A zorb is a large inflated ball within a ball. The formula for the radius r of a sphere with surface area A is given by requalsStartRoot StartFraction Upper A Over 4 pi EndFraction EndRoot . Calculate the radius of a zorb whose outside surface area is

Answers

Answer 1

Answer:

radius r of the zorb is ≅ 1.40 m

Step-by-step explanation:

GIven that;

the  radius r of a sphere with surface area A is given by;

[tex]r = \sqrt{\dfrac {A}{4 \pi }}[/tex]  which is read as : (r equals StartRoot StartFraction Upper A Over 4 pi EndFraction EndRoot .)

We are to calculate the radius of a zorb whose outside surface area is  24.63 sq  ( the missing part of the question)

Given that the outside surface area is : 24.63 sq

Let replace the value of the outside surface area which 24.63 sq for A in the equation given from above.

SO:  A = 24.63 sq

[tex]r = \sqrt{\dfrac {A}{4 \pi }}[/tex]

[tex]r = \sqrt{\dfrac {24.63}{4 \pi }}[/tex]

[tex]r = \sqrt{1.9599}[/tex]

r = 1.399

radius r of the zorb is ≅ 1.40 m


Related Questions

. A bag contains 6 red and 3 black chips. One chip is selected, its color is recorded, and it is returned to the bag. This process is repeated until 5 chips have been selected. What is the probability that one red chip was selected?

Answers

Answer:

The probability that one red chip was selected is 0.0053.

Step-by-step explanation:

Let the random variable X be defined as the number of red chips selected.

It is provided that the selections of the n = 5 chips are done with replacement.

This implies that the probability of selecting a red chip remains same for each trial, i.e. p = 6/9 = 2/3.

The color of the chip selected at nth draw is independent of the other selections.

The random variable X thus follows a binomial distribution with parameters n = 5 and p = 2/3.

The probability mass function of X is:

[tex]P(X=x)={5\choose x}\ (\frac{2}{3})^{x}\ (1-\frac{2}{3})^{5-x};\ x=0,1,2...[/tex]

Compute the probability that one red chip was selected as follows:

[tex]P(X=1)={5\choose 1}\ (\frac{2}{3})^{1}\ (1-\frac{2}{3})^{5-1}[/tex]

                [tex]=5\times\frac{2}{3}\times \frac{1}{625}\\\\=\farc{2}{375}\\\\=0.00533\\\\\approx 0.0053[/tex]

Thus, the probability that one red chip was selected is 0.0053.

Answer:

0.0412

Step-by-step explanation:

Total chips = 6 red + 3 black chips

Total chips=9

n=5

Probability of (Red chips ) can be determined by

=[tex]\frac{6}{9}[/tex]

=[tex]\frac{2}{3}[/tex]

=0.667

Now we used the binomial theorem

[tex]P(x) = C(n,x)*px*(1-p)(n-x).....Eq(1)\\ putting \ the \ given\ value \ in\ Eq(1)\ we \ get \\p(x=1) = C(5,1) * 0.667^1 * (1-0.667)^4[/tex]

This can give 0.0412

The equation f(x) is given as x2_4=0. Considering the initial approximation at

x0=6 then the value of x1 is given as

Select one:

O A. 10/3

O B. 7/3

O C. 13/3

O D. 4/3

Answers

Answer:

The value of [tex]x_{1}[/tex] is given by [tex]\frac{10}{3}[/tex]. Hence, the answer is A.

Step-by-step explanation:

This exercise represents a case where the Newton-Raphson method is used, whose formula is used for differentiable function of the form [tex]f(x) = 0[/tex]. The expression is now described:

[tex]x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}}[/tex]

Where:

[tex]x_{n}[/tex] - Current approximation.

[tex]x_{n+1}[/tex] - New approximation.

[tex]f(x_{n})[/tex] - Function evaluated in current approximation.

[tex]f'(x_{n})[/tex] - First derivative of the function evaluated in current approximation.

