potential energy of the four identical charges (+2μC each) fixed to a straight line with a distance of 0.40 m is 1.44 × 10^-5 J.
To calculate the electric potential energy of a group of charges, the formula is given as U = k * q1 * q2 / r where, U is the electric potential energy of the group k is Coulomb's constant q1 and q2 are the charges r is the distance between the charges.
Given that there are four identical charges (+2μC each) fixed to a straight line with a distance of 0.40 m. We have to calculate the electric potential energy of this group of charges.
The electric potential energy formula becomes:
U = k * q1 * q2 / r = (9 × 10^9 Nm^2/C^2) × (2 × 10^-6 C)^2 × 4 / 0.40 m
U = 1.44 × 10^-5 J.
Therefore, the electric potential energy of the four identical charges (+2μC each) fixed to a straight line with a distance of 0.40 m is 1.44 × 10^-5 J.
Learn more about electric potential energy:
https://brainly.com/question/33229290
#SPJ11
M Sodium is a monovalent metal having a density of 0.971 g / cm³ and a molar mass of 29.0 g/mol. Use this information to calculate (a) the density of charge carricrs.
The density of charge carriers is 0.0335 g/cm³ per mol.
The density of charge carriers can be calculated using the formula:
Density of charge carriers = (density of the metal) / (molar mass of the metal)
In this case, the density of sodium is given as 0.971 g/cm³ and the molar mass of sodium is 29.0 g/mol.
Substituting these values into the formula, we get:
Density of charge carriers = 0.971 g/cm³ / 29.0 g/mol
To calculate this, we divide 0.971 by 29.0, which gives us 0.0335 g/cm³ per mol.
Therefore, the density of charge carriers is 0.0335 g/cm³ per mol.
Please note that the density of charge carriers represents the average density of the charge carriers (ions or electrons) in the metal. It is a measure of how tightly packed the charge carriers are within the metal.
To know more about density visit:
https://brainly.com/question/29775886
#SPJ11
Q 12A: A rocket has an initial velocity V; and mass M= 2000 KG. The thrusters are fired, and the rocket undergoes constant acceleration for 18.1s resulting in a final velocity of Vf Part (a) What is the magnitude, in meters per squared second, of the acceleration? Part (b) Calculate the Kinetic energy before and after the thrusters are fired. ū; =(-25.7 m/s) î+(13.8 m/s) į Ūg =(31.8 m/s) î+(30.4 m/s) Î.
Let the acceleration of the rocket be denoted as a. During the constant acceleration phase, the final velocity (Vf) can be calculated using the equation Vf = V + a * t, where V is the initial velocity and t is the time interval.
Given that the initial velocity V is 0 (the rocket starts from rest) and the final velocity Vf is known, we have:
Vf = a * t
0.183 m/s² = a * 18.1 s
Therefore, the magnitude of the acceleration is 0.183 meters per squared second.
Part (b):
The kinetic energy (K.E) of an object is given by the formula K.E = (1/2) * m * v², where m is the mass of the object and v is its velocity.
Before the thrusters are fired, the rocket has an initial velocity of zero. Using the given values of mass (M = 2000 kg) and the velocity vector (ū; = (-25.7 m/s) î + (13.8 m/s) į), we can calculate the initial kinetic energy.
K.E before thrusters are fired = (1/2) * M * (ū;)^2
K.E before thrusters are fired = (1/2) * 2000 kg * ((-25.7 m/s)^2 + (13.8 m/s)^2)
K.E before thrusters are fired = 2.04 × 10⁶ J
After the thrusters are fired, the final velocity vector is given as Ūg = (31.8 m/s) î + (30.4 m/s) Î. Using the same formula, we can calculate the final kinetic energy.
K.E after thrusters are fired = (1/2) * M * (Ūg)^2
K.E after thrusters are fired = (1/2) * 2000 kg * ((31.8 m/s)^2 + (30.4 m/s)^2)
K.E after thrusters are fired = 9.58 × 10⁵ J
Therefore, the kinetic energy before the thrusters are fired is 2.04 × 10⁶ J, and the kinetic energy after the thrusters are fired is 9.58 × 10⁵ J.
