A stationary object in a flow of speed 37 m/s produces a drag force of 15 N. The flow speed is then changed to 25 m/s. What will be the drag force if the Drag Coefficient and density are assumed constant? Give your answer in Newtons to 2 decimal places.

Answers

Answer 1

When the flow speed is changed to 25 m/s, the new drag force will be approximately 6.70 N. The new drag force when the flow speed changes, we can use the concept of drag force scaling with velocity. The drag force experienced by an object in a fluid is given by the equation:

F = (1/2) * ρ * A * Cd * V^2

F is the drag force,

ρ is the density of the fluid,

A is the reference area of the object,

Cd is the drag coefficient, and

V is the velocity of the fluid.

In this case, we are assuming that the drag coefficient (Cd) and density (ρ) remain constant. Therefore, we can express the relationship between the drag forces at two different velocities (F1 and F2) as:

F1 / F2 = (V1^2 / V2^2)

Given that the initial drag force F1 is 15 N and the initial flow speed V1 is 37 m/s, and we want to find the new drag force F2 when the flow speed V2 is 25 m/s, we can rearrange the equation as follows:

F2 = F1 * (V2^2 / V1^2)

Plugging in the values:

F2 = 15 N * (25^2 / 37^2)

Calculating this expression, we find:

F2 ≈ 6.70 N

Therefore, when the flow speed is changed to 25 m/s, the new drag force will be approximately 6.70 N

Learn more about speed here:

https://brainly.com/question/28224010

#SPJ11


Related Questions

M 87 an elliptical galaxy has the angular measurement of 8.9' by 5.8', what is the classification of this galaxy.

Answers

Based on the given angular measurements of 8.9' by 5.8', M87 can be classified as an elongated elliptical galaxy due to its oval shape and lack of prominent spiral arms or disk structures.

Elliptical galaxies are characterized by their elliptical or oval shape, with little to no presence of spiral arms or disk structures. The classification of galaxies is often based on their morphological features, and elliptical galaxies typically have a smooth and featureless appearance.

The ellipticity, or elongation, of the galaxy is determined by the ratio of the major axis (8.9') to the minor axis (5.8'). In the case of M87, with a larger major axis, it is likely to be classified as an elongated or "elongated elliptical" galaxy.

To know more about elliptical galaxy refer here:

https://brainly.com/question/30799703
#SPJ11

A +5 nC charge is located at (0,8.62) cm and a -8nC charge is located (5.66, 0) cm.Where would a -2 nC charge need to be located in order that the electric field at the origin be zero? Find the distance r from the origin of the third charge.

Answers

Answer:

The -2 nC charge must be located at (2.83, 4.31) cm in order for the electric field at the origin to be zero.

The distance r from the origin of the third charge is 2.83 cm.

Explanation:

The electric field at the origin due to the +5 nC charge is directed towards the origin, while the electric field due to the -8 nC charge is directed away from the origin.

In order for the net electric field at the origin to be zero, the electric field due to the -2 nC charge must also be directed towards the origin.

This means that the -2 nC charge must be located on the same side of the origin as the +5 nC charge, and it must be closer to the origin than the +5 nC charge.

The distance between the +5 nC charge and the origin is 8.62 cm, so the -2 nC charge must be located within a radius of 8.62 cm of the origin.

The electric field due to a point charge is inversely proportional to the square of the distance from the charge, so the -2 nC charge must be closer to the origin than 4.31 cm from the origin.

The only point on the line connecting the +5 nC charge and the origin that is within a radius of 4.31 cm of the origin is the point (2.83, 4.31) cm.

Therefore, the -2 nC charge must be located at (2.83, 4.31) cm in order for the electric field at the origin to be zero.

The distance r from the origin of the third charge is 2.83 cm.

Learn more about Electric Field.

https://brainly.com/question/33261316

#SPJ11

Listening to the oncoming thunder with a sound detector, you are able to measure its sound intensity peaks at 24 cycles per second. What is the distance in meters between the peaks of pressure compression to two significant digits?

Answers

The distance between the peaks of pressure compression in the thunder  with a sound detector, you are able to measure its sound intensity peaks at 24 cycles per second is 14.29 meters.

The distance in meters between the peaks of pressure compression (sound waves) can be calculated using the formula:

Distance = Speed of Sound / Frequency

To find the distance, we need to know the speed of sound. The speed of sound in dry air at room temperature is approximately 343 meters per second.

Substituting the given frequency of 24 cycles per second into the formula:

Distance = 343 m/s / 24 Hz = 14.29 meters

The distance between the peaks of pressure compression in the thunder is 14.29 meters.

To learn more about frequency: https://brainly.com/question/31938473

#SPJ11

▼ Part A What is the mass of a book that weighs 4.20 N in the laboratory? Express your answer in kilograms. 15. ΑΣΦ B ? m = Submit kg Request Answer Part B In the same lab, what is the weight of a dog whose mass is 16.0 kg? Express your answer in newtons. IVE ΑΣΦ Band W= N Submit Request Answer

Answers

The mass of the book is 0.43 kg. The weight of the dog is 156.8 N.

Part A The mass of the book that weighs 4.20 N in the laboratory can be calculated by using the formula, F=ma, where F is force, m is mass, and a is acceleration. The acceleration in this formula is the acceleration due to gravity, g, which is approximately 9.81 m/s².So, F = ma, or m = F/a

Putting the given values in the above formula, we have;m = 4.20 N / 9.81 m/s²≈ 0.427 kg

Therefore, the mass of the book that weighs 4.20 N in the laboratory is approximately 0.427 kg.Part B The weight of the dog whose mass is 16.0 kg can be calculated by using the formula W = mg, where W is weight, m is mass, and g is the acceleration due to gravity. Putting the given values in the above formula, we have;W = 16.0 kg × 9.81 m/s²≈ 157 N

To know more about weight:

https://brainly.com/question/10069252


#SPJ11

A sinusoidal electromagnetic wave with frequency 3.7x1014Hz travels in vacuum in the +x direction. The amplitude of magnetic field is 5.0 x 10-4T. Find angular frequency w, wave number k, and amplitude of electric field. Write the wave function for the electric field in the form E = Emasin (wt - kx).

Answers

A sinusoidal electromagnetic wave with frequency 3.7x1014Hz travels in vacuum in the +x direction.

The amplitude of the magnetic field is 5.0 x 10-4T.

We are to find angular frequency, w, wave number, k, and frequency of the electric field.

Wave function for the electric field in the form

E = E ma sin (w t - k x)

is to be written.

We have the following relations:

[tex]\ [ \ omega = 2 \pi \nu \] \ [k = \frac {{2\ p i } } {\ lamb d} \][/tex]

Here,

 \ [ \ n u = 3.7 \times {10^ {14}} \,

\,

\,

Hz\] Let's calculate the wavelength of the wave.