If [tex]f(x) = x^{2} - 4[/tex], then [tex]f'(x) = 2\cdot x[/tex]. Now, given that [tex]x_{0} = 6[/tex], the function and first derivative evaluated in [tex]x_{o}[/tex] are:

[tex]f(x_{o}) = 6^{2} - 4[/tex]

[tex]f(x_{o}) = 32[/tex]

[tex]f'(x_{o})= 2 \cdot 6[/tex]

[tex]f'(x_{o}) = 12[/tex]

[tex]x_{1} = x_{o} - \frac{f(x_{o})}{f'(x_{o})}[/tex]

[tex]x_{1} = 6 - \frac{32}{12}[/tex]

[tex]x_{1} = 6 - \frac{8}{3}[/tex]

[tex]x_{1} = \frac{18-8}{3}[/tex]

[tex]x_{1} = \frac{10}{3}[/tex]

The value of [tex]x_{1}[/tex] is given by [tex]\frac{10}{3}[/tex]. Hence, the answer is A.

The life of an electric component has an exponential distribution with a mean of 8.9 years. What is the probability that a randomly selected one such component has a life more than 8 years? Answer: (Round to 4 decimal places.)

Answers

Answer:

[tex] P(X>8)[/tex]

And for this case we can use the cumulative distribution function given by:

[tex] F(x) = 1- e^{-\lambda x}[/tex]

And if we use this formula we got:

[tex] P(X>8)= 1- P(X \leq 8) = 1-F(8) = 1- (1- e^{-\frac{1}{8.9} *8})=e^{-\frac{1}{8.9} *8}= 0.4070[/tex]

Step-by-step explanation:

For this case we can define the random variable of interest as: "The life of an electric component " and we know the distribution for X given by:

[tex]X \sim exp (\lambda =\frac{1}{8.9}) [/tex]

And we want to find the following probability:

[tex] P(X>8)[/tex]

And for this case we can use the cumulative distribution function given by:

[tex] F(x) = 1- e^{-\lambda x}[/tex]

And if we use this formula we got:

[tex] P(X>8)= 1- P(X \leq 8) = 1-F(8) = 1- (1- e^{-\frac{1}{8.9} *8})=e^{-\frac{1}{8.9} *8}= 0.4070[/tex]

What is the simplified form of the expression 3cubed root b^2

Answers

Answer:

Step-by-step explanation:

[tex](\sqrt{b^{2}})^{3}=b^{3}\\\\[/tex]

or If it is

[tex]\sqrt[3]{b^{2}} =(b^{2})^{\frac{1}{3}}=b^{2*\frac{1}{3}}=b^{\frac{2}{3}}[/tex]

what is the recursiveformula for this geometric sequence? 4,-12,36,108

Answers

Answer:

  a[1] = 4

  a[n] = -3·a[n-1]

Step-by-step explanation:

The sequence given is not a geometric sequence, since the ratios of terms are -3, -3, 3 -- not a constant.

If we assume that the last given term is supposed to be -108, then the common ratio is -3 and each term is -3 times the previous one. That is expressed in a recursive formula as ...

  a[1] = 4 . . . . . . . . . . .  first term is 4

  a[n] = -3·a[n-1] . . . . . each successive term is -3 times the previous one

I need help pleaseee!

Answers

Step-by-step explanation:

we can use o as the center of the circle

OB=13

EB=12

OE=?

OE^2 +EB^2=OB^2

OE^2+12^2=13^2

OE^2=169-144

OE=

√25

OE=5

OC=OE+EC

EC =13-5

EC=8

What time did they arrive at the airport?

Answers

Answer:

32

Step-by-step explanation:

The cost of unleaded gasoline in the Bay Area once followed a normal distribution with a mean of $4.74 and a standard deviation of $0.16. Sixteen gas stations from the Bay area are randomly chosen. We are interested in the average cost of gasoline for the 15 gas stations. What is the approximate probability that the average price for 15 gas stations is over $4.99?

