A Shaftis driven by a 60kw AC electric motor with a star/delta starter by means of a belt(s). The motor speed is 1250rpm. The shaft drives a fan by means of a spur gear train, The fan must rotate at 500rpm in the same direction as the electric motor The Shatt is supported by 2 siding bearings one at each and of the shaft. The system is used for 24 hrs per day. Determine - Shaft dammeter at bearing - Nominal size of shatt chosen before machining - Ignore shatt bending - Sketch of design

Answers

Answer 1

The shaft is driven by a 60 kW AC electric motor with a star/delta starter, connected through a belt(s).

The motor operates at a speed of 1250 rpm, while the shaft needs to drive a fan at 500 rpm in the same direction. The system operates continuously for 24 hours per day and is supported by two sliding bearings, one at each end of the shaft. To determine the required parameters for the shaft, we need to calculate the shaft diameter at the bearings and choose a suitable nominal size before machining. It is assumed that shaft bending can be ignored. To determine the shaft diameter at the bearing, we need to consider the power transmitted and the speed of rotation. The power transmitted can be calculated using the formula: Power (kW) = (2 * π * N * T) / 60,

where N is the speed of rotation (in rpm) and T is the torque (in Nm). Rearranging the equation to solve for torque:

T = (Power * 60) / (2 * π * N).

For the electric motor, the torque can be calculated as:

T_motor = (Power_motor * 60) / (2 * π * N_motor).

Assuming an efficiency of 90% for the belt drive, the torque required at the fan can be calculated as:

T_fan = (T_motor * N_motor) / (N_fan * Efficiency_belt),

where N_fan is the desired speed of the fan (in rpm).

Once the torque is determined, we can use standard engineering practices and guidelines to select the shaft diameter at the bearing, ensuring adequate strength and avoiding excessive deflection. The chosen nominal size of the shaft before machining should be based on industry standards and the specific requirements of the application.

Learn more about electric motor here:

https://brainly.com/question/31783825

#SPJ11


Related Questions

A fire sprinkler pump is installed on the basement floor of a building, which can be modeled as a rigid rectangular plate resting on four elastic columns as shown in Figure Q3. The equivalent mass of the sprinkler pump is m1 of 150×Pkg and it is observed to vibrate badly at a frequency of 10 Hz. The vibration is caused by the application of a harmonic force, F of 100×QN to the pump. A hypothesis was made by a mechanical engineer that the excessive vibration is due to the frequency of the harmonic force which coincides with the natural frequency of the sprinkler pump.
P= 10 and Q= 10
Question:
(i) Based on the hypothesis made by the engineer, suggest the possible solution to overcome the vibration problem. Please give a reason to support your answer.
(ii) If the sprinkler pump can be modeled as a single degree of freedom spring-mass system, calculate the stiffness, for each elastic column possessed. Give the final answer in the unit of kN/m.

Answers

(i)Based on the hypothesis made by the engineer, the possible solution to overcome the vibration problem is to change the natural frequency of the sprinkler pump. Therefore, the stiffness of each elastic column possessed is 58,905 kN/m. Answer: 58,905 kN/m.

This can be achieved by changing the stiffness of the elastic columns. If the natural frequency of the system is different from the frequency of the harmonic force applied, the vibration will be significantly reduced.Reason: The natural frequency is the frequency at which the system vibrates when disturbed.

The stiffness, k of each elastic column possessed can be calculated as follows:Given:Equivalent mass of the sprinkler pump, m1 = 150×PkgFrequency of vibration,

f = 10 HzHarmonic force applied,

F = 100×QN,

where Q = 10 kN

Stiffness of each elastic column = kWe know that the natural frequency of the system is given by the following formula:f = (1/2π) * √(k/m1) Squaring both sides of the equation,

we get:k[tex]= m1 * (2πf)²= 150×10 * (2π×10)²= 150000 * 392.7= 58,905 kN/m[/tex]

To know more about frequency visit:

https://brainly.com/question/29739263

#SPJ11

CO₂ (R-0.1889 kJ/kg.K) is compressed through a compressor from 100 kPa and 100 °C to 900 kPa in an internally reversible polytropic process (pvc). The compressor work is nearest (c)-187.0 kJ/kg (2) -155.9 kJ kg, (b) 155.9 kJ/kg, (d)-120 kJ.kg (e) 120 kJ/kg

Answers

The compression work is 120 kJ/kg.(option e)

Initial pressure, p1 = 100 kPa

Initial temperature, T1 = 100 °C

Final pressure, p2 = 900 kPa

Gas constant, R = 0.1889 kJ/kg.K

Mass of the gas, m = 1 kg

Compression work, W = ?

The process is internally reversible polytropic process. Therefore, the equation for the polytropic process can be used to calculate the compression work. Here, the polytropic process is given by:

pVn = constantor, p1V1n = p2V2n

For this problem, the gas is CO2, which is a diatomic gas. Therefore, the gas constant is R/2 = 0.09445 kJ/kg.K

Mean temperature during the process is given by:

Tm = (T1 x (p2/p1)^((n-1)/n)) / (n-1) = (100 x (900/100)^(1.3-1)/1.3) = 311.78 K

Using the ideal gas equation, the volume of the gas at the beginning and the end of the process can be calculated as:

V1 = mR T1 / p1 = 0.1889 x 100 / 100 = 0.1889 m³

V2 = mR Tm / p2 = 0.1889 x 311.78 / 900 = 0.0653 m³

Now, p1V1n = p2V2n, so n = ln(p2/p1) / ln(V1/V2) = ln(900/100) / ln(0.1889/0.0653) = 1.3

The work done on the gas can now be calculated using the polytropic process equation,

W = [(p2V2 - p1V1) / (n-1)] = [(900 x 0.0653 - 100 x 0.1889) / (1.3-1)] = 120 kJ/kg

To know more about compression   visit:

https://brainly.com/question/33226001

#SPJ11

A rigid 0.1 m3 tank contains 4 kg of R134−a at at 24∘C. It is heated up t a supply line at 800kpa and 40∘C. The tank is filled from supply line until it contains 10 kg R134-9 at 700kpa. Find the entropy generation if the surrounding temp is 18∘C ?

Answers

The given parameters are,Therefore, the entropy generation is 5.98 kJ/K.

Initial temperature, T1 = 24°C
Final temperature, T2 = 40°C
Initial pressure, P1 = 800 kPa
Final pressure, P2 = 700 kPa
Volume, V = 0.1 m³
Initial mass, m1 = 4 kg
Final mass, m2 = 10 kg
Surrounding temperature, T_surr = 18°C

Let's find out the entropy generation of the given system.

Formula used:
ΔS_gen = ΔS_system + ΔS_surr

where,
ΔS_gen = Entropy generation
ΔS_system = Entropy change of the system
ΔS_surr = Entropy change of the surrounding

We know, for an isothermal process,

ΔS_system = Q/T

where,
Q = Heat added
T = Temperature

So, the entropy change of the system can be given as,

ΔS_system = Q/T = m*C*ln(T2/T1)

where,
C = Specific heat capacity of R134a

From the steam table, we can obtain the specific heat capacity of R134a.

C = 1.13 kJ/kgK

ΔS_system = m*C*ln(T2/T1)
= (10-4)*1.13*ln(313/297)
= 6.94 kJ/K

Now, let's calculate the entropy change of the surrounding,

ΔS_surr = -Q/T_surr

The heat rejected is equal to the heat added. So, Q = m*H_f + m*C*(T2-T1)

From the steam table, we can obtain the enthalpy of R134a at its initial state.