We know that the speed of light in a vacuum,

c is given by:

 \ [c = \nu \lambda \]

The wavelength,

m \\ \end{array}\]

We can now calculate the wave number as follows:

\[\frac{{E_0 }}{{B_0 }} = \frac{1}{c}\]  \[E_0  = \frac{{B_0 }}{c} = \frac{{5 \times {{10}^{ - 4}}}}{{3 \times {{10}^8}}}\]

To know more about frequency visit:

https://brainly.com/question/29739263

#SPJ11

Q13. A 75 kg astronaut is freely floating in space and pushes a freely floating 520 kg spacecraft with a force of 120 N for 1.50 s. 1 mark a)Compare the forces exerted on the astronaut and the spacecraft b)Compare the acceleration of the astronaut to the acceleration of the spacecraft

Answers

a. The astronaut applies a force on the spacecraft and the spacecraft applies an equal force on the astronaut.

b. The astronaut will move faster than the spacecraft, but since the spacecraft has a greater mass, it will require more force to achieve the same acceleration.

a) The forces exerted on the astronaut and spacecraft are equal in magnitude and opposite in direction. The Third Law of Motion states that every action has an equal and opposite reaction.  Therefore, both forces are the same.

b) To compare the acceleration of the astronaut and the spacecraft, the mass of each needs to be taken into consideration. The acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. The formula to calculate acceleration is a = F/m, where F is force and m is mass.

For the astronaut:
Force (F) = 120 N
Mass (m) = 75 kg
Acceleration (a) = F/m = 120/75 = 1.6 m/s²

For the spacecraft:
Force (F) = 120 N
Mass (m) = 520 kg
Acceleration (a) = F/m = 120/520 = 0.23 m/s²

Therefore, the acceleration of the astronaut is higher than the acceleration of the spacecraft. The astronaut experiences a greater change in velocity in the given time than the spacecraft.

To learn about acceleration here:

https://brainly.com/question/460763

#SPJ11

10. Which of the following correctly lists electromagnetic waves from the shortest to the longest wavelength? A. X-rays, gamma rays, ultraviolet, infra-red B. Radio wave, microwaves, visible light, ultraviolet C. Ultraviolet, infra-red, microwaves, radio wave

Answers

The correct answer is C. The electromagnetic waves listed from the shortest to the longest wavelength are ultraviolet, infrared, microwaves, and radio waves. Therefore, option C is the correct sequence.

Electromagnetic waves span a wide range of wavelengths, and they are commonly categorized based on their wavelengths or frequencies. The shorter the wavelength, the higher the energy and frequency of the electromagnetic wave. In this case, ultraviolet has a shorter wavelength than infrared, microwaves, and radio waves, making it the first in the sequence. Next is infrared, followed by microwaves and then radio waves, which have the longest wavelengths among the options provided. Hence, option C correctly lists the electromagnetic waves in increasing order of wavelength.

Learn more about electromagnetic waves here:
brainly.com/question/29774932

#SPJ11

An object of mass m kg moving with a speed of 10.0 m/s collide
elastically in 1D with a mass M=2m kg moving at a speed of 2.0 m/s
in opposite direction. Calculate speed of both objects after
collision

Answers

The speed of m is 5.0 m/s in the positive direction, and the speed of M is 5.0 m/s in the negative direction.

In an elastic collision, both the momentum and the kinetic energy are conserved. The total momentum before collision is equal to the total momentum after collision.

Therefore, we can say that: mv1 + MV2 = mv1' + MV2', where v1 and v2 are the initial velocities of the two objects, and v1' and v2' are their velocities after the collision.

Since the collision is elastic, we also know that:[tex]1/2mv1² + 1/2MV2² = 1/2mv1'² + 1/2MV2'²[/tex]

We have:

m = 2Mv1 = 10.0 m/s

M = 2mv2 = -2.0 m/s

Since momentum is conserved:

mv1 + MV2 = mv1' + MV2'

2M × -2.0 m/s + m × 10.0 m/s

= mv1' + MV2'

mv1' + MV2' = -4M + 10m

Let's substitute the value of M and simplify the equation:

mv1' + MV2' = -4(2m) + 10m

= 2m = m(v1' + V2')

= 2m - 2M + M

= 0v1' + V2'

= 0

So, the final velocities of both objects are equal in magnitude but opposite in direction. The negative sign indicates that the velocity of M is in the opposite direction to that of m.v1' = v2' = 5.0 m/s

Therefore, the speed of m is 5.0 m/s in the positive direction, and the speed of M is 5.0 m/s in the negative direction.

To learn more about speed visit;

https://brainly.com/question/17661499

#SPJ11

1 In the diagram, the • Particles, Charge 9₁ = +70.0 μC, q₂ = -10 MC, and q3 = +30.0μ C, are positiones at the vertices of an isosceles triangle as shown with sides a = 70.0cm and b = 6.00 cm. (a) What is the electric field at the location of q3 due to the other charges? (b) What is the electrostatic force on 93 ? How much work would an external agent have to do to exchange the Positions of 93 (C) qt and q3? (d) 91 and 921 a 92 a аз

Answers

The electric field at the location of q3 due to the other charges is 3.54 × 10⁴ N/C, directed towards the left.

The electrostatic force on q3 is 1.06 × 10⁻³ N, directed towards the left. The work done by an external agent to exchange the positions of q3 and q4 is 0 J since the forces between them are conservative. The forces between q1 and q2, as well as between q2 and q3, are zero, while the forces between q1 and q3, as well as between q2 and q4, are non-zero and repulsive.

(a) The electric field at the location of q3 due to the other charges, we can use Coulomb's law. The electric field due to q1 is given by E1 = k * |q1| / r1^2, where k is the electrostatic constant, |q1| is the magnitude of q1's charge, and r1 is the distance between q1 and q3. Similarly, the electric field due to q2 is E2 = k * |q2| / r2², where |q2| is the magnitude of q2's charge and r2 is the distance between q2 and q3. The total electric field at q3 is the vector sum of E1 and E2. Given the distances a = 70.0 cm and b = 6.00 cm, we can calculate the magnitudes and directions of the electric fields.

(b) The electrostatic force on q3 can be calculated using Coulomb's law: F = k * |q1| * |q3| / r1², where |q3| is the magnitude of q3's charge and r1 is the distance between q1 and q3. The work done by an external agent to exchange the positions of q3 and q4 can be calculated using the equation W = ΔU, where ΔU is the change in potential energy. Since the forces between q3 and q4 are conservative, the work done is zero.

(c) The forces between q1 and q2, as well as between q2 and q3, are zero since they have equal magnitudes and opposite signs (positive and negative charges cancel out). The forces between q1 and q3, as well as between q2 and q4, are non-zero and repulsive. These forces can be calculated using Coulomb's law, similar to the calculation of the electrostatic force on q3.

To learn more about electric.

Click here:brainly.com/question/1100341

#SPJ11

A car moving at 18m's crashes into a tree and stops in 0.96 s. The mass of the passenger inside is 74 kg. Calculate the magnitude of the average force, in newtons, that the seat belt exerts on the passenger in the car to bring him to a halt.

Answers

The magnitude of the average force exerted by the seat belt on the passenger in the car, bringing them to a halt, is calculated to be approximately X newtons. The answer is approximately 1387.5 newtons.

To calculate the magnitude of the average force exerted by the seat belt on the passenger, we can use Newton's second law of motion, which states that the force acting on an object is equal to its mass multiplied by its acceleration. In this case, the acceleration can be determined by dividing the change in velocity by the time taken.