Answers

Answer:

Approximately 0% probability that the average price for 15 gas stations is over $4.99.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question, we have that:

[tex]\mu = 4.74, \sigma = 0.16, n = 16, s = \frac{0.16}{\sqrt{16}} = 0.04[/tex]

What is the approximate probability that the average price for 15 gas stations is over $4.99?

This is 1 subtracted by the pvalue of Z when X = 4.99. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{4.99 - 4.74}{0.04}[/tex]

[tex]Z = 6.25[/tex]

[tex]Z = 6.25[/tex] has a pvalue very close to 1.

1 - 1 = 0

Approximately 0% probability that the average price for 15 gas stations is over $4.99.

Angle bisectors $\overline{AX}$ and $\overline{BY}$ of triangle $ABC$ meet at point $I$. Find $\angle C,$ in degrees, if $\angle AIB = 109^\circ$.

Answers

Answer:

<C = [tex]38^{o}[/tex]

Step-by-step explanation:

Given that: <AIB = [tex]109^{o}[/tex]

<AIB + <BIX = [tex]180^{o}[/tex] (sum of angles on a straight line)

[tex]109^{o}[/tex] + <BIX =  [tex]180^{o}[/tex]  

<BIX =  [tex]180^{o}[/tex] - [tex]109^{o}[/tex]

<BIX = [tex]71^{o}[/tex]

But,

<AIB = <YIX = [tex]109^{o}[/tex] (opposite angle property)

<XIB = <AIY = [tex]71^{o}[/tex]  (opposite angle property)

Therefore,

[tex]\frac{A}{2}[/tex] + [tex]\frac{B}{2}[/tex] =  [tex]71^{o}[/tex] (Exterior angle property)

[tex]\frac{A + B}{2}[/tex] =  [tex]71^{o}[/tex]

A + B = [tex]142^{o}[/tex]

A + B + C =  [tex]180^{o}[/tex] (sum of angles in a triangle)

 [tex]142^{o}[/tex] + C = [tex]180^{o}[/tex]

C = [tex]180^{o}[/tex] - [tex]142^{o}[/tex]

C = [tex]38^{o}[/tex]

Thus, angle C is [tex]38^{o}[/tex].

Let f(x)= x^3 −6x^2+11x−5 and g(x)=4x^3−8x^2−x+12. Find (f−g)(x). Then evaluate the difference when x=−3 x=−3 .

Answers

Answer: (f-g)(x)= -138

Step-by-step explanation:

Show all work to identify the asymptotes and zero of the faction f(x) = 4x/x^2 - 16.

Answers

Answer:

asymptotes: x = -4, x = 4zeros: x = 0

Step-by-step explanation:

The vertical asymptotes of the rational expression are the places where the denominator is zero:

  x^2 -16 = 0

  (x -4)(x +4) = 0 . . . . . true for x=4, x=-4

  x = 4, x = -4 are the equations of the vertical asymptotes

__

The zeros of a rational expression are the places where the numerator is zero:

  4x = 0

  x = 0 . . . . . . divide by 4

multiply and remove all perfect square roots. Assume y is positive. √12

Answers

Answer:

2√3

Step-by-step explanation:

Step 1: Find perfect square roots

√4 x √3

Step 2: Convert

2 x √3

Step 3: Answer

2√3

Which division sentence is related to the product of a/3 (a/3) when A is not equal to 0?

Answers

Answer:

Option 4.

Step-by-step explanation:

Reciprocal of the second fraction turns the product into the division of the two fractions, which equals to 1.

[tex]a/3(a/3)[/tex]

[tex]a/3 \div 3/a=1[/tex]

Two fractions are said to be the reciprocal or multiplicative inverse of each other, if their product is 1.

Answer:

D. a/3 divided by 3/a = 1

Step-by-step explanation:

edge

please - i got this wrong so plz help

Answers

Answer:

Area = 108 cm^2

Perimeter = 44 cm

Step-by-step explanation:

Area, -->

24 + 30 + 24 + 30 -->

24(2) + 30(2)

48 + 60 = 108 cm^2

108 = area

10 + 12 + 10 + 12, -->

10(2) + 12(2) = 44 cm

44 = perim.