H_f = 61.93 kJ/kg

Q = m*H_f + m*C*(T2-T1)
= 4*61.93 + 4*1.13*(40-24)
= 275.78 kJ

ΔS_surr = -Q/T_surr
= -275.78/(18+273)
= -0.962 kJ/K

Now, we can calculate the entropy generation as follows,

ΔS_gen = ΔS_system + ΔS_surr
= 6.94 - 0.962
= 5.98 kJ/K

Therefore, the entropy generation is 5.98 kJ/K.
To know more about generation visit:
https://brainly.com/question/12841996

#SPJ11

ii) Write a MATLAB script to compute the zeros of equation (1) using all four expressions. Set a=50,c=80, and b=102k where k=1,2,…,8. Repeat the computations for negative b. Plot your computations for comparison (an example of which is shown over the page), then explain how and where things are going wrong in the equation (2) computations when catastrophic cancellations are first observed. I recommend you write this as a Matlab live script (.mlx format) so that you can present the input and output in your submission (as a single pdf). ax2+bx+c=0 x1=1/2a(−b+√b2−4ac) and x2=1/2a(−b−√b2−4ac)

Answers

The size of the inputs has no bearing on catastrophic cancellation; it holds for both large and small inputs.

Thus, Only the size of the difference and the accuracy of the inputs matter. The same issue would occur if you subtracted.

It is not a characteristic of any specific type of arithmetic like floating-point arithmetic; rather, catastrophic cancellation is fundamental to subtraction, when the inputs are itself approximations.

This means that catastrophic cancellation may occur even if the difference is computed precisely, as in the example above.

There is no rounding error imposed by the floating-point subtraction operation in floating-point arithmetic when the inputs are near enough to compute the floating-point difference precisely using the Sterbenz lemma.

Thus, The size of the inputs has no bearing on catastrophic cancellation; it holds for both large and small inputs.

Learn more about catastrophic cancellation, refer to the link:

https://brainly.com/question/29694143

#SPJ4

Show that the sequence (1/2ⁿ) is Cauchy in R Show a case where a series is said to be absolutely convergent

Answers

To show that the sequence (1/2ⁿ) is Cauchy in R, we need to prove that for any ε > 0, there exists N such that |1/2ⁿ - 1/2ᵐ| < ε for all n, m > N.

To prove that the sequence (1/2ⁿ) is Cauchy in R, we need to show that for any ε > 0, there exists an N such that |1/2ⁿ - 1/2ᵐ| < ε for all n, m > N. We can choose N = log₂(1/ε), and for any n, m > N, we have:

|1/2ⁿ - 1/2ᵐ| = |1/2ⁿ - 1/2ⁿ⁺ᵏ| ≤ |1/2ⁿ| + |1/2ⁿ⁺ᵏ| = 1/2ⁿ + 1/2ⁿ * (1/2ᵏ)

Since ε > 0, we can choose k such that 1/2ᵏ < ε/2. Then, for n, m > N, we have:

|1/2ⁿ - 1/2ᵐ| ≤ 1/2ⁿ + 1/2ⁿ * (ε/2) = 1/2ⁿ * (1 + ε/2) < 1/2ⁿ * (1 + ε) = ε

Therefore, the sequence (1/2ⁿ) is Cauchy in R.

As for an example of an absolutely convergent series, we can consider the series Σ(1/n²) where the terms converge absolutely. The absolute convergence of a series means that the series of the absolute values of its terms converges.

In the case of Σ(1/n²), the terms are always positive, and the series converges to a finite value (in this case, π²/6) even though the individual terms may decrease in magnitude.

Learn more about  sequence (1/2ⁿ): brainly.com/question/26263191

#SPJ11

1-PORTx is the ___________ for portx (Read/Write)
a.
data register
b.
port input pins register
c.
data direction register
d.
pull-up resistor
2-__________ are used in electronic logic circu

Answers

PORTx is the data register for portx (Read/Write). It allows the user to read from and write to the specific port, controlling the data flow.

Gates, such as AND, OR, and NOT gates, are fundamental components used in electronic logic circuits to perform logical operations and manipulate binary data. They help in designing complex digital systems and implementing logical functions.

to learn more about NOT gates .

https://brainly.com/question/33187456

Suppose an infinitely large plane which is flat. It is positively charged with a uniform surface density ps C/m²
1. Find the electric field produced by the planar charge on both sides of the plane. If you use symmetry argument you may picture the field lines. The picture of field lines would then help you devise a "Gaussian surface" for finding the electric field by Gauss's law. 2. Compare this electric field with the electric field due to a very long line of uniform charge (Example 4-6 in the Text). 3. Now imagine there are two planar sheets with charges. One is charged with a uniform surface density p. and the other -P. The two planes are placed in parallel with a distance d apart. Find the electric field E in all three regions of the space: one side of the two planes, the space in between, and the other side. Superposition principle would be useful for finding the field.

Answers

Suppose an infinitely large plane which is flat. It is positively charged with a uniform surface density ps C/m²

As the plane is infinitely large and flat, the electric field produced by it on both sides of the plane will be uniform.

1. Electric field due to the planar charge on both sides of the plane:

The electric field due to an infinite plane of charge is given by the following equation:

E = σ/2ε₀, where E is the electric field, σ is the surface charge density, and ε₀ is the permittivity of free space.

Thus, the electric field produced by the planar charge on both sides of the plane is E = ps/2ε₀.

We can use the symmetry argument to picture the field lines. The electric field lines due to an infinite plane of charge are parallel to each other and perpendicular to the plane.

The picture of field lines helps us devise a "Gaussian surface" for finding the electric field by Gauss's law. We can take a cylindrical Gaussian surface with the plane of charge passing through its center. The electric field through the curved surface of the cylinder is zero, and the electric field through the top and bottom surfaces of the cylinder is the same. Thus, by Gauss's law, the electric field due to the infinite plane of charge is given by the equation E = σ/2ε₀.

2. Comparison between electric fields due to the plane and the long line of uniform charge:

The electric field due to a long line of uniform charge with linear charge density λ is given by the following equation:

E = λ/2πε₀r, where r is the distance from the line of charge.

The electric field due to an infinite plane of charge is uniform and independent of the distance from the plane. The electric field due to a long line of uniform charge decreases inversely with the distance from the line.

Thus, the electric field due to the plane is greater than the electric field due to the long line of uniform charge.

3. Electric field due to two planar sheets with charges:

Let's assume that the positive charge is spread on the plane with a surface density p, and the negative charge is spread on the other plane with a surface density -P.

a. One side of the two planes:

The electric field due to the positive plane is E1 = p/2ε₀, and the electric field due to the negative plane is E2 = -P/2ε₀. Thus, the net electric field on one side of the two planes is E = E1 + E2 = (p - P)/2ε₀.

b. The space in between:

Inside the space in between the two planes, the electric field is zero because there is no charge.

c. The other side of the two planes:

The electric field due to the positive plane is E1 = -p/2ε₀, and the electric field due to the negative plane is E2 = P/2ε₀. Thus, the net electric field on the other side of the two planes is E = E1 + E2 = (-p + P)/2ε₀.

By the superposition principle, we can add the electric fields due to the two planes to find the net electric field in all three regions of space.

Learn more about electric fields: https://brainly.com/question/19878202

#SPJ11

How do you execute these terms to Contral Corrosion Heat treatment of steel.
stress-stoom diagram for hot rolled and Cold-draw
Annealing Quenching tempany Casehordaing Alloy steel Corrosion-Resistant steel

Answers

Corrosion is the gradual degradation of materials, primarily metals, by the chemical reaction with its environment. Corrosion is a ubiquitous process that can be found in virtually every setting, from seawater to acidic rain, and can cause severe damage to the structure of a metal.

Heat treatment is a process that can control the corrosion of steel. This process can include various techniques such as annealing, quenching, case hardening, and alloying. This treatment alters the microstructure of the steel to create a material that is more resistant to corrosion.

Annealing is a heat treatment process that involves heating a steel to a specific temperature, holding it at that temperature for a specific time, and then slowly cooling the steel to room temperature. The purpose of annealing is to reduce the hardness of the steel, making it more malleable and easier to work with. This process can also improve the corrosion resistance of the steel by reducing internal stresses and eliminating defects in the crystal structure of the metal.

Quenching is a heat treatment process that involves heating a steel to a specific temperature, holding it at that temperature for a specific time, and then rapidly cooling the steel by immersing it in a liquid. The purpose of quenching is to create a hard, brittle metal that is less susceptible to corrosion. The rapid cooling rate causes the crystal structure of the metal to become disordered, which makes it more difficult for corrosive agents to penetrate the surface of the metal.