Initial velocity (u) = 18 m/s (since the car is moving at this speed)

Final velocity (v) = 0 m/s (since the car comes to a halt)

Time taken (t) = 0.96 s

Mass of the passenger (m) = 74 kg

Using the formula for acceleration (a = (v - u) / t), we can find the acceleration:

a = (0 - 18) / 0.96

a = -18 / 0.96

a ≈ -18.75 m/s²

The negative sign indicates that the acceleration is in the opposite direction to the initial velocity, as the car is decelerating.

Now, we can calculate the magnitude of the average force using the formula F = m * a:

F = 74 kg * (-18.75 m/s²)

F ≈ -1387.5 N

The negative sign in the force indicates that it is acting in the opposite direction to the motion of the passenger. However, we are interested in the magnitude (absolute value) of the force, so the final answer is approximately 1387.5 newtons.

To learn more about force click here:

brainly.com/question/30507236

#SPJ11

Calculate the resultant vector C from the following cross product: Č = A x B where X = 3î + 2ỹ – lî and B = -1.5ê + +1.5ź =

Answers

Calculate the resultant vector C from the following cross product: Č = A x B where X = 3î + 2ỹ – lî and B = -1.5ê + +1.5ź

To calculate the resultant vector C from the cross product of A and B, we can use the formula:

C = A x B

Where A and B are given vectors. Now, let's plug in the values:

A = 3î + 2ỹ – lî

B = -1.5ê + 1.5ź

To find the cross product C, we can use the determinant method:

|i j k |

|3 2 -1|

|-1.5 0 1.5|

C = (2 x 1.5)î + (3 x 1.5)ỹ + (4.5 + 1.5)k - (-1.5 - 3)j + (-4.5 + 0)l + (-1.5 x 2)ê

C = 3î + 4.5ỹ + 6k + 4.5j + 4.5l - 3ê

Therefore, the resultant vector C is:

C = 3î + 4.5ỹ + 4.5j + 4.5l - 3ê + 6k

So, the answer is C = 3î + 4.5ỹ + 4.5j + 4.5l - 3ê + 6k.

Learn more about cross product: https://brainly.com/question/14542172

#SPJ11

A 3.29 kg mud ball has a perfectly inelastic collision with a second mud ball that is initially at rest. The composite system moves with a speed equal to one-fifth the original speed of the 3.29 kg mud ball. What is the mass of the
second mud ball?

Answers

The mass of the second mud ball is 13.16 kg.

Let's denote the mass of the second mud ball as m2.

According to the law of conservation of momentum, the total momentum before the collision should be equal to the total momentum after the collision.

Before the collision:

Momentum of the first mud ball (m1) = m1 * v1, where v1 is the initial velocity of the first mud ball.

Momentum of the second mud ball (m2) = 0, since it is initially at rest.

After the collision:

Composite system momentum = (m1 + m2) * (1/5) * v1, since the composite system moves with one-fifth the original speed of the first mud ball.

Setting the momentum before the collision equal to the momentum after the collision:

m1 * v1 = (m1 + m2) * (1/5) * v1

Canceling out v1 from both sides:

m1 = (m1 + m2) * (1/5)

Expanding the equation:

5m1 = m1 + m2

Rearranging the equation :

4m1 = m2

Substituting the given mass value m1 = 3.29 kg:

4 * 3.29 kg = m2

m2 = 13.16 kg

To know more about Momentum refer to-

https://brainly.com/question/30677308

#SPJ11

Which graphs could represent the Velocity versus Time for CONSTANT VELOCITY MOTION

Answers

Graph of velocity vs time: Straight line at constant heighWhen the velocity of an object is constant, its distance covered is proportional to the amount of time spent covering that distance.

Therefore, the velocity-time graph for a body in motion at constant velocity is always a straight line that rises from the x-axis at a constant slope, with no change in velocity. A straight horizontal line, with a slope of zero, would represent an object with zero acceleration.

However, that graph does not depict constant velocity motion; instead, it depicts a stationary object. A line with a negative slope would represent an object traveling in the opposite direction. A line with a positive slope would represent an object moving in the same direction. In a constant velocity motion, the magnitude of the velocity does not change over time.

In physics, constant velocity motion is motion that takes place at a fixed rate of speed in a single direction. Velocity is a vector measurement that indicates the direction and speed of motion. The magnitude of the velocity vector remains constant in constant velocity motion.

The constant velocity motion is represented by a straight line on a velocity-time graph. The gradient of the line represents the object's velocity. The object's acceleration is zero in constant velocity motion. This implies that the object is neither accelerating nor decelerating, and its velocity remains constant. The constant velocity motion is also known as uniform motion because the object moves at a fixed speed throughout its journey.

A velocity-time graph for an object moving with constant velocity would have a straight line that rises from the x-axis with no change in velocity. The line would be straight because the velocity of the object does not change over time.

To know more about acceleration visit:

brainly.com/question/12550364

#SPJ11

If an object is placed 8.1 cm from a diverging lens with f = 4 cm, then its image will be reduced and real. T/F

Answers

The statement is False. When an object is placed 8.1 cm from a diverging lens with a focal length of 4 cm, the resulting image will be virtual and enlarged, not reduced and real.

A diverging lens is a type of lens that causes parallel rays of light to diverge. It has a negative focal length, which means it cannot form a real image. Instead, the image formed by a diverging lens is always virtual.

In this scenario, the object is placed 8.1 cm from the diverging lens. Since the object is located beyond the focal point of the lens, the image formed will be virtual. Additionally, the image will be enlarged compared to the object. This is a characteristic behavior of a diverging lens.

Therefore, the statement that the image will be reduced and real is incorrect. The correct statement is that the image will be virtual and enlarged when an object is placed 8.1 cm from a diverging lens with a focal length of 4 cm.

Learn more about image here:

https://brainly.com/question/32395598

#SPJ11

Raise your hand and hold it flat. Think of the space between your index finger and your middle finger as one slit and think of the space between middle finger and ring finger as a second slit. (c) How is this wave classified on the electromagnetic Spectre

Answers

The wave created between the index and middle finger, and between the middle and ring finger, represents visible light on the electromagnetic spectrum.

The wave described in the question is an example of a double-slit interference pattern. In this experiment, when light passes through the two slits created by the spaces between the fingers, it creates an interference pattern on a screen or surface.

This pattern occurs due to the interaction of the waves diffracting through the slits and interfering with each other.

In terms of the electromagnetic spectrum, this wave can be classified as visible light. Visible light is a small portion of the electromagnetic spectrum that humans can perceive with their eyes.

It consists of different colors, each with a specific wavelength and frequency. The interference pattern produced by the double-slit experiment represents the behavior of visible light waves.

It's important to note that the electromagnetic spectrum is vast, ranging from radio waves with long wavelengths to gamma rays with short wavelengths. Each portion of the spectrum corresponds to different types of waves, such as microwaves, infrared, ultraviolet, X-rays, and gamma rays.

Visible light falls within a specific range of wavelengths, between approximately 400 to 700 nanometers.

In summary, the wave created between the index and middle finger, and between the middle and ring finger, represents visible light on the electromagnetic spectrum.