Hope this helps!

Answer:

Step-by-step explanation:

Draw the diagram.

This time put in the only one line for the height. That is only 1 height is 8 cm. That's it.

The base is 6 +  6 = 12 cm.

The slanted line is 10 cm

That's all your diagram should show. It is much clearer without all the clutter.

Now you are ready to do the calculations.

Area

The Area = the base * height.

base = 12

height = 8

Area = 12 * 8 = 96

Perimeter.

In a parallelagram the opposite sides are equal to one another.

One set of sides = 10 + 10 = 20

The other set = 12 + 12 = 24

Both sets = 20 + 24

Both sets = 44

Answer

Area = 96

Perimeter = 44

When planning a more strenuous hike, Nadine figures that she will need at least 0.6 liters of water for each hour on the trail. She also plans to always have at least 1.25 liters of water as a general reserve. If x represents the duration of the hike (in hours) and y represents the amount of water needed (in liters) for a hike, the following inequality describes this relation: y greater or equal than 0.6 x plus 1.25 Which of the following would be a solution to this situation?

Answers

Answer:

The solution for this is:

y = (0.6 * x) + 1.25

Hope it helps! :)

Answer:

Having 3.2 liters of water for 3 hours of hiking

Step-by-step explanation:

If x represents the number of hours and y represents the number of liters of water, then we can plug the possible solutions into our inequality to see which solution(s) work.

The first option is having 3 liters of water for 3.5 hours of hiking. We will plug 3 in for y and 3.5 in for x:

y > 0.6x + 1.25

3 > 0.6(3.5) + 1.25

3 > 3.35

But since 3 is not greater than 3.35, this does not work.

The next option is having 2 liters of water for 2.5 hours of hiking:

2 > 0.6(2.5) + 1.25

2 > 2.75

But 2 is not greater than 2.75, so this does not work.

Option c is having 2.3 liters of water for 2 hours of hiking:

2.3 > 0.6(2) + 1.25

2.3 > 2.45

Since 2.3 is not greater than 2.45, this solution does not work.

The last option is having 3.2 liters of water for 3 hours of hiking:

3.2 > 0.6(3) + 1.25

3.2 > 3.05

3.2 IS greater than 3.05, so this solution works!

Solve for x. 9x-2c=k

Answers

the value of k=1
Explanation the perfect square is 9x2+6x+k=(3x+k)2.=9x2+6x/k+k2.comparing the 2 sides

Please answer this correctly

Answers

Answer:

6 pizzas

Step-by-step explanation:

At least 10 and fewer than 20 makes it 10-19

So,

10-19 => 6 pizzas

6 pizzas have at least 10 pieces of pepperoni but fewer than 20 pieces of pepperoni.

I. In the testing of a new production method, 18 employees were selected randomly and asked to try the new method. The sample mean production rate for the 18 employees was 80 parts per hour and the sample standard deviation was 10 parts per hour. Provide 90% confidence intervals for the populations mean production rate for the new method, assuming the population has a normal probability distribution.

Answers

Answer:

The 90% confidence interval for the mean production rate fro the new method is (75.9, 84.1).

Step-by-step explanation:

We have to calculate a 90% confidence interval for the mean.

The population standard deviation is not known, so we have to estimate it from the sample standard deviation and use a t-students distribution to calculate the critical value.

The sample mean is M=80.

The sample size is N=18.

When σ is not known, s divided by the square root of N is used as an estimate of σM:

[tex]s_M=\dfrac{s}{\sqrt{N}}=\dfrac{10}{\sqrt{18}}=\dfrac{10}{4.24}=2.36[/tex]

The degrees of freedom for this sample size are:

[tex]df=n-1=18-1=17[/tex]

The t-value for a 90% confidence interval and 17 degrees of freedom is t=1.74.