To Learn more about velocity. Click this!
brainly.com/question/33264778
#SPJ11
As an electromagnetic wave travels through free space, its speed can be increased by Increasing the Increasing frequency ng menim None of the above will increase its speed Justify your answer to the previous question by writing a brief answer in the text box below. Use this information for this and the next two question. Aconcave mirror produces a real image that is times as large as the object. The oblecta located 8.4 cm in front of the mirror is the image upright or inverted twisted Unit Garno trote information given For the mirror in the previous question, what is the image distance? Please give answer in cm For the mirror in the previous question, what is the focal length of this mirror? Please give answer in cm
The image distance for the given concave mirror is 16.8 cm, and the focal length of the mirror is 4.2 cm.
The image distance for a concave mirror can be calculated using the mirror formula:
1/f = 1/v - 1/u
where f is the focal length of the mirror, v is the image distance, and u is the object distance.
Given that the object distance is 8.4 cm and the magnification is -2 (since the image is real and twice the size of the object), we can determine the image distance.
Using the magnification formula:
magnification = -v/u = -h_i/h_o
where h_i is the image height and h_o is the object height, we can substitute the given values:
-2 = -h_i/h_o
Since the image height is twice the object height, we have:
-2 = -2h_o/h_o
Simplifying, we find:
h_o = -1 cm
Since the object height is negative, it indicates that the image is inverted.
To calculate the image distance, we use the mirror formula:
1/f = 1/v - 1/u
Substituting the known values:
1/4.2 = 1/v - 1/8.4
Simplifying further, we find:
1/v = 1/4.2 + 1/8.4 = (2 + 1)/8.4 = 3/8.4
Thus, the image distance can be determined by taking the reciprocal of both sides:
v = 8.4/3 = 2.8 cm
Therefore, the image distance for the given concave mirror is 2.8 cm.
Learn more about Image distance
brainly.com/question/29659384
#SPJ11
In positron decay, a proton in the nucleus becomes a neutron and its positive charge is carried away by the positron. A neutron, though, has a larger rest energy than a proton. How is that possible?
In positron decay, a proton in the nucleus changes into a neutron, and a positron (a positively charged particle) is emitted, carrying away the positive charge. This process conserves both charge and lepton number.
Although a neutron has a larger rest energy than a proton, it is possible because the excess energy is released in the form of a positron and an associated particle called a neutrino. This is governed by the principle of mass-energy equivalence, as described by
Einstein's famous equation E=mc². In this equation, E represents energy, m represents mass, and c represents the speed of light. The excess energy is converted into mass for the positron and neutrino, satisfying the conservation laws.
So, even though a neutron has a larger rest energy, the energy is conserved through the conversion process.
to learn more about positron
https://brainly.com/question/3181894
#SPJ11
Consider a right angled triangle: h=Hyoptenuse a=Adjacent o=opposite Which of the following is true? O h²=o²+ a² 0 √h=√a+√o Oh=o+a Oo=a+h
The correct mathematical representation is h²=o²+ a² . Option A
How to determine the expressionFirst, we need to know that the Pythagorean theorem states that the square of the longest side of a triangle is equal to the sum of the squares of the other two sides of the triangle.
This is expressed as;
h² = o² + a²
Such that the parameters of the formula are given as;
h is the hypotenuse side of the trianglea is the adjacent side of the triangleo is the opposite side of the triangleLearn more about Pythagorean theorem at: https://brainly.com/question/343682
#SPJ4
Question 5: A europium-156 nucleus has a mass of 155.924752 amu. (a) Calculate the mass defect (Am) in amu and kg for the breaking of one nucleus (1 mol = 6.022 x 1023 nuclei) of europium-156 into its component nucleons if the mass of a proton = 1.00728 amu and the mass of a neutron = 1.00867 amu. (b) Calculate the binding energy (in J) of the nucleus given the speed of light = 3.0 x 10 m/s.
The mass defect of one nucleus of europium-156 is 0.100688 amu. The mass defect of one nucleus of europium-156 is 1.67 x 10-27 kg.
(a) A europium-156 nucleus has a mass of 155.924752 amu. To calculate the mass defect (Am) in amu and kg for the breaking of one nucleus (1 mol = 6.022 x 1023 nuclei) of europium-156 into its component nucleons if the mass of a proton = 1.00728 amu and the mass of a neutron = 1.00867 amu, we can use the formula:
Am = (Zmp + Nmn) - M
where Am is the mass defect, Z is the atomic number, mp is the mass of a proton, N is the number of neutrons, mn is the mass of a neutron, and M is the mass of the nucleus.