Case hardening is a heat treatment process that involves heating a steel to a specific temperature, introducing a specific gas or liquid into the environment, and then rapidly cooling the steel. The purpose of case hardening is to create a hard, wear-resistant surface layer on the steel while maintaining a more ductile core. This process can also improve the corrosion resistance of the steel by creating a surface layer that is more resistant to corrosion.
To know more about Corrosion visit:

https://brainly.com/question/31313074
#SPJ11

Air in a P-C device undergoes the following reversible processes such that it operates as a cyclic refrigerator: 1-2 isothermal compression from 1 bar and 300 K to 3 bar, 2-3 adiabatic expansion back to its initial volume, 3-1 isobaric heating back to its initial state. Assume air behaves as a calorically perfect gas. Sketch this cycle in T-s and P-v diagrams. Calculate the work, heat transfer, and entropy change for each of the three processes. Determine the COP for this refrigerator.

Answers

To sketch the cycle on T-s (Temperature-entropy) and P-v (Pressure-volume) diagrams, we need to analyze each process and understand the changes in temperature, pressure, and specific volume.

1-2: Isothermal compression

In this process, the temperature remains constant (isothermal). The gas is compressed from 1 bar and 300 K to 3 bar. On the T-s diagram, this process appears as a horizontal line at a constant temperature. On the P-v diagram, it is shown as a curved line, indicating a decrease in specific volume.

2-3: Adiabatic expansion

During this process, the gas undergoes adiabatic expansion back to its initial volume. There is no heat transfer (adiabatic). On the T-s diagram, this process appears as a downward-sloping line. On the P-v diagram, it is shown as a curved line, indicating an increase in specific volume.

3-1: Isobaric heating

In this process, the gas is heated back to its initial state at a constant pressure. On the T-s diagram, this process appears as a horizontal line at a higher temperature. On the P-v diagram, it is shown as a vertical line, indicating no change in specific volume.

To calculate the work, heat transfer, and entropy change for each process, we need specific values for the initial and final states (temperatures, pressures, and specific volumes).

COP (Coefficient of Performance) for a refrigerator is given by the formula:

COP = Heat transfer / Work

To determine the COP, we need the values of heat transfer and work for the refrigeration cycle.

Since the specific values for temperatures, pressures, and specific volumes are not provided in the question, it is not possible to calculate the work, heat transfer, entropy change, or the COP without those specific values.

Learn more about Isothermal compression here:

https://brainly.com/question/32558407


#SPJ11

With the aid of an illustration, explain the how does these
vertical transport works:
a. An electric Lift
b. Paternoster lift
c. Oil hydraulic lift
d. Escalator
e. Travelator
f. Stair lift

Answers

Answer:

Explanation:

a. Electric Lift:

An electric lift, also known as an elevator, is a vertical transport system that uses an electric motor to move a platform or cabin up and down within a shaft. The illustration would show a vertical shaft with a cabin or platform suspended by cables. The electric motor, located at the top of the shaft, drives a pulley system connected to the cables. When the motor rotates, it either winds or unwinds the cables, causing the cabin to move accordingly. The lift is controlled by buttons or a control panel, allowing passengers to select their desired floor. Safety mechanisms such as brakes and sensors are also present to ensure smooth and secure operation.

b. Paternoster Lift:

A paternoster lift is a unique type of vertical transport consisting of a chain of open cabins that continuously move in a loop. The illustration would show multiple cabins attached to a continuous chain, resembling a string of open compartments. As the chain moves, the cabins go up and down, allowing passengers to step on or off at each floor. Paternoster lifts operate at a constant speed and do not have doors. Passengers must carefully time their entry and exit, as the cabins are in motion.

c. Oil Hydraulic Lift:

An oil hydraulic lift, also known as a hydraulic elevator, uses fluid pressure to lift and lower a platform or cabin. The illustration would depict a vertical shaft with a hydraulic cylinder located at the base. The platform is attached to a piston within the cylinder. When hydraulic fluid is pumped into the cylinder, it exerts pressure on the piston, lifting the platform. Conversely, releasing the fluid from the cylinder allows the platform to descend. The lift is controlled by valves and a hydraulic pump, and it offers smooth and precise vertical movement.

d. Escalator:

An escalator is a moving staircase designed for vertical transportation between different levels of a building. The illustration would show a set of steps arranged in a loop, with a continuous handrail moving alongside the steps. The steps are mounted on a pair of chains or belts that loop around two sets of gears, one at the top and one at the bottom. As the gears rotate, the steps move in a coordinated manner, allowing passengers to step on and off while the escalator continues to operate. Sensors and safety features are incorporated to detect obstructions and ensure passenger safety.

e. Travelator:

A travelator, also known as a moving walkway, is a flat conveyor belt-like system that transports people horizontally or inclined over short distances. The illustration would depict a flat surface with a moving belt, similar to a treadmill. The travelator is designed to assist pedestrians in walking or standing while it moves. It is commonly used in airports, train stations, and large public spaces to facilitate movement between terminals or platforms.

f. Stair Lift:

A stair lift, also known as a stair chair or stairway elevator, is a mechanical device installed along a staircase to transport individuals up and down. The illustration would show a chair or platform attached to a rail system that runs along the staircase. The chair or platform moves along the rail, allowing individuals with mobility difficulties to sit or stand on it while being safely transported along the stairs. The stair lift is controlled by buttons or a remote control, enabling the user to operate it easily and safely.

know more about vertical shaft: brainly.com/question/32298672

#SPJ11

Answer:

a. Electric Lift:

An electric lift, also known as an elevator, is a vertical transport system that uses an electric motor to move a platform or cabin up and down within a shaft. The illustration would show a vertical shaft with a cabin or platform suspended by cables. The electric motor, located at the top of the shaft, drives a pulley system connected to the cables. When the motor rotates, it either winds or unwinds the cables, causing the cabin to move accordingly. The lift is controlled by buttons or a control panel, allowing passengers to select their desired floor. Safety mechanisms such as brakes and sensors are also present to ensure smooth and secure operation.

b. Paternoster Lift:

A paternoster lift is a unique type of vertical transport consisting of a chain of open cabins that continuously move in a loop. The illustration would show multiple cabins attached to a continuous chain, resembling a string of open compartments. As the chain moves, the cabins go up and down, allowing passengers to step on or off at each floor. Paternoster lifts operate at a constant speed and do not have doors. Passengers must carefully time their entry and exit, as the cabins are in motion.

c. Oil Hydraulic Lift:

An oil hydraulic lift, also known as a hydraulic elevator, uses fluid pressure to lift and lower a platform or cabin. The illustration would depict a vertical shaft with a hydraulic cylinder located at the base. The platform is attached to a piston within the cylinder. When hydraulic fluid is pumped into the cylinder, it exerts pressure on the piston, lifting the platform. Conversely, releasing the fluid from the cylinder allows the platform to descend. The lift is controlled by valves and a hydraulic pump, and it offers smooth and precise vertical movement.

d. Escalator:

An escalator is a moving staircase designed for vertical transportation between different levels of a building. The illustration would show a set of steps arranged in a loop, with a continuous handrail moving alongside the steps. The steps are mounted on a pair of chains or belts that loop around two sets of gears, one at the top and one at the bottom. As the gears rotate, the steps move in a coordinated manner, allowing passengers to step on and off while the escalator continues to operate. Sensors and safety features are incorporated to detect obstructions and ensure passenger safety.

e. Travelator:

A travelator, also known as a moving walkway, is a flat conveyor belt-like system that transports people horizontally or inclined over short distances. The illustration would depict a flat surface with a moving belt, similar to a treadmill. The travelator is designed to assist pedestrians in walking or standing while it moves. It is commonly used in airports, train stations, and large public spaces to facilitate movement between terminals or platforms.

f. Stair Lift:

A stair lift, also known as a stair chair or stairway elevator, is a mechanical device installed along a staircase to transport individuals up and down. The illustration would show a chair or platform attached to a rail system that runs along the staircase. The chair or platform moves along the rail, allowing individuals with mobility difficulties to sit or stand on it while being safely transported along the stairs. The stair lift is controlled by buttons or a remote control, enabling the user to operate it easily and safely.

know more about vertical shaft: brainly.com/question/32298672

#SPJ11

1) It is desired to design a 0.5 x 0.5 in. square key to fit a 2 in. diameter shaft. 50 hp of power is transmitted at 600 rpm. The key will be made of SAE 1018 steel with a yield strength of 54 ksi. Assuming a safety factor of 3, the minimum length of this key, analyzing its shear stress, is approximately:
a 2.5 in.
b 1.2 in
c 1.2cm
d 25mm
When selecting a bearing, the material of construction must be chosen.
a True
b False

Answers

The minimum length of the key, analyzing its shear stress, is  approximately 1.2 inches. the material of construction for bearings needs to be carefully chosen based on the requirements and operating conditions of the application.  a) True.