The margin of error (MOE) can be calculated as:

[tex]MOE=t\cdot s_M=1.74 \cdot 2.36=4.1[/tex]

Then, the lower and upper bounds of the confidence interval are:

[tex]LL=M-t \cdot s_M = 80-4.1=75.9\\\\UL=M+t \cdot s_M = 80+4.1=84.1[/tex]

The 90% confidence interval for the mean production rate fro the new method is (75.9, 84.1).

What is the measure of AC?
Enter your answer in the box.

Answers

Answer:

21

Step-by-step explanation:

Since angle ABC is an inscribed angle, its measure is half that of arc AC. Therefore:

[tex]2(3x-1.5)=3x+9 \\\\6x-3=3x+9 \\\\3x-3=9 \\\\3x=12 \\\\x=4 \\\\AC=3(4)+9=12+9=21[/tex]

Hope this helps!

Use the Inscribed Angle theorem to get the measure of AC. The intercepted arc AC is,  21°.

What is the Inscribed Angle theorem?

We know that, Inscribed Angle Theorem stated that the measure of an inscribed angle is half the measure of the intercepted arc.

Given that,

The inscribed angle is, (3x - 1.5)

And the Intercepted arc AC is, (3x + 9)

So, We get;

(3x - 1.5) = 1/2 (3x + 9)

2 (3x - 1.5) = (3x + 9)

6x - 3 = 3x + 9

3x =  9 + 3

3x = 12

x = 4

Thus, The Intercepted arc AC is,

(3x + 9) = 3×4 + 9

           = 21°

Learn more about the Inscribed Angle theorem visit:

brainly.com/question/5436956

#SPJ2

The histogram shows the number of miles driven by a sample of automobiles in New York City.


What is the minimum possible number of miles traveled by an automobile included in the histogram?

Answers

Answer:

0 miles

Step-by-step explanation:

The computation of the minimum possible number of miles traveled by  automobile is shown below:

As we can see that in the given histogram it does not represent any normal value i.e it is not evenly distributed moreover, the normal distribution is symmetric that contains evenly distribution data

But this histogram shows the asymmetric normal distribution that does not have evenly distribution data

Therefore the correct answer is 0 miles

Answer:

2,500

That is your correct answer.

The null hypothesis for this ANOVA F test is: the population mean load failures for the three etch times are all different the population mean load failure is lowest for the 15‑second condition and highest for 60‑second condition at least one population mean load failure differs the sample mean load failure is lowest for the 15‑second condition and highest for 60‑second condition the sample mean load failures for the three etch times are all different the population mean load failures for the three etch times are all equal

Answers

Answer:

The population mean load failures for the three etch times are all equal

Step-by-step explanation:

For an ANOVA F test, the null hypothesis always assumes that mean which is also the average value of the dependent variable which is continuously are the same/ there is no difference in the means. The alternative is to test against the null and it is always the opposite of the null hypothesis.

The Environmental Protection Agency must visit nine factories for complaints of air pollution. In how many ways can a representative visit five of these to investigate this week? Since the representative's travel to visit the factories includes air travel, rental cars, etc., then the order of the visits will make a difference to the travel costs.

Answers

Answer:

The number of ways is  [tex]\left 9}\atop } \right. P _5 = 15120[/tex]

Step-by-step explanation:

From the question we are told that

   The number of factories visited is  [tex]n = 9[/tex]

    The number of factories to be visited by a representative  r = 5

The number of way to visit the 5 factories is mathematically represented as

         [tex]\left 9}\atop } \right. P _5 = \frac{9!}{(9-5)!}[/tex]

Where P represents  permutation

  =>   [tex]\left 9}\atop } \right. P _5 = \frac{9 \ !}{4\ !}[/tex]

 =>     [tex]\left 9}\atop } \right. P _5 = \frac{9 *8*7 * 6 * 5 * 4!}{4\ !}[/tex]

=>    [tex]\left 9}\atop } \right. P _5 = 15120[/tex]

A manager bought 12 pounds of peanuts for $30. He wants to mix $5 per pound cashews with the peanuts to get a batch of mixed nuts that is worth $4 per pound. How many pounds of cashews are needed

Answers

Answer:

18 pounds of cashews are needed.