Visible light is a small part of the spectrum that humans can see, and it exhibits interference patterns when passing through the double slits.

to learn more about electromagnetic spectrum.

https://brainly.com/question/23727978

#SPJ11

A light source shines uniformly in all directions. A student wishes to use the light source with a spherical concave mirror to make a flash light with parallel light beams. Where should the student place the light source relative to the spherically concave mirror? At the center of curvature On the surface of the mirror Infinitely far from the mirror At the focus

Answers

The student should place the light source at the focus of the concave mirror to obtain parallel light beams.

To achieve parallel light beams using a concave mirror, the light source should be placed at the focus of the mirror. This is based on the principle of reflection of light rays.

A concave mirror is a mirror with a reflective surface that curves inward. When light rays from a point source are incident on a concave mirror, the reflected rays converge towards a specific point called the focus. The focus is located on the principal axis of the mirror, halfway between the mirror's surface and its center of curvature.

By placing the light source at the focus of the concave mirror, the incident rays will reflect off the mirror surface and become parallel after reflection. This occurs because light rays that pass through the focus before reflection will be reflected parallel to the principal axis.

If the light source is placed at any other position, such as the center of curvature, on the surface of the mirror, or infinitely far from the mirror, the reflected rays will not be parallel. Therefore, to obtain parallel light beams, the light source should be precisely positioned at the focus of the concave mirror.

To know more about concave mirror refer here:

https://brainly.com/question/31379461#

#SPJ11

Three point charges are located as follows: +2 C at (2,2), +2 C at (2,-2), and +5 C at (0,5). Draw the charges and calculate the magnitude and direction of the electric field at the origin. (Note: Draw fields due to each charge and their components clearly, also draw the net
field on the same graph.)

Answers

The direction of the net electric field at the origin is vertical upward.

To calculate the magnitude and direction of the electric field at the origin:First of all, we need to calculate the electric field at the origin due to +2 C at (2,2).We know that,Electric field due to point charge E = kq/r^2k = 9 × 10^9 Nm^2/C^2q = 2 CCharge is located at (2,2), let's take the distance from the charge to the origin r = (2^2 + 2^2)^0.5 = (8)^0.5E = 9 × 10^9 × 2/(8) = 2.25 × 10^9 N/CAt point origin, electric field due to 1st point charge (2C) is 2.25 × 10^9 N/C in the 3rd quadrant (-x and -y direction).Electric field is a vector quantity. To calculate the net electric field at origin we need to take the components of each electric field due to the three charges.Let's draw the vector diagram. Here is the figure for better understanding:Vector diagram is as follows:From the above figure, the total horizontal component of the electric field at origin due to point charge +2 C at (2,2) is = 0 and the vertical component is = -2.25 × 10^9 N/C.Due to point charge +2 C at (2,-2), the total horizontal component of the electric field at the origin is 0 and the total vertical component is +2.25 × 10^9 N/C.

At point origin, electric field due to charge +5 C at (0,5), E = kq/r^2k = 9 × 10^9 Nm^2/C^2q = 5 C, r = (0^2 + 5^2)^0.5 = 5E = 9 × 10^9 × 5/(5^2) = 9 × 10^9 N/CAt point origin, electric field due to 3rd point charge (5C) is 9 × 10^9 N/C in the positive y direction.The total vertical component of electric field E is = -2.25 × 10^9 N/C + 2.25 × 10^9 N/C + 9 × 10^9 N/C = 8.25 × 10^9 N/CNow, we can calculate the magnitude and direction of the net electric field at the origin using the pythagoras theorem.Total electric field at the origin E = (horizontal component of E)^2 + (vertical component of E)^2E = (0)^2 + (8.25 × 10^9)^2E = 6.99 × 10^9 N/CThe direction of the net electric field at the origin is vertical upward. (North direction).

Learn more about direction:

https://brainly.com/question/30098658

#SPJ11

Suppose a rocket travels to Mars at speed of 6,000 m/sec. The distance to Mars is 90 million km. The trip would take 15 million sec (about 6 months). People on the rocket will experience a slightly
shorter time compared to people in the Earth frame (if we ignore gravity and general relativity). How many seconds shorter will the trip seem to people on the rocket? Use a binomial
approximation.

Answers

The trip will seem about `15.0000001875 million seconds` shorter to people on the rocket as compared to people in the Earth frame.

The given values are: Speed of rocket, `v = 6,000 m/s`

Distance to Mars, `d = 90 million km = 9 × 10^10 m`

Time taken to cover the distance, `t = 15 × 10^6 s`

Now, using Lorentz factor, we can find how much seconds shorter the trip will seem to people on the rocket.

Lorentz factor is given as: `γ = 1 / sqrt(1 - v^2/c^2)

`where, `c` is the speed of light `c = 3 × 10^8 m/s`

On substituting the given values, we get:

`γ = 1 / sqrt(1 - (6,000/3 × 10^8)^2)

`Simplifying, we get: `γ = 1.0000000125`

Approximately, `γ ≈ 1`.

Hence, the trip will seem shorter by about `15 × 10^6 × (1 - 1/γ)` seconds.

Using binomial approximation, `(1 - 1/γ)^-1 ≈ 1 + 1/γ`.

Hence, the time difference would be approximately:`15 × 10^6 × 1/γ ≈ 15 × 10^6 × (1 + 1/γ)`

On substituting the value of `γ`, we get:`

15 × 10^6 × (1 + 1/γ) ≈ 15 × 10^6 × 1.0000000125 ≈ 15.0000001875 × 10^6 s`

Hence, the trip will seem about `15.0000001875 × 10^6 s` or `15.0000001875 million seconds` shorter to people on the rocket as compared to people in the Earth frame.

Learn more about rocket https://brainly.com/question/24710446

#SPJ11

The walls of an ancient shrine are perpendicular to the four cardinal compass directions. On the first day of spring, light from the rising Sun enters a rectangular window in the eastern wall. The light traverses 2.37m horizontally to shine perpendicularly on the wall opposite the window. A tourist observes the patch of light moving across this western wall. (c) Seen from a latitude of 40.0⁰ north, the rising Sun moves through the sky along a line making a 50.0⁰ angle with the southeastern horizon. In what direction does the rectangular patch of light on the western wall of the shrine move?

Answers

The rectangular patch of light on the western wall of the shrine will move from left to right along a line making a 50.0⁰ angle with the northeastern horizon.

The rectangular patch of light on the western wall of the shrine moves in a direction parallel to the path of the Sun across the sky. Since the light from the rising Sun enters the eastern window and shines perpendicularly on the western wall, the patch of light will move from left to right as the Sun moves from east to west throughout the day.

Given that the rising Sun moves through the sky along a line making a 50.0⁰ angle with the southeastern horizon, we can infer that the rectangular patch of light on the western wall will also move along a line making a 50.0⁰ angle with the northeastern horizon. This is because the angle between the southeastern horizon and the northeastern horizon is the same as the angle between the Sun's path and the horizon.

To summarize, the rectangular patch of light on the western wall of the shrine will move from left to right along a line making a 50.0⁰ angle with the northeastern horizon.

To know more about rectangular visit:

https://brainly.com/question/21416050

#SPJ11

Object A (mass 4 kg) is moving to the right (+x direction) with a speed of 3 m/s. Object B (mass 1 kg) is moving to the right as well with a speed of 2 m/s. They move on a friction less surface and collide. After the collision, they are stuck together and their speed is
(a) 2.8 m/s
(b) 3.6 m/s
(c) 4.6 m/s
(d) None of the above.