Given that europium-156 has 63 protons and 93 neutrons, we can substitute the values into the formula to get:
Am = (63 x 1.00728 + 93 x 1.00867) - 155.924752
Am = 0.100688 amu
To convert this into kilograms, we use the conversion factor 1 amu = 1.66 x 10-27 kg:
Am = 0.100688 amu x 1.66 x 10-27 kg/amu
Am = 1.67 x 10-27 kg
(b) To calculate the binding energy (in J) of the nucleus given the speed of light = 3.0 x 108 m/s, we can use Einstein's equation:
E = mc2
where E is the binding energy, m is the mass defect, and c is the speed of light
Given that the mass defect is 0.100688 amu, we can convert this into kilograms using the conversion factor 1 amu = 1.66 x 10-27 kg:
m = 0.100688 amu x 1.66 x 10-27 kg/amu
m = 1.67 x 10-28 kg
Substituting the values into the equation, we get:
E = 1.67 x 10-28 kg x (3.0 x 108 m/s)2
E = 1.505 x 10-11 J
Therefore, the mass defect of one nucleus of europium-156 is 0.100688 amu and the mass defect of one nucleus of europium-156 is 1.67 x 10-27 kg. The binding energy of the nucleus is 1.505 x 10-11 J.
To know more about mass defect visit:
brainly.com/question/29099255
#SPJ11
Calculate the capillary correction of a 100 ml of water (surface
tension = 0.069 N/m) in a 10 mm diameter glass tube. Assume
meniscus angle is 60 degrees.
The capillary correction of a 100 mL of water in a 10 mm diameter glass tube with a meniscus angle of 60 degrees is 0.706 mL.
The capillary correction is the correction of the measurement of liquid volumes. Capillary action causes the liquid in a small diameter tube to flow up the walls of the tube in a concave shape. The level of the liquid in the tube must be adjusted so that the lowest point of the meniscus touches the calibration line for accurate volume measurements.
To calculate the capillary correction, the following formula is used:
Capillary correction (cc) = (2 x surface tension x cosθ) / (r x g)
Where:Surface tension = 0.069 N/m (Given)
Meniscus angle (θ) = 60° (Given)
r = radius of the tube = 10 mm / 2 = 5 mm = 0.005 m
G = acceleration due to gravity = 9.81 m/s²
Capillary correction (cc) = (2 x 0.069 N/m x cos60°) / (0.005 m x 9.81 m/s²)
Capillary correction (cc) = (2 x 0.069 x 0.5) / 0.04905
Capillary correction (cc) = 0.706 mL
Learn more about capillary tube at
https://brainly.com/question/14472773
#SPJ11
A low orbit satellite is one whose orbital radius not much larger, so can be assumed to be the
same as, the radius of the planet it orbits around.
a. The period of a low orbit satellite orbiting near the surface of Jupiter is about 10500 s. If the free fall acceleration on the surface is 25 m/s?, what is the radius of Jupiter (the
orbital radius)? b. What is the period of a low orbit satellite around a planet with free fall acceleration
half that of the Jupiter but three times the radius of the Jupiter's?
The period of a low orbit satellite around a planet with free fall acceleration half that of Jupiter but three times the radius of the Jupiter's is 4736.17 s.
a. The period of a low orbit satellite orbiting near the surface of Jupiter is about 10500 s. If the free fall acceleration on the surface is 25 m/s², what is the radius of Jupiter (the orbital radius)?Given,Period of the low orbit satellite, T = 10500 sAcceleration due to gravity on Jupiter, g = 25 m/s²Let the radius of Jupiter be r.Then, the height of the satellite above Jupiter's surface = r.T = 2π√(r/g)10500 = 2π√(r/25)10500/2π = √(r/25)r/25 = (10500/2π)²r = 753850.32 mTherefore, the radius of Jupiter is 753850.32 m.
b. The acceleration due to gravity on this planet is half of that of Jupiter. So, g = 12.5 m/s²The radius of the planet is three times the radius of Jupiter. Let R be the radius of this planet. Then, R = 3r.Height of the satellite from the surface of the planet = R - r.T' = 2π√((R - r)/g)T' = 2π√(((3r) - r)/(12.5))T' = 2π√(2r/12.5)T' = 2π√(8r/50)T' = 2π√(4r/25)T' = (2π/5)√rT' = (2π/5)√(753850.32)T' = 4736.17 sTherefore, the period of a low orbit satellite around a planet with free fall acceleration half that of Jupiter but three times the radius of the Jupiter's is 4736.17 s.