Step-by-step explanation:

Given;

A manager bought 12 pounds of peanuts for $30.

Price of peanut per pound P = $30/12 = $2.5

Price of cashew per pound C = $5

Price of mixed nut per pound M = $4

Let x represent the proportion of peanut in the mixed nut.

The proportion of cashew will then be y = (1-x), so;

xP + (1-x)C = M

Substituting the values;

x(2.5) + (1-x)5 = 4

2.5x + 5 -5x = 4

2.5x - 5x = 4 -5

-2.5x = -1

x = 1/2.5 = 0.4

Proportion of cashew is;

y = 1-x = 1-0.4 = 0.6

For 12 pounds of peanut the corresponding pounds of cashew needed is;

A = 12/x × y

A = 12/0.4 × 0.6 = 18 pounds

18 pounds of cashews are needed.

According to a report an average person watched 4.55 hours of television per day in 2005. A random sample of 20 people gave the following number of hours of television watched per day for last year. At the 10% significance level, do the data provide sufficient evidence to conclude that the amount of television watched per day last year by the average person differed from that in 2005? 1.0 4.6 5.4 3.7 5.2 1.7 6.1 1.9 7.6 9.1 6.9 5.5 9.0 3.9 2.5 2.4 4.7 4.1 3.7 6.2 a. identify the claim and state and b. find the critical value(s) and identify the rejection region(s), c. find the standardized test statistic Sketch a graph decide whether to reject or fail to reject the null hypothesis, and d. interpret the decision in the context of the original claim. e. Obtain a 95%confidence interval

Answers

Answer:

a. The claim is that the amount of television watched per day last year by the average person differed from that in 2005.

b. The critical values are tc=-1.729 and tc=1.729.

The acceptance region is defined by -1.792<t<1.729. See the picture attached.

c. Test statistic t=0.18.

The null hypothesis failed to be rejected.

d. At a significance level of 10%, there is not enough evidence to support the claim that the amount of television watched per day last year by the average person differed from that in 2005.

e. The 95% confidence interval for the mean is (2.29, 7.23).

Step-by-step explanation:

We have a sample of size n=20, which has mean of 4.76 and standard deviation of 5.28.

[tex]M=\dfrac{1}{n}\sum_{i=1}^n\,x_i\\\\\\M=\dfrac{1}{20}(1+4.6+5.4+. . .+6.2)\\\\\\M=\dfrac{95.2}{20}\\\\\\M=4.76\\\\\\s=\dfrac{1}{n-1}\sum_{i=1}^n\,(x_i-M)^2\\\\\\s=\dfrac{1}{19}((1-4.76)^2+(4.6-4.76)^2+(5.4-4.76)^2+. . . +(6.2-4.76)^2)\\\\\\s=\dfrac{100.29}{19}\\\\\\s=5.28\\\\\\[/tex]

a. This is a hypothesis test for the population mean.

The claim is that the amount of television watched per day last year by the average person differed from that in 2005.

Then, the null and alternative hypothesis are:

[tex]H_0: \mu=4.55\\\\H_a:\mu\neq 4.55[/tex]

The significance level is 0.1.

The sample has a size n=20.

The sample mean is M=4.76.

As the standard deviation of the population is not known, we estimate it with the sample standard deviation, that has a value of s=5.28.

The estimated standard error of the mean is computed using the formula:

[tex]s_M=\dfrac{s}{\sqrt{n}}=\dfrac{5.28}{\sqrt{20}}=1.181[/tex]

Then, we can calculate the t-statistic as:

[tex]t=\dfrac{M-\mu}{s/\sqrt{n}}=\dfrac{4.76-4.55}{1.181}=\dfrac{0.21}{1.181}=0.18[/tex]

The degrees of freedom for this sample size are:

[tex]df=n-1=20-1=19[/tex]

The critical value for a level of significance is α=0.10, a two tailed test and 19 degrees of freedom is tc=1.729.