Answers

The question involves the conservation of momentum principle. The conservation of momentum principle is a fundamental law of physics that states that the momentum of a system is constant when there is no external force applied to it.

The velocity of the two objects after the collision is 2.4 m/s. The correct answer is (d) None of the above.

Let's find out. We can use the conservation of momentum principle to solve the problem. The principle states that the momentum before the collision is equal to the momentum after the collision. In other words, momentum before = momentum after Initially, Object A has a momentum of:

momentum A = mass of A × velocity of A
momentum A = 4 kg × 3 m/s
momentum A = 12 kg m/s

Similarly, Object B has a momentum of:

momentum B = mass of B × velocity of B
momentum B = 1 kg × 2 m/s
momentum B = 2 kg m/s

The total momentum before the collision is:

momentum before = momentum A + momentum B
momentum before = 12 kg m/s + 2 kg m/s
momentum before = 14 kg m/s

After the collision, the two objects stick together. Let's assume that their combined mass is M and their combined velocity is v. According to the principle of conservation of momentum, the total momentum after the collision is:

momentum after = M × v
We know that the total momentum before the collision is equal to the total momentum after the collision. Therefore, we can write:

M × v = 14 kg m/s

Now, we need to find the value of v. We can do this by using the law of conservation of energy, which states that the total energy of a closed system is constant. In this case, the only form of energy we need to consider is kinetic energy. Before the collision, the kinetic energy of the system is:

kinetic energy before = 1/2 × mass A × (velocity A)² + 1/2 × mass B × (velocity B)²

kinetic energy before = 1/2 × 4 kg × (3 m/s)² + 1/2 × 1 kg × (2 m/s)²

kinetic energy before = 18 J

After the collision, the two objects stick together, so their kinetic energy is:

kinetic energy after = 1/2 × M × v²

We know that the kinetic energy before the collision is equal to the kinetic energy after the collision. Therefore, we can write:

1/2 × mass A × (velocity A)² + 1/2 × mass B × (velocity B)²= 1/2 × M × v²

Substituting the values we know:

1/2 × 4 kg × (3 m/s)² + 1/2 × 1 kg × (2 m/s)²

= 1/2 × M × v²54 J = 1/2 × M × v²v²

= 108 J/M

We can now substitute this value of v² into the equation:

M × v = 14 kg m/s

M × √(108 J/M) = 14 kg m/s

M × √(108) = 14 kg m/s

M ≈ 0.5 kgv ≈ 5.3 m/s

Therefore, the velocity of the two objects after the collision is 5.3 m/s, which is not one of the answer choices given. Thus, the correct answer is (d) None of the above.

to  know more about momentum visit:

brainly.com/question/30677308

#SPJ11

#10 Magnetic Force Among Wires Suppose two wires are parallel, and current in the wires flows in the same direction. If the current in one wire is \( 2.00 \) Amperes and the current in the other wires

Answers

To determine the magnetic force between two parallel wires carrying currents in the same direction. To calculate the magnetic force accurately, we would need to know the values of L and d.

we need additional information such as the separation distance between the wires and the length of the wires. Without these details, we cannot calculate the exact magnetic force. However, I can provide you with the formula to calculate the magnetic force between two parallel wires.The magnetic force (F) between two parallel wires is given by Ampere's law and can be calculated using the equation: F = (μ₀ * I₁ * I₂ * L) / (2π * d)

where:F is the magnetic force

μ₀ is the permeability of free space (approximately 4π × 10^(-7) T·m/A)

I₁ and I₂ are the currents in the two wires

L is the length of the wires

d is the separation distance between the wires

To calculate the magnetic force accurately, we would need to know the values of L and d.

To learn more about magnetic force:

https://brainly.com/question/10353944

#SPJ11

Two long parallel wires, each carrying a current of 2 A, lie a distance 17 cm from each other. (a) What is the magnetic force per unit length exerted by one wire on the other?

Answers

Magnetic force per unit length exerted by one wire on the other when two long parallel wires, each carrying a current of 2A and lie a distance 17cm from each other is given as follows:

The formula for the magnetic force is given by;

F = (μ₀ * I₁ * I₂ * L)/2πd

Where,μ₀ = Permeability of free space = 4π * 10⁻⁷ N/A²,

I₁ = Current in wire 1 = 2A

I₂ = Current in wire 2 = 2A

L = Length of each wire = 1md = Distance between the wires = 17cm = 0.17m

Substituting all the values in the formula, we get;

F = (4π * 10⁻⁷ * 2 * 2 * 1)/2π * 0.17

= 4.71 * 10⁻⁶ N/m.

Hence, the magnetic force per unit length exerted by one wire on the other is 4.71 * 10⁻⁶ N/m.

#SPJ11

Learn more about current  and magnetic force https://brainly.com/question/26257705

Two vectors are given by their components in a given coordinate system: a = (3.0, 2.0) and b = (-2.0, 4.0). Find: (a) a + b. (b) 2.0a - b.

Answers

Two vectors are given by their components in a given coordinate system: a = (3.0, 2.0) and b = (-2.0, 4.0)

a)  a + b = (1.0, 6.0).

b)  2.0a - b = (8.0, 0.0).

To find the sum of two vectors a and b, we simply add their corresponding components:

(a) a + b = (3.0, 2.0) + (-2.0, 4.0) = (3.0 + (-2.0), 2.0 + 4.0) = (1.0, 6.0).

Therefore, a + b = (1.0, 6.0).

To find the difference of two vectors, we subtract their corresponding components:

(b) 2.0a - b = 2.0(3.0, 2.0) - (-2.0, 4.0) = (6.0, 4.0) - (-2.0, 4.0) = (6.0 - (-2.0), 4.0 - 4.0) = (8.0, 0.0).

Therefore, 2.0a - b = (8.0, 0.0).

To learn more about vector

https://brainly.com/question/29286060

#SPJ11

A solid sphere (I = 2MR2/5) rolls without slipping down a plane inclined at 29◦ relative to horizontal. What type of friction acts and what is the coefficient of friction? The answers are rounded to two significant digits.

Answers

The answers are rounded to two significant digits:* Type of friction: rolling friction* Coefficient of friction: 0.02

The type of friction that acts on a solid sphere rolling without slipping down a plane inclined at 29° relative to horizontal is rolling friction. Rolling friction is a type of friction that occurs when two surfaces are in contact and one is rolling over the other.

It is much less than static friction, which is the friction that occurs when two surfaces are in contact and not moving relative to each other.

The coefficient of rolling friction is denoted by the Greek letter mu (μ). The coefficient of rolling friction is always less than the coefficient of static friction.

The exact value of the coefficient of rolling friction depends on the materials of the two surfaces in contact.

For a solid sphere rolling without slipping down a plane inclined at 29° relative to horizontal, the coefficient of rolling friction is approximately 0.02. This means that the force of rolling friction is approximately 2% of the weight of the sphere.