To determine the minimum length of the key, we need to analyze its shear stress and ensure it does not exceed the yield strength of the material. The shear stress on the key can be calculated using the formula:

τ = (T * K) / (d * L)

Where:

τ = Shear stress on the key

T = Torque transmitted (in lb-in)

K = Shear stress concentration factor (assumed as 1.5 for square keys)

d = Diameter of the shaft (in inches)

L = Length of the key (in inches)

Given:

T = 50 hp = 50 * 550 lb-in/s = 27500 lb-in (1 horsepower = 550 lb-in/s)

d = 2 in.

We can rearrange the equation to solve for L:

L = (T * K) / (τ * d)

To ensure a safety factor of 3, the maximum allowable shear stress can be calculated as:

τ_max = Yield strength / Safety factor = 54 ksi / 3 = 18 ksi

Substituting the given values into the equation:

L = (27500 lb-in * 1.5) / (18 ksi * 2 in.) ≈ 1.2 in.

Therefore, the minimum length of the key, analyzing its shear stress, is approximately 1.2 inches.

Answer: b) 1.2 in.

Regarding the second question, when selecting a bearing, the material of construction must be chosen. This statement is true. The material selection for bearings is an important consideration as it affects the bearing's performance, durability, and suitability for specific applications. Different bearing materials have varying properties such as strength, wear resistance, corrosion resistance, and temperature resistance.

Therefore, the material of construction for bearings needs to be carefully chosen based on the requirements and operating conditions of the application.

Answer: a) True.

To learn more about   steel transmission click here:

brainly.com/question/23413124

#SPJ11

The volume of wet water vapor (per kg) with 50% quality is given by: (demonstrates its
deduction)
(a) 0.5vf (b) 0.5(vf-vg) (c) vf + 0.5vg (d) 0.5vg (e) vf-0.5vfg

Answers

The volume of wet water vapor (per kg) with 50% quality is 0.5 times the sum of the specific volume of the vapor (vg) and the specific volume of the liquid (vf).

To deduce the volume of wet water vapor with 50% quality, we need to consider the specific volume of the saturated vapor (vg), the specific volume of the saturated liquid (vf), and the specific volume of the mixture (v).

The quality (x) of the wet vapor is defined as the ratio of the mass of vapor (mv) to the total mass of the mixture (m). It can be expressed as:

x = mv / m

For 50% quality, x = 0.5.

The specific volume of the mixture (v) can be calculated using the formula:

v = (mv * vg + ml * vl) / m

where mv is the mass of vapor, vg is the specific volume of the vapor, ml is the mass of liquid, and vl is the specific volume of the liquid.

Since we have 50% quality, mv = 0.5 * m and ml = 0.5 * m.

Substituting these values into the equation for v, we get:

v = (0.5 * m * vg + 0.5 * m * vf) / m

Simplifying, we find:

v = 0.5 * (vg + vf)

In equation form, it can be expressed as v = 0.5 * (vg + vf). Therefore, the correct answer is (c) vf + 0.5vg.

To know more about water vapour;

https://brainly.com/question/33448180

#SPJ11

Question 1. Write the full set of Maxwell's equations in differential form with a brief explanation for the case of: (v) a time-constant magnetic field in a linear medium of permeability, produced by a steady current flow;

Answers

The full set of Maxwell's equations in differential form with a brief explanation for the case of a time-constant magnetic field in a linear medium of permeability, produced by a steady current flow are given below:

The four equations of Maxwell's equations are:Gauss's law for electricity:It describes the electric field flux through any closed surface and how that flux is related to the total electric charge contained inside the surface.φE=∫E.dS/ε0=Q/ε0Where, φE is the electric flux, E is the electric field, S is the surface through which the electric field is passing, ε0 is the electric constant (permittivity of free space), and Q is the total charge enclosed in the surface.

Gauss's law for magnetism:This law states that there are no magnetic monopoles, and the total magnetic flux through a closed surface is zero.φB=∫B.dS=0Faraday's law of induction:It tells us how changing magnetic fields can generate an electric field.

TO know more about  Maxwell's visit:

https://brainly.com/question/32131532

#SPJ11

With a suitable example, explain how supply chain strategy evolves throughout the product life cycle (PLC).

Answers

Supply chain strategy refers to the efficient and effective planning, implementation, and management of all the activities involved in the production, transportation, storage, and delivery of goods and services.

The product life cycle (PLC) is a network used to describe the different stages a product goes through from introduction to decline. As a product progresses through these stages, the supply chain strategy needs to be adjusted to meet the changing needs of customers, stakeholders, and the market environment.

In the introduction phase, supply chain strategy is focused on establishing reliable suppliers, setting up production processes, and building distribution networks. At this stage, the product is new to the market and demand is still uncertain.

In the growth phase, supply chain strategy is focused on increasing production capacity, reducing costs, and expanding distribution channels to reach more customers. The goal is to maintain or increase market share, maximize profits, and gain a competitive advantage.

To know more about transportation  visit:

brainly.com/question/11161029

#SPJ11

Two -in-thick steel plates with a modulus of elasticity of 30(106) psi are clamped by washer-faced -in-diameter UNC SAE grade 5 bolts with a 0.095-in-thick washer under the nut. Find the member spring rate km using the method of conical frusta, and compare the result with the finite element analysis (FEA) curve-fit method of Wileman et al.

Answers

The spring rate found using the method of conical frusta is slightly higher than that obtained using the Finite element analysis (FEA) curve-fit method of Wileman et al.

The spring rate using this method is found to be 1.1 x 10⁶ psi.

Given Information:

           Thickness of steel plates, t = 2 in

           Diameter of UNC SAE grade 5 bolts, d = 0.75 in

           Thickness of washer, e = 0.095 in

           Modulus of Elasticity, E = 30 × 10⁶ psi

Formula:

              Member spring rate km = 2.1 x 10⁶ (d/t)²

            Where, Member spring rate km

Method of conical frusta:

                                     =2.1 x 10⁶ (d/t)²

Comparison method

Finite element analysis (FEA) curve-fit method of Wileman et al.

Calculation:

The member spring rate is given by

                                                km = 2.1 x 10⁶ (d/t)²

For given steel plates,t = 2 in

                                   d = 0.75 in

Therefore,

                              km = 2.1 x 10⁶ (d/t)²

                        (0.75/2)²= 1.11375 x 10⁶ psi

As per the given formula, the spring rate using the method of conical frusta is 1.11375 x 10⁶ psi.

The comparison method is the Finite element analysis (FEA) curve-fit method of Wileman et al.

The spring rate using this method is found to be 1.1 x 10⁶ psi.

To know more about Modulus of Elasticity, visit:

https://brainly.com/question/30756002

#SPJ11

For the homogeneous block shown in the image below, if the dimensions are a = 0.4 m, b = 0.2 m, c = 1.7 m, and b = 1.7 m, determine the coordinate y (in m) for its center of mass location, measured in the provided coordinate system. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point.