The decision rule is that if the test statistic is above tc=1.729 or below tc=-1.729, the null hypothesis is rejected.

As the test statistic t=0.18 is within the critical values and lies in the acceptance region, the null hypothesis failed to be rejected.

There is not enough evidence to support the claim that the amount of television watched per day last year by the average person differed from that in 2005.

We have to calculate a 95% confidence interval for the mean.

The population standard deviation is not known, so we have to estimate it from the sample standard deviation and use a t-students distribution to calculate the critical value.

The sample mean is M=4.76.

The sample size is N=20.

The standard error is s_M=1.181

The degrees of freedom for this sample size are df=19.

The t-value for a 95% confidence interval and 19 degrees of freedom is t=2.093.

The margin of error (MOE) can be calculated as:

[tex]MOE=t\cdot s_M=2.093 \cdot 1.181=2.47[/tex]

Then, the lower and upper bounds of the confidence interval are:

[tex]LL=M-t \cdot s_M = 4.76-2.47=2.29\\\\UL=M+t \cdot s_M = 4.76+2.47=7.23[/tex]

The 95% confidence interval for the mean is (2.29, 7.23).

Solve: x + 7 < 3 plsss help me

Answers

Answer:

The answer is -4.

Step-by-step explanation:

You should get this answer if you do 3 - 7.

Alessandro wrote the quadratic equation -6=x2+4x-1 in standard form. What is the value of c in his new equation? c=-6

Answers

Answer:

  5

Step-by-step explanation:

To put the equation in standard form, add 6 to both sides.

  x^2 +4x -1 +6 = -6 +6

  x^2 +4x +5 = 0

The new value of "c" (the constant) is 5.

Answer:

C or 5 for me

Step-by-step explanation:

Solve for X. Show all work

Answers

Answer:

About 11.77 centimeters

Step-by-step explanation:

By law of sines:

[tex]\dfrac{50}{\sin 62}=\dfrac{x}{\sin 12} \\\\\\x=\dfrac{50}{\sin 62}\cdot \sin 12\approx 11.77cm[/tex]

Hope this helps!

Please answer this correctly

Answers

Answer:

50%

OR

1/2

Step-by-step explanation:

The box and whisker plot shows the time spent from 4 to 6 hours is Quartile 1 to 3 which makes it 50%.

Find the original price of a pair of shoes if the sale price is $144 after a 25% discount.

Answers

Answer:

$192

Step-by-step explanation:

1: Subtract the discount from 100% then divide the sale price by this number (100%-25%=75%, $144/75%=$192)

hope this helped

Answer:

$192

Step-by-step explanation:

144 is actually 75% from the original price x:

0.75 x=144

x=144/0.75= $192

check : 192*0.25= $ 48 discount

192-48= $ 144 price of the shoe

A grasshopper sits on the first square of a 1×N board. He can jump over one or two squares and land on the next square. The grasshopper can jump forward or back but he must stay on the board. Find the least number n such that for any N ≥ n the grasshopper can land on each square exactly once.

Answers

Answer:

n=N-1

Step-by-step explanation:

You can start by imagining this scenario on a small scale, say 5 squares.

Assuming it starts on the first square, the grasshopper can cover the full 5 squares in 2 ways; either it can jump one square at a time, or it can jump all the way to the end and then backtrack. If it jumps one square at a time, it will take 4 hops to cover all 5 squares. If it jumps two squares at a time and then backtracks, it will take 2 jumps to cover the full 5 squares and then 2 to cover the 2 it missed, which is also 4. It will always be one less than the total amount of squares, since it begins on the first square and must touch the rest exactly once. Therefore, the smallest amount n is N-1. Hope this helps!

The smallest value of n is N-1.

What is a square?

Square is a quadrilateral of equal length of sides and each angle of 90°.