The answers are rounded to two significant digits:

* Type of friction: rolling friction

* Coefficient of friction: 0.02

Learn more about friction with the given link,

https://brainly.com/question/24338873

#SPJ11

Frequency of an L-R-C Circuit An L-R-C circuit has an inductance of 0.500 H, a capacitance of 2.30×10-5 F, and a resistance of R as shown in (Figure 1). Figure 1 of 1 elle 8 of 15 Review | Constants Part A What is the angular frequency of the circuit when R = 0? Express your answer in radians per second. ▸ View Available Hint(s) IVE ΑΣΦ undo 133 Submit Previous Answers * Incorrect; Try Again; 5 attempts remaining P Pearson Part B What value must R have to give a decrease in angular frequency of 15.0 % compared to the value calculated in PartA? Express your answer in ohms. ► View Available Hint(s) 15. ΑΣΦ Submit

Answers

The angular frequency of an L-R-C circuit when R = 0 is approximately 17.12 rad/s. To achieve a 15% decrease in angular frequency compared to the initial value, the resistance (R) needs to be approximately 0.0687 ohms.

To find the angular frequency of the L-R-C circuit when R = 0, we can use the formula:

ω = 1/√(LC)

Given that the inductance (L) is 0.500 H and the capacitance (C) is 2.30×[tex]10^(-5)[/tex] F, we can substitute these values into the formula:

ω = 1/√(0.500 H * 2.30×[tex]10^(-5)[/tex] F)

Simplifying further:

ω = 1/√(1.15×[tex]10^(-5)[/tex]H·F)

Taking the square root:

ω =[tex]1/(3.39×10^(-3) H·F)^(1/2)[/tex]

ω ≈ 1/0.0584

ω ≈ 17.12 rad/s

Therefore, when R = 0, the angular frequency of the circuit is approximately 17.12 radians per second.

For Part B, we need to find the value of R that gives a decrease in angular frequency of 15% compared to the value calculated in Part A. Let's denote the new angular frequency as ω' and the original angular frequency as ω.

The decrease in angular frequency is given as:

Δω = ω - ω'

We are given that Δω/ω = 15% = 0.15. Substituting the values:

0.15 = ω - ω'

We know from Part A that ω ≈ 17.12 rad/s, so we can rearrange the equation:

ω' = ω - 0.15ω

ω' = (1 - 0.15)ω

ω' = 0.85ω

Substituting ω ≈ 17.12 rad/s:

ω' = 0.85 * 17.12 rad/s

ω' ≈ 14.55 rad/s

Now, we can calculate the resistance (R) using the formula:

ω' = 1/√(LC) - ([tex]R^2/2L[/tex])

Plugging in the values:

14.55 rad/s = 1/√(0.500 H * [tex]2.30×10^(-5) F) - (R^2/(2 * 0.500 H))[/tex]

Simplifying:

14.55 rad/s = [tex]1/√(1.15×10^(-5) H·F) - (R^2/1.00 H)[/tex]

14.55 rad/s ≈ 1/R

R ≈ 0.0687 ohms

Therefore, the value of R that gives a decrease in angular frequency of 15% compared to the value calculated in Part A is approximately 0.0687 ohms.

To know more about angular frequency refer to-

https://brainly.com/question/30897061

#SPJ11

A balloon holding 4.20 moles of helium gas absorbs 905 J of thermal energy while doing 106 J of work expanding to a larger volume. (a) Find the change in the balloon's internal energy. (b) Calculate the change in temperature of the gas.

Answers

a) Change in the balloon’s internal energy:In this scenario, 905 J of thermal energy are absorbed, but 106 J of work are done. When there is an increase in the volume, the internal energy of the gas also rises. Therefore, we may calculate the change in internal energy using the following formula:ΔU = Q – WΔU = 905 J – 106 JΔU = 799 JTherefore, the change in internal energy of the balloon is 799 J.

b) Change in the temperature of the gas:When gas is heated, it expands, resulting in a temperature change. As a result, we may calculate the change in temperature using the following formula:ΔU = nCvΔT = Q – WΔT = ΔU / nCvΔT = 799 J / (4.20 mol × 3/2 R × 1 atm)ΔT = 32.5 K

Therefore, the change in temperature of the gas is 32.5 K.In summary, when the balloon absorbs 905 J of thermal energy while doing 106 J of work and expands to a larger volume, the change in the balloon's internal energy is 799 J and the change in temperature of the gas is 32.5 K.

to know more about balloon’s internal energy pls visit-

https://brainly.com/question/31778646

#SPJ11

n-interlaced latters
please
Zeeman Effect Q1) from equation 5.6 and 5.7 find that the minimum magnetic field needed for the Zeeman effect to be observed can be calculated from 02) What is the minimum magnetic field needed

Answers

The Zeeman effect is the splitting of atomic energy levels in the presence of an external magnetic field. This effect occurs because the magnetic field interacts with the magnetic moments associated with the atomic electrons.

The minimum magnetic field needed to observe the Zeeman effect depends on various factors such as the energy separation between the atomic energy levels, the transition involved, and the properties of the atoms or molecules in question.

To calculate the minimum magnetic field, you would typically need information such as the Landé g-factor, which represents the sensitivity of the energy levels to the magnetic field. The g-factor depends on the quantum numbers associated with the atomic or molecular system.

Without specific details or equations, it's difficult to provide an exact calculation for the minimum magnetic field required. However, if you provide more information or context, I'll do my best to assist you further.

Learn more about Zeeman effect on:

https://brainly.com/question/13046435

#SPJ4

: Engineering Physics 113 - Practice Quiz Question 1 A laser medium can be used to amplify a laser pulse that travel through. Consider a laser pulse having 3.09 J of energy, passing through a laser medium that is in a state of population inversion. If on average each photon in the laser pulse interacts with three atoms that are in the excited state as it passes through the medium, what is the energy in the pulse as it exits the medium? (You can ignore re-absorption by the ground state atoms. You can also consider the laser medium to be thin such that photons emitted through stimulated emission do not have an opportunity to interact with excited atoms) Question 2 We have a collection of 4.0 x 10¹6 atoms. Assume 1/4 of the atoms are in the ground state and 3/4 are in the first excited state and the energy difference between the ground and first excited state is 63 eV. Assume it takes 1.0 ms (millisecond) for every atom to undergo a transition (either emission or absorption). Express this net burst of light energy in Watts. Question 3 You have 10 moles of a particular atom. 2.9 moles are in the excited state and the rest are in the ground state. After 2.0 mins you find 9.5 moles in the ground state. Calculate the half-life of this atom (in seconds). Question 4 Suppose you have a collection of atoms in an excited state at t = 0.0 s. After 62 seconds, 1/4 of the original number of atoms remain in the excited state. How long will it take for a 1/8 of (the original number of) atoms to be in the excited state? (Measure the time from t = 0 seconds) Question 5 A laser pulse of power 2.0 kW lasts 3.0 µs. If the laser cavity is 1.0 cm³ with an atomic density of 5.2 x 10²2 m²³ (1.e., atoms per cubic metre), determine the wavelength of the pulse in nanometres. Assume that each atom undergoes one transition (emission) during the pulse. Question 6 You have a large collection, N, of a specific atom. When an electron undergoes a transition from the E₁ state to the E, state in these atoms, it emits a photon of wavelength 979 nm. At what temperature do you expect to find 10% of the atoms in the E₁ state and 90% in the E, state? (Round your answer to the nearest Kelvin)

Answers

The energy of the laser pulse as it exits the medium is 3.09 * 3 = 9.27 J. The net burst of light energy is 4.0 x 10^16 * 63 * 1.6022 x 10^-19 = 3.856 x 10^14 W. The half-life of the atom is 2.0 * 60 = 120 seconds. The Boltzmann constant is k = 1.38 x 10^-23 J/K.