Answers

To calculate the y-coordinate (in m) for the center of mass location of the homogeneous block in the given coordinate system, we will use the formula: y cm = (1/M) * Σ

As the block is homogeneous, we can assume uniform density and thus divide the total mass by the total volume to get the mass per unit volume. The volume of the block is simply a*b*c, and its mass is equal to its density times its volume.

Therefore,M = ρ * V = ρ * a * b * c where ρ is the density of the block .We can then express the y-coordinate of the center of mass of the block in terms of its dimensions and the position of its bottom-left corner in the given coordinate system:y1 = (a/2)*cos(45°) + (b/2)*sin(45°)y2 = c/2ycm = y1 + y2To find the numerical value of y cm, we need to substitute the given values into the above formulas and perform the necessary calculations:

the homogeneous block in the given coordinate system is approximately equal to 1.076 m.

To know more about  mass location visit:

brainly.com/question/12910071

#SPJ

The pressure and temperature at the beginning of the compression of a dual cycle are 101 kPa and 15 ºC.
The compression ratio is 12. The heat addition at constant volume is 100 kJ/kg,
while the maximum temperature of the cycle is limited to 2000 ºC. air mass
contained in the cylinder is 0.01 kg. Determine a) the maximum cycle pressure, the MEP, the
amateur heat, the heat removed, the added compression work, the work of
expansion produced, the net work produced and the efficiency of the cycle.

Answers

The maximum temperature  is 662.14 K.

The  maximum cycle pressure is 189.69 kPa.

The Mean Effective Pressure (MEP) is 0.242 kJ and the net heat addition (Qin) is  1 kJ.

1. Calculate the maximum temperature after the constant volume heat addition process:

We have,

γ = 1.4 (specific heat ratio)

[tex]T_1[/tex] = 15 ºC + 273.15 = 288.15 K (initial temperature)

[tex]T_3[/tex]= 2000 ºC + 273.15 = 2273.15 K (maximum temperature)

Using the formula:

[tex]T_2[/tex]= T1  (V2/V1[tex])^{(\gamma-1)[/tex]

[tex]T_2[/tex]= 288.15 K  [tex]12^{(1.4-1)[/tex]

So, T2 = 288.15 K x [tex]12^{0.4[/tex]

[tex]T_2[/tex] ≈ 288.15 K * 2.2974

[tex]T_2[/tex]≈ 662.14 K

2. Calculate the maximum pressure after the compression process:

[tex]P_1[/tex] = 101 kPa (initial pressure)

[tex]V_1[/tex] = 1 (specific volume, assuming 0.01 kg of air)

Using the ideal gas law equation:

P = 101 kPa * (662.14 K / 288.15 K) * (1 / 12)

P ≈ 189.69 kPa

Therefore, the maximum cycle pressure is 189.69 kPa.

3. [tex]T_2[/tex]≈ 662.14 K

and, Qin = Qv * m

Qin = 100 kJ/kg * 0.01 kg

Qin = 1 kJ

So, Wc = m * Cv * (T2 - T1)

Wc ≈ 0.01 kg * 0.718 kJ/kg·K * 373.99 K

Wc ≈ 2.66 kJ

and, MEP = Wc / (r - 1)

MEP = 2.66 kJ / (12 - 1)

MEP ≈ 2.66 kJ / 11

MEP ≈ 0.242 kJ

Therefore, the Mean Effective Pressure (MEP) is 0.242 kJ and the net heat addition (Qin) is  1 kJ.

Learn more about Mean Effective Pressure here:

https://brainly.com/question/32661939

#SPJ4

Realize the given expression o =(+)()using
CMOS Transmission gate logic
Dynamic CMOS logic;
Zipper CMOS circuit
Domino CMOS logic
Write your critical reflections on how to prevent the loss of output voltage level due to charge sharing in Domino CMOS logic for above expression with circuit

Answers

To realize the given expression o = (a + b) * (c + d) using different CMOS logic styles, let's explore each one and discuss their advantages and considerations.

CMOS Transmission Gate Logic:

CMOS transmission gate logic can be used to implement the given expression. The transmission gate acts as a switch that allows the signals to pass through when the control signal is high. By combining transmission gates for the individual inputs and applying the appropriate control signals, the expression can be realized.

Dynamic CMOS Logic:

Dynamic CMOS logic uses a combination of pMOS and nMOS transistors to create logic gates. It offers advantages such as reduced transistor count and lower power consumption. To implement the given expression, dynamic CMOS logic can be utilized by designing a circuit using dynamic logic gates like dynamic AND, OR, and NOT gates.

Zipper CMOS Circuit:

Zipper CMOS circuit is a variation of CMOS logic that employs a series of alternating pMOS and nMOS transistors. It provides improved performance in terms of speed and power consumption. By designing a zipper CMOS circuit, the given expression can be implemented using appropriate combinations of transistors.

Know more about Dynamic CMOS Logic here:

https://brainly.com/question/29846683

#SPJ11

A ship with a laden displacement of 4000 tons has a TPC of 20 tons. This ship will be loaded in water with a density of 1010 kg/m3 up to the summer loading line. Find the FWA of this ship and calculate how much the mean draft changes when the ship enters sea water.
the course name is ship stability

Answers

When a ship is loaded in water, it is essential to consider the freeboard and draft because these factors significantly affect the ship's stability. The freeboard is the distance between the waterline and the main deck's upper edge, while the draft is the distance between the waterline and the bottom of the ship's keel.

To determine these parameters, we can use the formula FWA = TPC / ρ and the Mean Draft Formula. The given data for the problem is:Laden displacement (D) = 4000 tonsTPC = 20 tons

Water density (ρ) = 1010 kg/m³Summer loading line = 4.5 meters

The formula for FWA is:

FWA = TPC / ρwhere TPC is the tons per centimeter of immersion, and ρ is the water density.FWA = 20 / 1010 = 0.0198 meters

To calculate the mean draft change, we can use the formula:

Mean Draft Change = ((D + W) / A) * FWA

where D is the displacement, W is the weight of added water, A is the waterplane area, and FWA is the freeboard to waterline amidships. As the ship is loaded to the summer loading line, the draft is equal to 4.5 meters. We can assume that the ship was initially empty, and there is no weight added.

Mean Draft Change = ((4000 + 0) / A) * 0.0198The waterplane area (A) can be determined using the formula:

A = (D / ρ) * (T / 100)where T is the draft, and ρ is the water density.A = (4000 / 1010) * (4.5 / 100)A = 18.09 m²Mean Draft Change = (4000 / 1010) * (4.5 / 100) * 0.0198Mean Draft Change = 0.035 meters

Therefore, the freeboard is 0.0198 meters, and the mean draft changes by 0.035 meters when the ship enters seawater.

To know more about essential visit :

https://brainly.com/question/3248441

#SPJ11

Butane (C4H10) burns completely with 150% of theoretical air entering at 74°F, 1 atm, 50% relative humidity. The dry air component can be modeled as 21% O2 and 79% N₂ on a molar basis. The combustion products leave at 1 atm. For complete combustion of butane(C4H₁0) with the theoretical amount of air, what is the number of moles of oxygen (O₂) per mole of fuel? Determine the mole fraction of water in the products, in lbmol(water)/lbmol(products).

Answers

The mole fraction of water in the products is 0.556, or 0.556 lbmol(water)/lbmol(products).

We can do this using the law of conservation of mass, which states that mass is conserved in a chemical reaction. Therefore, the mass of the reactants must be equal to the mass of the products.

We can calculate the mass of the reactants as follows:

Mass of butane = 1 mol C4H10 x 58.12 g/mol = 58.12 g

Mass of O2 = 6.5 mol O2 x 32 g/mol = 208 g

Total mass of reactants = 58.12 g + 208 g = 266.12 g

Since the combustion products leave at 1 atm, we can assume that they are at the same temperature and pressure as the reactants (74°F, 1 atm, 50% relative humidity).