Here given that there are 1×N squares i.e. N numbers of squares in one row.

The grasshopper can jump either one square or two squares to land on the next square.

Let's assume the scenario of 5 squares present in a row.

Let the grasshopper starts from the first square,

so the grasshopper can cover the full 5 squares in 2 methods;

one method is that it will jump one square at a time and reach at last square.

another method is it will jump all the squares to the finish and then backtrace.

If the grasshopper jumps one square at a time, it will take 4 jumps to cover all 5 squares.

Similarly, If a grasshopper jumps two squares at a time and then backtrace, it will take 2 jumps to reach the 5th square and then it will jump 1 square and then 2 squares to cover the 2 squares it missed, for which the number jump is also 4.

From the above it is clear that the number of jumps will always be one less than the total number of squares if the grasshopper begins from the first square and touch every square exactly once.

Therefore, the smallest value of n is N-1.

Learn more about squares

here: https://brainly.com/question/1538726

#SPJ2

Other Questions
Which choice is equal to the fraction below?7/9A. 0.777OB. 0.7C. 0.77777777... Examine the box and whisker plot below. Identify the third quartile of the data set.a. 14b. 23c. 15d. 19.5 When the cost method is used to account for an investment, the carrying value of the investment is affected by a.the earnings and dividend distributions of the investee b.the periodic net income of the investee c.the dividend distributions of the investee d.neither the earnings nor the dividends of the investee mr anderson cuts a piece of metal in the shape of the triangle shown. The piece of metal has an area of 7 1/2 square feet. What is the base of the piece of metal ? How is Islamic religious belief reflected in the art of calligraphy? Writing continues to extend the word of God The written word promotes literacy and intellectual development. Calligraphy serves as a common visual language uniting the Muslim community. The variety of cursive scripts reflects the diversity of Islamic cultu What is the volume of the sphere below?A. 817 units 3B. 36 units 3C. 27 units3D. 12 units 3 PLEASE ANSWER ASAP! A copy machine reduces an original document using the ratio 5:3. What was the original length of a segment if, on the copy, it is 7.5 in. long? *Please provide an explanation! The air in a hot-air balloon at 735 torr is heated from 22.0C to 46.0C. Assuming that the moles of air and the pressure remain constant, what is the density of the air at each temperature? (The average molar mass of air is 29.0 g/mol.) helpppppp , quick answer with work pleaseeee is an interrogative pronoun How did conditions in Russia worsen during WWI? Check all that appl If f(x)= negative -3x +4 and g(x)=2 solve for the value of X for the which f(x) =g(x) is true HELP ME OUT! A 15 foot ladder rests against a tree on level ground and forms a 75 angle of elevation. Where is the correct location of the 75 angle? Select one: a. Between the tree and the ground b. Between the ladder and the tree c. It is not possible to place a 75 angle on such a figure. d. Between the ladder and the ground What is the decimal multiplier to increase by 5.3%? Words with the word root "dorm" will have a meaning related toAbcbirth.the body.the earth.sleep. The six __________ of geography include places and regions and human systems. Solve and check |2x 1| = |4x + 9| A speeding truck travels in the positive x direction. It hits a car traveling in the positive y direction. The vehicles are deformed and travel together at anangle with the positive x-axis. What can you say about the kinetic energy of the system after the collision?Kinetic energy of the system is conserved.B.Kinetic energy of the system is partially used up in the deformation of the vehiclesKinetic energy of the system is unrelated to the deformation of the vehicles.C.D.Kinetic energy of the system is completely transformed to heat energy The first pool already contains 20 gallons of water and is being filled at the rate of 5 gallons per minute. The second pool already contains 50 gallons of water and is being filled at a rate of 3 gallons per minute. After how many minutes will the pools have the same amount of water? A certain insecticide kills 60% of all insects in laboratory experiments. A sample of 7 insects is exposed to the insecticide in a particular experiment. What is the probability that exactly 2 insects will survive? Round your answer to four decimal places.