The time it will take for 1/8 of the original number of atoms to be in the excited state is 62 * 2 = 124 seconds.

The wavelength of the pulse is 2.0 kW * 3.0 µs / 5.2 x 10^22 = 1.18 nm.

The temperature at which you expect to find 10% of the atoms in the E₁ state and 90% in the E, state is 5300 K.

Here is the calculation:

The energy difference between the E₁ and E₂ states is hc/λ = 6.626 x 10^-34 J s * 3 x 10^8 m/s / 979 nm = 2.09 x 10^-19 J.

The Boltzmann constant is k = 1.38 x 10^-23 J/K.

The temperature at which the population of the two states is equal is given by the following equation:

E_1 / k T = E_2 / k T

T = E_1 / E_2

T = 2.09 x 10^-19 J / 6.626 x 10^-19 J = 0.315 K

Rounding to the nearest Kelvin, we get T = 5300 K.

To learn more about energy click here

https://brainly.com/question/16182853

#SPJ11

Assignment: Fluid Statics Fluid statics, or hydrostatics, studies fluids at rest. In this assignment, demonstrate your understanding of fluid statics by completing the problem set. Instructions Your task is to complete the questions below. Restate the problem, state all of the given values, show all of your steps, respect significant figures, and conclude with a therefore statement. Submit your work to the Dropbox when you are finished. Questions 1. You have three samples of substances. For each you know the mass and the volume. Find the names of the substances. (18 marks total) a. m = 195 g ; V = 25 cm? (6 marks) b. m = 10.5g ; V = 10 cm. (6 marks) c. m = 64.5 mg; V = 50.0 cm. (6 marks) 2. Calculate the pressure you exert on the floor when you stand on both feet. You may approximate the surface area of your shoes. Show all your work. (9 marks) 3. A car of mass 1.5 x 10kg is hoisted on the large cylinder of a hydraulic press. The area of the large piston is 0.20 m2, and the area of the small piston is 0.015 m2. (13 marks total) a. Calculate the magnitude of the force of the small piston needed to raise the car with slow speed on the large piston. (8 marks) b. Calculate the pressure, in Pascals and Kilopascals, in this hydraulic press. (5 marks) Assessment Details Your submission should include the following: Your answers to the problem set The formulas used to solve the problems O All mathematical calculations n Your answers renorted to the correct number of significant digits

Answers

The pressure in the hydraulic press is approximately 73,500 Pa or 73.5 kPa.

Given:

a. m = 195 g, V = 25 cm³

b. m = 10.5 g, V = 10 cm³

c. m = 64.5 mg, V = 50.0 cm³

To find the names of the substances, we need to calculate their densities using the formula:

Density (ρ) = mass (m) / volume (V)

a. Density (ρ) = 195 g / 25 cm³ = 7.8 g/cm³

The density of the substance is 7.8 g/cm³.

b. Density (ρ) = 10.5 g / 10 cm³ = 1.05 g/cm³

The density of the substance is 1.05 g/cm³.

c. Density (ρ) = 64.5 mg / 50.0 cm³ = 1.29 g/cm³

The density of the substance is 1.29 g/cm³.

By comparing the densities to known substances, we can determine the names of the substances.

a. The substance with a density of 7.8 g/cm³ could be aluminum.

b. The substance with a density of 1.05 g/cm³ could be wood.

c. The substance with a density of 1.29 g/cm³ could be water.

Therefore:

a. The substance with m = 195 g and V = 25 cm³ could be aluminum.

b. The substance with m = 10.5 g and V = 10 cm³ could be wood.

c. The substance with m = 64.5 mg and V = 50.0 cm³ could be water.

To calculate the pressure exerted on the floor when standing on both feet, we need to know the weight (force) exerted by the person and the surface area of the shoes.

Given:

Weight exerted by the person = ?

Surface area of shoes = ?

Let's assume the weight exerted by the person is 600 N and the surface area of shoes is 100 cm² (0.01 m²).

Pressure (P) = Force (F) / Area (A)

P = 600 N / 0.01 m²

P = 60000 Pa

Therefore, the pressure exerted on the floor when standing on both feet is 60000 Pa.

Given:

Mass of the car (m) = 1.5 x 10³ kg

Area of the large piston (A_large) = 0.20 m²

Area of the small piston (A_small) = 0.015 m²

a. To calculate the force of the small piston needed to raise the car with slow speed on the large piston, we can use the principle of Pascal's law, which states that the pressure in a fluid is transmitted equally in all directions.

Force_large / A_large = Force_small / A_small

Force_small = (Force_large * A_small) / A_large

Force_large = mass * gravity

Force_large = 1.5 x 10³ kg * 9.8 m/s²

Force_small = (1.5 x 10³ kg * 9.8 m/s² * 0.015 m²) / 0.20 m²

Force_small ≈ 11.025 N

Therefore, the magnitude of the force of the small piston needed to raise the car with slow speed on the large piston is approximately 11.025 N.

b. To calculate the pressure in the hydraulic press, we can use the formula:

Pressure = Force / Area

Pressure = Force_large / A_large

Pressure = (1.5 x 10³ kg * 9.8 m/s²) / 0.20 m²

Pressure ≈ 73,500 Pa

To convert Pa to kPa, divide by 1000:

Pressure ≈ 73.5 kPa

Therefore, the pressure in the hydraulic press is approximately 73,500 Pa or 73.5 kPa.

Learn more about Fluid Statics Fluid statics here-

brainly.com/question/33297314

#SPJ11

If the net work done on a particle is zero, which of the following must be true? A. More information needed is zero decreases does not change e. The speed does not change.

Answers

When the net work done on a particle is zero, the speed of the particle does not change.

When the net work done on a particle is zero, it means that the total work done on the particle is balanced and cancels out. Work is defined as the change in energy of an object, specifically in this case, the change in kinetic energy. If the net work is zero, it implies that the initial and final kinetic energies are equal.

The kinetic energy of an object is directly related to its speed. An object with higher kinetic energy will have a higher speed, and vice versa. Therefore, if there is no change in kinetic energy, it implies that the speed of the particle remains constant.

This result holds true regardless of the specific forces acting on the particle or the path taken. As long as the net work done on the particle is zero, the particle's speed will not change throughout the process.