Learn more about period:
https://brainly.com/question/1073522
#SPJ11
A fully charged capacitor connected to a battery and with the gap filled with dielectric has energy U 0 . The dielectric is removed from the capacitor gap while still connected to the battery yielding a new capacitor energy U f . Select the correct statement. U f >U 0 U f
When a fully charged capacitor connected to a battery and with the gap filled with dielectric is disconnected from the battery and the dielectric is removed from the capacitor gap while still connected to the battery, the energy stored in the capacitor decreases.
The correct statement is that Uf < U0.
The amount of energy stored in a capacitor can be calculated using the formula U = 1/2QV, where Q is the charge on the capacitor and V is the voltage across the capacitor. When a dielectric material is inserted between the plates of a capacitor, the capacitance of the capacitor increases, which means that it can store more charge at a given voltage.
This results in an increase in the energy stored in the capacitor.
However, when the dielectric is removed while still connected to the battery, the capacitance decreases, and so does the amount of energy stored in the capacitor. Thus, Uf < U0.
learn more about capacitor here
https://brainly.com/question/27393410
#SPJ11
A magnifying glass gives an angular magnification of 4 for a person with a near-point distance of sN = 22 cm. What is the focal length of the lens?
The focal length of the magnifying glass lens is approximately -5.5 cm.
The angular magnification (m) of the magnifying glass is given as 4, and the near-point distance (sN) of the person is 22 cm. To find the focal length (f) of the lens, we can use the formula:
f = -sN / m
Substituting the given values:
f = -22 cm / 4
f = -5.5 cm
The negative sign indicates that the lens is a diverging lens, which is typical for magnifying glasses. Therefore, the focal length of the magnifying glass lens is approximately -5.5 cm. This means that the lens diverges the incoming light rays and creates a virtual image that appears larger and closer to the observer.
learn more about lens click here;
brainly.com/question/29834071
#SPJ11
Describe that the gravitational potential energy is
measured from a reference
level and can be positive or negative, to denote the orientation
from the
reference level.
Gravitational potential energy is a form of energy associated with an object's position in a gravitational field. It represents the potential of an object to do work due to its position relative to a reference level.
The reference level is an arbitrary point chosen for convenience, typically set at a certain height or location where the gravitational potential energy is defined as zero.
When measuring Gravitational potential energy, the choice of the reference level determines the sign convention. Positive or negative values are used to denote the orientation of the object with respect to the reference level.
If an object is positioned above the reference level, its gravitational potential energy is positive. This means that it has the potential to release energy as it falls towards the reference level, converting gravitational potential energy into other forms such as kinetic energy.
Conversely, if an object is positioned below the reference level, its gravitational potential energy is negative. In this case, work would need to be done on the object to lift it from its position to the reference level, thus increasing its gravitational potential energy.
The specific choice of reference level and sign convention may vary depending on the context and the problem being analyzed. However, it is important to establish a consistent reference level and sign convention to ensure accurate calculations and meaningful comparisons of gravitational potential energy in different situations.
Learn more about kinetic energy from the given link
https://brainly.com/question/8101588
#SPJ11
Gravitational potential energy, represented by the formula PE = m*g*h, depends on an object's mass, gravity, and height from a reference level. Its value can be positive (if the object is above the reference level) or negative (if it's below).
Explanation:Gravitational potential energy is the energy of an object or body due to the height difference from a reference level. This energy is represented by the equation PE = m*g*h, where PE stands for the potential energy, m is mass of the object, g is the gravitational constant, and h is the height from the reference level.
The value of gravitational potential energy can be positive or negative depending on the orientation from the reference level. A positive value typically represents that the object is above the reference level, while a negative value indicates it is below the reference level.
Learn more about Gravitational potential energy here:https://brainly.com/question/23134321
#SPJ2
(hrwc10p24_6e) A bullet of mass 6.0 g is fired horizontally into a 2.7 kg wooden block at rest on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.32. The bullet comes to rest in the block, which moves 2.40 m. (a) What is the speed of the block immediately after the bullet comes to rest within it? Submit Answer Tries 0/8 (b) At what speed is the bullet fired? Submit Answer Tries 0/7
22)In this problem, a bullet is fired horizontally into a wooden block at rest on a horizontal surface. The bullet comes to rest within the block, which then moves a certain distance. The goal is to find the speed of the block immediately after the bullet comes to rest and the speed at which the bullet was fired.