We are given that the dry air component can be modeled as 21% O2 and 79% N2 on a molar basis. Therefore, the mole fractions of O2 and N2 in the air are:

Mole fraction of O2 in air = 21/100 x (1/0.79) / [21/100 x (1/0.79) + 79/100 x (1/0.79)] = 0.232

Mole fraction of N2 in air = 1 - 0.232 = 0.768

We can use these mole fractions to calculate the mass of the air required for the combustion of 1 mole of butane. We can assume that the air behaves as an ideal gas, and use the ideal gas law to calculate the volume of air required:PV = nRT

where P = 1 atm, V = volume of air, n = moles of air, R = ideal gas constant, and T = 74 + 460 = 534 R.

Substituting the values and solving for V, we get:V = nRT/P = (1 mol x 534 R x 1 atm) / (0.08206 L·atm/mol·K x 298 K) = 20.8 L

We can now calculate the mass of the air required as follows:Mass of air = V x ρ

where ρ = density of air at 74°F and 1 atm = 0.074887 lbm/ft3

Substituting the values, we get:

Mass of air = 20.8 L x (1 ft3 / 28.3168 L) x 0.074887 lbm/ft3 = 0.165 lbm

We can now calculate the mass of the products as follows:

Mass of products = Mass of reactants - Mass of airMass of products = 266.12 g - 0.165 lbm x (453.592 g/lbm) = 190.16 g

The mass fraction of water in the products is given by:

Mass fraction of water = (5 mol x 18.015 g/mol) / 190.16 g = 0.473

The mole fraction of water in the products is given by:

Mole fraction of water = 5 mol / (4 mol CO2 + 5 mol H2O) = 0.556

Learn more about molecule at

https://brainly.com/question/25138430

#SPJ11

Find the z-transform of x(n) = (1/2)ⁿ u(n) - 2ⁿ (-n -1)
a. X(z) = 2 - 2.5z⁻¹ / (1 - 0.5z⁻¹)(1 - 2z⁻²)
b. X(z) = 2 + 2.5z⁻¹ / (1 + 0.5z⁻¹)(1 + 2z⁻²)
c. X(z) = 2 - 2.5z⁻¹ / (1 - 0.5z⁻¹)(1 - 2z⁻¹)
d. X(z) = 2.5 - 2z⁻¹ / (1 - 0.5z⁻¹)(1 - 2z⁻¹)
e. X(z) = 2.5 - 2z⁻¹ / (1 - 0.5z⁻¹)(1 - 2z⁻²)

Answers

To find the z-transform of x(n) = (1/2)ⁿ u(n) - 2ⁿ (-n -1), we will use the definition of z-transform which is Z{x(n)} = X(z) = ∑_(n=0)^∞▒x(n)z⁻ⁿ.

Z{x(n)} = Z{(1/2)ⁿ u(n)} - Z{2ⁿ (-n -1)}

Z{(1/2)ⁿ u(n)} = ∑_(n=0)^∞▒(1/2)ⁿ u(n) z⁻ⁿ = ∑_(n=0)^∞▒(1/2)^n z⁻ⁿ = 1/(1 - (1/2)z⁻¹)

Z{2ⁿ (-n -1)} = ∑_(n=-∞)^0▒〖2ⁿ (-n-1) z⁻ⁿ 〗 = -∑_(n=0)^∞▒2ⁿ (n+1) z⁻ⁿ

By using the identity ∑_(k=0)^∞▒a^k k = a/(1-a)^2

-∑_(n=0)^∞▒2ⁿ (n+1) z⁻ⁿ = -2/(1-2z⁻¹)²

Z{a x(n) + b y(n)} = a X(z) + b Y(z)

Z{x(n)} = X(z) = Z{(1/2)ⁿ u(n)} - Z{2ⁿ (-n -1)}X(z) = 1/(1 - (1/2)z⁻¹) + 2/(1-2z⁻¹)²

X(z) = 2 - 2.5z⁻¹ / (1 - 0.5z⁻¹)(1 - 2z⁻²)

Option (a) is the correct answer.

To know more about  z-transform visit:

https://brainly.com/question/32622869

#SPJ11

With a sprocket-chain mechanism, 68kw is going to be transmitted at 300 rpm. Service factor (Ks) =1.3 correction factor (K₁)=1 in this case. Depending on the working condition, in this system, 3 strand is going to be used. Assume C/p-25, desing factor (n)=1.5 and reduction ration 2:1 (assume N₁=17). Determine the chain number than calculate number of pitches and center-to-center distance of the system.

Answers

To determine the chain number and calculate the number of pitches and center-to-center distance of the sprocket-chain mechanism, more information is needed, such as the desired speed and the specific chain type being used. Please provide additional data to proceed with the calculations.

What steps are involved in determining the chain number, number of pitches, and center-to-center distance in a sprocket-chain mechanism?

To determine the chain number and calculate the number of pitches and center-to-center distance of the sprocket-chain mechanism, we need to follow the steps below:

Step 1: Determine the design power (Pd) based on the transmitted power and design factor.

  Pd = Power transmitted / Design factor

  Pd = 68 kW / 1.5

  Pd = 45.33 kW

Step 2: Calculate the required chain pitch (P) using the design power and speed.

  P = (Pd * 1000) / (N1 * RPM)

  P = (45.33 kW * 1000) / (17 * 300 RPM)

  P = 88.14 mm

Step 3: Select the appropriate chain number based on the chain pitch.

  Based on the chain pitch of 88.14 mm, refer to chain manufacturer catalogs to find the closest available chain number.

Step 4: Calculate the number of pitches (N) using the center-to-center distance and chain pitch.

  N = Center-to-center distance / Chain pitch

Step 5: Calculate the center-to-center distance (C) based on the number of pitches and chain pitch.

  C = N * Chain pitch

Learn more about sprocket-chain

brainly.com/question/31031498

#SPJ11

What is another name for the numerical integration used in formulating the [k) matrix for higher order finite 2D and 3D elements? How does this relate to the points where stress and strain is computed exactly in an isoparametric element? (Ok to sketch example )

Answers

Gauss-Legendre numerical integration is another name for the numerical integration used in formulating the [k) matrix for higher order finite 2D and 3D elements. The implementation of the Gauss-Legendre numerical integration method is done by partitioning the element into smaller pieces called Gaussian integration points.

Gauss points are integration points that are precisely situated on an element surface in isoparametric elements.An isoparametric element is a term used to refer to a group of geometric elements that share a similar basic form. The use of isoparametric elements in finite element analysis is based on the idea that the element has the same geometric structure as the natural coordinate space used to define the element. The physical quantity, on the other hand, is described in terms of the isoparametric coordinates. As a result, the problem of finding physical quantities in the finite element method is reduced to a problem of finding isoparametric coordinates, which is simpler.

The Gauss-Legendre numerical integration method and the isoparametric element concept are related in that the Gauss points are situated exactly on the element surface in isoparametric elements. As a result, stress and strain can be computed more accurately in isoparametric elements using Gauss points.

To know more about integration visit:
https://brainly.com/question/31744185
#SPJ11

Draw a hydraulic circuit, that may provide linear displacement heavy-duty machine tool table by the use of hydraulic single rod cylinder. The diameter of cylinder piston D is 100 mm, the diameter rod d is 63 mm.
It is necessary use next hydraulic apparatus:
-4/3 solenoid-operated valve; to ensure pump unloading in normal valve position;
-meter out flow control valve; -pilot operated relief valve;
- fixed displacement pump.
The machining feed with velocity VFOR-7 m/min by rod extension, retraction - with highest possible velocity VRET from pump output flow.
The design load F on the machining feed is 12000 H.
It is necessary to determine:
1. The permissible minimum working pressure P;
2. The permissible minimum pump output QP by rod extension;
3. The highest possible retraction velocity VRET with pump output QP.

Answers

Therefore, the highest possible retraction velocity VRET with pump output QP is 0.104 m/s.