To know more about speed, click here:

brainly.com/question/17661499

#SPJ11

Other Questions
In the context of purchasing components or materials, what is early procurement involvement? Dr. Lewis is convinced that the number of telephones in a persons house is a valid indicator of general intelligence. He tested 40 people and found that their scores never changed over an entire year. How would you describe Dr. Lewis measure of intelligence?a. It is valid but probably not reliableb. It is reliable but probably not validc. It is likely both invalid and unreliabled. It is likely both valid and reliable A person's body fat distribution influence the risks for obesity True FalseSubcutaneous fat deposition increases the risk for central obesity and metabolic syndrome True O False In an ad hoc arbitration proceeding according UAR seatedin a jurisdiction which has adopted UML verbatim, what 4 aspects ofany evidence must be determined by the arbitraltribunal? __________ refer to a strategy wherein People of Color had a ta levied against them that would have had to be paid as a precondition voting. O Poll Exam O Literacy Tests O Poll Tax O Poll Test Write a problem and solution synthesis championing the importance of implementing change to a governmental policy or issue and explaining the solutions necessary to alleviate the problem. Take a stance regarding this issue or topic to create three solutions to this problem. Possible objections must be refuted. Find ten articles about this topic to support and refute your position. Only two sources can be from a general search engine. A minimum of six sources must be from scholarly journals accessed through licensed databases.I. Problem & Solution EssayA. Introduction1. Attention grabber2. Segue from attention grabber to problem3. Problem background4. Problem background5. Problem background6. Convince reader to care about the problem7. Convince reader to care about the problem8. thesis B. Solution #11. topic sentence identifies solution2. explain WHY solution will work3. direct quote supporting solution4. explain how quote supports solution5. refute a possible objection to this solution6. direct quote showing support for refuting the objection7. explain how quote shows support for refuting objection to solution8. concluding sentenceC. Solution #21. topic sentence identifies solution2. explain WHY solution will work3. direct quote supporting solution4. explain how quote supports solution5. refute a possible objection to this solution6. direct quote showing support for refuting the objection7. explain how quote shows support for refuting objection to solution8. concluding sentenceD. Solution #31. topic sentence identifies solution2. explain WHY solution will work3. direct quote supporting solution4. explain how quote supports solution5. refute a possible objection to this solution6. direct quote showing support for refuting the objection7. explain how quote shows support for refuting objection to solution8. concluding sentenceE. Conclusion1. tie back to attention grabber2. tie back/explain3. summarize solution #14. summarize solution #25. summarize solution #36. summarize problems importance7. remind readers of the benefits of these solutions8. Call to action Write a paragraph about the law of china. Such as, the legalsystem, the case trial system, the legalisation system,the laweducation and so on. 8. [-/1 Points] DETAILS SERPSE10 6.4.OP.016. A skydiver jumps from a slow-moving airplane. The skydiver's mass is 78.5 kg. After falling for some distance, she reaches a terminal speed of 52.1 m/s. (a) What is her acceleration (in m/s2) when her speed is 30.0 m/s? magnitude m/s direction -Select- (b) What is the drag force (in N) on the skydiver when her speed is 52.1 m/s? N magnitude direction Select (c) What is the drag force (in N) on the skydiver when her speed is 30.0 m/s? magnitude direction Select-- Need Help? Read It MY NOTES ASK YOUR TEACHER PRACTICE ANOTHE Three children are riding on the edge of a merry-go-round that is a solid disk with a mass of 91.4 kg and a radius of 1.62 m. The merry-go-round is initially spinning at 7.82 revolutions/minute. The children have masses of 28.5 kg30.7 kg and 34.9 kg . If the child who has a mass of 30.7 kg moves to the center of the merry -go round, what is the new angular velocity in revolutions /minute? The most commonly used 'nuclear fuel' for nuclear fission is Uranium-235.a) Describe what happens to a Uranium-235 nucleus when it undergoes nuclear fission. [Suggested word count100]b) In a nuclear fission reactor for electrical power generation, what is the purpose ofi) the fuel rodsii) the moderatoriii the control rodsiv) the coolant?[Suggested word count 150] c) The following paragraph contains a number of errors (somewhere between 1 and 5). Rewrite this passage, correcting any errors that are contained there. It should be possible to do this by replacing just one word within asentence with another. There are two ways in which research nuclear reactors can be used to produce useful artificial radioisotopes. The excess protons produced by the reactors can be absorbed by the nuclei of target material leading to nuclear transformations. If the target material is uranium-238 then the desired products may be the daughter nuclei of the subsequent uranium fission. These can be isolated from other fusion products using chemical separation techniques. If the target is made of a suitable non-fissile isotope then specific products can be produced. Anexample of this is cobalt-59 which absorbs a neutron to become cobalt-60. How d you solve a match paired test Enzymes and chaperone proteins assist in ______ that takes place after translation is complete. multiple choice question. ribosome disassembly trna recharging protein folding exon splicing A can of soda at 80 - is placed in a refrigerator that maintains a constant temperature of 370 p. The temperature T of the aoda t minutes aiter it in pinced in the refrigerator is given by T(t)=37+43e0.055t. (a) Find the temperature, to the nearent degree, of the soda 5 minutes after it is placed in the refrigerator: =F (b) When, to the nearest minute, will the terpperature of the soda be 47F ? min Social Policy and Debate - Religious Leaders and the Rainbow of same sex Pride: Should a religious leader officiate a same sex marriage against his or her denomination policies? Why or why not? Does leadership within a denomination carry an obligation to abide by that denominations regulations or to push for change within the denomination? Should religious groups have the right to discriminate regarding who they allow in their group? What is the (a) atomic number Z and the (b) atomic mass number A of the product of the reaction of the element 2X with an alpha particle: 2X (ap)Y? (a) Number i Units (b) Number i Units What were the causes and effects of the German economic crisis of the 1920s and the global depression of the 1930s? Mr. Menendez is a 65-year-old man presenting with 23 days of coughing up thick yellow sputum, shortness of breath, and fever (he did not check the actual temperature) and chills. He states his chest hurts when he breathes. He denies headache, rhinorrhea, sinus pain, and nausea. He reports no exposure to sick individuals. Medications: lisinopril 10 mg a day by mouth. Allergies: no known drug allergies. Past medical history: hypertension Social history: smokes 1 pack of cigarettes per day (has done so for 30 years); denies alcohol use; works as a landscaper. Physical exam: Vital signs: temperature 101F, pulse 98 per minute; respiratory rate 22 per minute, blood pressure 140/86 mmHg, pulse oximeter 93%. General: ill and tired appearance, coughing during visit with thick yellow sputum noted. HEENT: unremarkable. Neck: small anterior and posterior cervical nodes. CV: unremarkable. Lungs: right basilar crackles with dullness to percussion in right lower lobe. Abdomen: unremarkable. A) What is the most likely diagnosis and pathogen causing this disorder? B) Discuss the mode of transmission. C) Discuss the data that support your decision. D) What diagnostic test, if any, should be done? E) Develop a treatment plan for this patient. When the princess kisses the swineherd, she is really kissing the:shoemaker.prince.Emperor. Exercise 1 Draw three lines under each lowercase letter that should be capitalized. Strike through (B) each capitalized letter that should be lowercase.The Islamic book of holy writings is called the quran. A gasoline mini-mart orders 25 copies of a monthly magazine. Depending on the cover story, demand for the magazine varies. The mini-mart purchases the magazines for $1.68 and sells them for $3.99. Any magazines left over at the end of the month are donated to hospitals and other health care facilities. Modify the newsvendor example spreadsheet to model this situation. Use what-if analysis to investigate the financial implications of this policy if the demand is expected to vary between 10 and 30 copies each month. Click the icon to view the newsvendor example spreadsheet. The demand must be at least copies for the gasoline mini-mart to break even. (Type a whole number.)