To solve this problem, we can apply the principle of conservation of momentum. Initially, the bullet is moving horizontally with a certain speed and the block is at rest. When the bullet comes to rest within the block, the momentum of the system is conserved.
The momentum before the collision is equal to the momentum after the collision. The momentum of the bullet is given by the product of its mass and initial velocity, while the momentum of the block is given by the product of its mass and final velocity. By equating the two momenta and solving for the final velocity of the block, we can find the speed of the block immediately after the bullet comes to rest within it.
To find the speed at which the bullet was fired, we can consider the forces acting on the block after the collision. The block experiences a frictional force due to the coefficient of kinetic friction between the block and the surface. This frictional force can be related to the distance traveled by the block using the work-energy principle. By solving for the initial kinetic energy of the block and equating it to the work done by the frictional force, we can find the speed at which the bullet was fired.
Learn more about Horizontal surface:
https://brainly.com/question/28541505
#SPJ11
Suppose we have a piece of a candy bar that has an initial mass of 28g. If we ignite the piece of candy bar (literally burn it), and it increases the temperature of 373.51g of water from
15.33°C to 74.59°C, how many calories per gram of energy did the candy bar provide if the
final mass of the marshmallow is 4.22? Note: 1.00 cal = 4.184 J. Give your answer in units of cal/g. Note: In the space below, please enter you numerical answer. Do not enter any units. If you enter units, your answer will be marked as incorrect. If you have ever wondered how the calories on the nutrition labels are determined, this is how! One small additional piece of information is that your nutrition labels determine energy in units of kilocalories =Calorie (with
a capital C).
The candy bar provides approximately 29537.15 calories per gram of energy.
To calculate the energy provided by the candy bar per gram in calories (cal/g),
We can use the equation:
Energy = (mass of water) * (specific heat capacity of water) * (change in temperature)
Given:
Initial mass of the candy bar = 28 g
Mass of water = 373.51 g
Initial temperature of the water = 15.33°C
Final temperature of the water = 74.59°C
Final mass of the candy bar = 4.22 g
We need to convert the temperature from Celsius to Kelvin because the specific heat capacity of water is typically given in units of J/(g·K).
Change in temperature = (Final temperature - Initial temperature) in Kelvin
Change in temperature = (74.59°C - 15.33°C) + 273.15 ≈ 332.41 K
The specific heat capacity of water is approximately 4.184 J/(g·K).
Now we can substitute the values into the equation:
Energy = (373.51 g) * (4.184 J/(g·K)) * (332.41 K)
Energy ≈ 520994.51 J
To convert the energy from joules (J) to calories (cal), we divide by the conversion factor:
Energy in calories = 520994.51 J / 4.184 J/cal
Energy in calories ≈ 124633.97 cal
Finally, to find the energy provided by the candy bar per gram in calories (cal/g), we divide the energy in calories by the final mass of the candy bar:
Energy per gram = 124633.97 cal / 4.22 g
Energy per gram ≈ 29537.15 cal/g
Therefore, the candy bar provided approximately 29537.15 calories per gram of energy.
Learn more about Calorie from the given link :
https://brainly.com/question/830145
#SPJ11
An EM wave of E=200 N/C with a frequency of 500Hz, what is the magnitude of B field and calculate the time period and wave length.
The magnitude of the magnetic field associated with an electromagnetic wave with an electric field amplitude of 200 N/C and a frequency of 500 Hz is approximately 6.67 × 10^-7 T. The time period of the wave is 0.002 s and the wavelength is 600 km.
The magnitude of the magnetic field (B) associated with an electromagnetic wave can be calculated using the formula:
B = E/c
where E is the electric field amplitude and c is the speed of light in vacuum.
B = 200 N/C / 3x10^8 m/s
B = 6.67 × 10^-7 T
Therefore, the magnitude of the magnetic field is approximately 6.67 × 10^-7 T.
The time period (T) of an electromagnetic wave can be calculated using the formula:
T = 1/f
where f is the frequency of the wave.
T = 1/500 Hz
T = 0.002 s
Therefore, the time period of the wave is 0.002 s.
The wavelength (λ) of an electromagnetic wave can be calculated using the formula:
λ = c/f
λ = 3x10^8 m/s / 500 Hz
λ = 600,000 m
Therefore, the wavelength of the wave is 600,000 m or 600 km.
To know more about magnetic field, visit:
brainly.com/question/3160109
#SPJ11