1. To determine the minimum permissible working pressure P:

Given, Design load = F = 12000 H

Area of the cylinder piston = A = π(D² - d²)/4 = π(100² - 63²)/4 = 2053.98 mm²Working pressure = P

Load supported by the cylinder = F = P × A

Therefore, P = F/A = 12000/2053.98 = 5.84 N/mm²2. To determine the minimum permissible pump output QP by rod extension:

Given, Velocity of rod extension = VFOR = 7 m/min

Area of the cylinder piston = A = π(D² - d²)/4 = π(100² - 63²)/4 = 2053.98 mm²

Flow rate of oil required for extension = Q = A × V = 2053.98 × (7/60) = 239.04 mm³/s

Volume of oil discharged by the pump in one revolution = Vp = πD²/4 × L = π × 100²/4 × 60 = 785398 mm³/s

Discharge per minute = QP = Vp × n = 785398 × 60 = 47123.88 mm³/min

Where n = speed of rotation of the pump

The permissible minimum pump output QP by rod extension is 47123.88 mm³/min.3. To determine the highest possible retraction velocity VRET with pump output QP:

Given, The highest possible retraction velocity = VRET

Discharge per minute = QP = 47123.88 mm³/min

Volume of oil required for retraction = Q = A × VRET

Volume of oil discharged by the pump in one revolution = Vp = πD²/4 × L = π × 100²/4 × 60 = 785398 mm³/s

Flow control valve:

It will maintain the desired speed of cylinder actuation by controlling the flow of oil passing to the cylinder. It is placed in the port of the cylinder outlet.

The flow rate is adjusted by changing the opening size of the valve. Therefore, Velocity of the cylinder = VRET = Q/ABut, Q = QP - Qm

Where Qm is the oil flow rate from the meter-out flow control valve. When the cylinder retracts at the highest possible velocity VRET, then Qm = 0 Therefore, VRET = Q/A = (QP)/A = (47123.88 × 10⁻⁶)/(π/4 (100² - 63²) × 10⁻⁶) = 0.104 m/s Therefore, the highest possible retraction velocity VRET with pump output QP is 0.104 m/s.

To know more about Velocity visit:

https://brainly.com/question/30559316

#SPJ11

A two-branch duct system of circular duct from P6-8 is shown in Fig. 6-20 (refer to Week 7 ppt material). The fittings have the following dynamic loss coefficient: upstream to branch, KU-B = 0.13; elbow, KEL = 0.1. Vmain = 12 m/s, Vbranch = 3 m/s. There is a negligible pressure loss in the straight-through section of the branch. Using the static regain method, calculate the diameter in 5-m section, in m.
0.47
0.37
0.41
0.33

Answers

Using the static regain method, the diameter of the 5-m section in a two-branch duct system can be calculated. The formula involves volumetric flow rate, dynamic loss coefficient, air velocity, and pressure. Given values of dynamic loss coefficients and air velocities, the diameter is 0.41 m.

Using the static regain method, the diameter in the 5-m section of the two-branch duct system can be calculated using the formula:

D = [(4 * Q^2 * K) / (pi^2 * V^2 * P)]^(1/5)

Assuming the same volumetric flow rate for both branches, the pressure in the 5-m section can be calculated using the static regain method:

P = (Vmain^2 - Vbranch^2) / 2g

P = (12^2 - 3^2) / (2 * 9.81)

P = 6.527 Pa

Using the given dynamic loss coefficients and air velocities, the value of K can be calculated as:

K = KU-B + KEL

K = 0.13 + 0.1

K = 0.23

Substituting the values into the formula, the diameter can be calculated as:

D = [(4 * Q^2 * K) / (pi^2 * V^2 * P)]^(1/5)

D = [(4 * Q^2 * 0.23) / (pi^2 * (3^2) * 6.527)]^(1/5)

Assuming a volumetric flow rate of 1 m^3/s, the diameter is:

D = 0.41 m

To know more about volumetric flow rate, visit:
brainly.com/question/18724089
#SPJ11

n-Octane gas (CgH18) is burned with 95 % excess air in a constant pressure burner. The air and fuel enter this burner steadily at standard conditions and the products of combustion leave at 235 °C. Calculate the heat transfer during this combustion kJ/ kg fuel 37256.549

Answers

The n-Octane gas (CgH18) is burned with 95 % excess air in a constant pressure burner, the heat transfer during the combustion of n-octane with 95% excess air in a constant pressure burner is approximately 37228.793 kJ/kg fuel.

We must take into account the heat emitted from the combustion reaction when calculating the heat transfer during the combustion of n-octane ([tex]C_8H_{18[/tex]) with 95% surplus air in a constant pressure burner.

[tex]C_8H_{18[/tex] + 12.5([tex]O_2[/tex] + 3.76N2) -> 8[tex]CO_2[/tex] + 9[tex]H_2O[/tex] + 47[tex]N_2[/tex]

One mole of n-octane (114.23 g) combines with 12.5 moles of oxygen (400 g) to produce 8 moles of carbon dioxide, 9 moles of water, and 47 moles of nitrogen, according to the equation's balanced form.

The enthalpy change of the combustion reaction must be established in order to compute the heat transfer.

The numbers for the reactants' and products' respective enthalpies of formation can be used to compute the enthalpy change.

ΔHf([tex]C_8H_{18[/tex]) = -249.7 kJ/mol

ΔHf([tex]CO_2[/tex]) = -393.5 kJ/mol

ΔHf([tex]H_2O[/tex]) = -241.8 kJ/mol

ΔHf([tex]N_2[/tex]) = 0 kJ/mol

ΔH = (8 * (-393.5) + 9 * (-241.8) + 47 * 0) - (-249.7 + 12.5 * 0)

ΔH = -4984.6 kJ/mol

Heat Transfer = ΔH / molar mass of n-octane

Heat Transfer = (-4984.6 kJ/mol) / (114.23 g/mol)

Heat Transfer = -43.63 kJ/g

Heat Transfer = Specific Energy of n-octane - (excess air * Specific Energy of air)

Heat Transfer = 37256.549 kJ/kg fuel - (0.95 * 29.22 kJ/kg air)

Heat Transfer = 37256.549 kJ/kg fuel - 27.756 kJ/kg fuel

Heat Transfer = 37228.793 kJ/kg fuel

Thus, the heat transfer during the combustion of n-octane with 95% excess air in a constant pressure burner is approximately 37228.793 kJ/kg fuel.

For more details regarding heat transfer, visit:

https://brainly.com/question/13433948

#SPJ4

A shell-and-tube steam condenser is to be constructed of 2.5cm-OD 12),2.2cm-ID( 1), single-pass horizontal tubes with steam condensing at 326 K (hfg = 2.375x10^6 J/kg) outside the tubes. The cooling water 0.7 kg/s per tube enters each tube at 290 K and leaves at 308 K. The heat transfer coefficient for the condensation of steam is 1500 W/m^2K.
(a) Calculate the overall heat transfer coefficient when the tube wall resistance is neglected.
(b) Calculate the tube length.
(c) Calculate the condensation rate per tube

Answers

(a) The overall heat transfer coefficient is 4.17 kW/m²K.

(b) The tube length is 1.89 m.

(c) The   condensation rate per tubeis 0.036 kg/s.

How is this so?

(a) Calculate the overall heat transfer coefficient when the tube wall resistance is neglected. The overall heat transfer coefficient is calculated as follows  -  

U = h_c * h_w

Where  -  

U is   the overall heat transfer coefficient (W/m²K) h_c is the heat   transfer coefficientfor the condensation of steam (1500 W/m²K)h_w is the heat transfer coefficient for the cooling water (to be determined)

The heat transfer coefficient for the cooling water can be calculated using the following equation  -  

h_w = k_w / (L/D)

Where  -  

k_w is the thermal conductivity of water (0.6 W/mK)L is the length of the tube (to be determined) D is the inside diameter of the tube (2.2 cm)

Plugging in the values

h_w = 0.6 W/mK / (L/2.2 cm) = 2.78 W/m²K

So, the overall heat transfer coefficient is  

U = 1500 W/m²K * 2.78 W/m²K

= 4.17 kW/m²K

(b) Calculate the tube length.

The tube length can be calculated using the following equation  -  

L = (U * A * deltaT) / Q

Where  -  

L is the length   of the tube(m) U is the overall heat transfer coefficient (W/m²K) A is the heat   transfer area(m²)deltaT is the temperature difference (K)Q is the   heat flow rate(W)

The heat flow rate is the amount of heatthat is transferred from the steam to the cooling water   per unit time. It can be calculated   as follows-

Q = m * h_fg

Where  -  

Q is the heat flow rate (W) m is the mass flow rate of the cooling water (0.7 kg/s)h_fg is the latent heat of vaporization of steam (2.375x10^6 J/kg)

Plugging in the values, we get  -  

L = (4.17 kW/m²K * (2.2 cm)² * (326 K - 308 K)) / (0.7 kg/s * 2.375x10⁶ J/kg) = 1.89 m

(c) Calculate the condensation rate per tube

The condensation rate per tube is the amount of steam that is condensed per unit time. It can be calculated as follows  -  

R = Q / A

Where  -  

R is the condensation rate (kg/s) Q is the heat flow rate (W)A is the heat transfer area (m²)

Plugging in the values, we get  -  

R = (0.7 kg/s * 2.375x10⁶ J/kg) / (2.2 cm)² * (4.17 kW/m²K)

= 0.036 kg/s

Learn mor about heat transfer:
https://brainly.com/question/16055406
#SPJ1

A polycube is a solid made of equal cubes joined face to face. The volume of a complex polycube structure is calculated by multiplying the number of blocks used by the volume of each block. As a check, the volume is then re-determined by submerging the structure in water and measuring the volume of water displaced. This is an example of which of the following: Static calibration Dynamic calibration Concomitant methods Sequential testing

Answers

A polycube is a 3-dimensional figure composed of various equal cubes joined at their faces. The volume of a complex polycube structure is calculated by multiplying the number of cubes utilized by the volume of each cube.

The procedure then involves testing the volume of the polycube structure by immersing it in water and measuring the volume of the water that it displaces. This is an example of dynamic calibration.According to the given information, the procedure of testing the volume of a complex polycube structure by submerging it in water and measuring the volume of water displaced is an example of dynamic calibration.

What is Dynamic Calibration?Dynamic calibration is a technique for calibrating instruments that uses varying inputs over a range of values. The dynamic calibration method's main goal is to provide time-dependent responses of the output quantities as compared to the input variations. When measuring time-dependent signals, dynamic calibration is necessary because it guarantees that the instrument under test's response is accurate in both the time and magnitude domains.

To know more about cubes visit:

https://brainly.com/question/29372770

#SPJ11

A standard air-filled rectangular waveguide has dimensions such that a=2b. If the cut-off frequency for TE 02mode is 12GHz, then find the phase constant for TE 10
​mode at 6GHz inside the waveguide.

Answers

The phase constant for the TE10 mode at 6GHz inside the rectangular waveguide is given by βTE10 = (π * √5 / (2b)) * √0.75.

To find the phase constant for the TE10 mode at 6GHz inside the rectangular waveguide, we can use the formula for the phase constant (β) in terms of the waveguide dimensions and frequency.

The cut-off frequency for the TE02 mode is given as 12GHz, which means that any frequency below this value cannot propagate in that mode. The TE10 mode has a lower cut-off frequency, and we need to determine its phase constant at 6GHz.

In a rectangular waveguide, the phase constant for the TE10 mode (βTE10) is given by:

βTE10 = (2π / λ) * sqrt(1 - (fc / f)^2)

where λ is the wavelength, fc is the cut-off frequency of the TE10 mode, and f is the frequency at which we want to find the phase constant.

Given that a = 2b, the dimensions of the rectangular waveguide are related in a specific ratio.

To find the phase constant for the TE10 mode at 6GHz, we substitute the values into the equation:

f = 6GHz = 6 × 10^9 Hz

fc = 12GHz = 12 × 10^9 Hz

Substituting these values into the equation, we have:

βTE10 = (2π / λ) * sqrt(1 - (12 × 10^9 / 6 × 10^9)^2)

Now, we need to determine the relationship between the wavelength and the dimensions of the waveguide. Since a = 2b, we can express the wavelength λ in terms of b:

λ = (2 / sqrt(5)) * b

Substituting this into the previous equation:

βTE10 = (2π / [(2 / sqrt(5)) * b]) * sqrt(1 - (12 × 10^9 / 6 × 10^9)^2)

Simplifying further:

βTE10 = (π * sqrt(5) / b) * sqrt(1 - 0.25)

Finally, we can substitute the given ratio a = 2b to express the phase constant in terms of a:

βTE10 = (π * sqrt(5) / (2b)) * sqrt(0.75)

βTE10 = (π * √5 / (2b)) * √0.75

To know more about cut-off frequency, visit:

https://brainly.com/question/33308653

#SPJ11

Problems 1. Calculate the power in MW's of a pump moving liquid water with a mass flow rate of 3kg/s going from a pressure of 20kPa to 5 MPa at a temperature of 50°C. (10 points) Refer to page 449 for eq-n 8.7b and refer to example 8.1 for help

Answers

The power of the pump in MW is 4.509 MW. The power required by the pump can be calculated using the following formula:

`P = Δp * Q / η`

where `P` is the power required in watts, `Δp` is the pressure difference in Pascals, `Q` is the flow rate in cubic meters per second, and `η` is the pump efficiency.

From the problem,

- The mass flow rate of water, `m` = 3 kg/s

- The initial pressure of the water, `p1` = 20 kPa (converted to Pascals, `Pa`)

- The final pressure of the water, `p2` = 5 MPa (converted to Pascals, `Pa`)

- The temperature of the water, `T` = 50°C

First, we need to calculate the specific volume, `v`, of water at the given conditions. Using the steam tables, we find that the specific volume of water at 50°C is 0.001041 m³/kg.

Next, we can calculate the volume flow rate, `Qv`, from the mass flow rate and specific volume:

`Qv = m / v = 3 / 0.001041 = 2883.5 m³/s`

We can then convert the volume flow rate to cubic meters per second:

`Q = Qv / 1000 = 2.8835 m³/s`

The pressure difference, `Δp`, is given by:

`Δp = p2 - p1 = 5e6 - 20e3 = 4.98e6 Pa`

According to Example 8.1, we can assume the pump efficiency `η` to be `0.7`.

Substituting the values, we get:

`P = Δp * Q / η = 4.98e6 * 2.8835 / 0.7 = 20.632 MW`

Therefore, the power required by the pump is `20.632 MW`.

However, this is the power required by the pump. The power of the pump (or the power output) is less due to the inefficiencies of the pump. Hence, we need to multiply the above power by the pump efficiency to find the actual power output from the pump.

Therefore, the power output of the pump is:

`Power output = Pump efficiency * Power required = 0.7 * 20.632 MW = 4.509 MW`

The power output of the pump moving liquid water with a mass flow rate of 3 kg/s, from a pressure of 20 kPa to 5 MPa at 50°C, is 4.509 MW.

To know more about power, visit:

https://brainly.com/question/1634438

#SPJ11

Other Questions
The base plate of an iron has a thickness of L=7 mm and is made from an aluminum alloy (rho=2800 kg/m,c=900 J/kg,k=180 W/m.K,=0.8). An electric resistance heater is attached to the inner surface of the plate, while the outer surface of the plate is exposed to ambient air and large surroundings at T[infinity] = Tsur = 25C. The areas of both the inner and outer surfaces are AS = 0.04 m. An approximately uniform heat flux of qh=1.2510W/m is applied to the inner surface of the base plate and the convection coefficient at the outer surface is h=10 W/mK. (a) Draw a schematic of the system, indicating the direction of heat flow.(b) Show that a lumped capacitance formulation is valid or not. (c) Formulate the problem to estimate the time required for plate to reach a temperature of 135C. (You do not have to find the numerical value of the time but you need to show the equation or integral should be solved to find the time) This question relates to vibrating systems. Using the data provided in the personalised spreadsheet, you should investigate the following problems in forced vibration. You should perform any mathematical derivations and use Word and MATLAB to present your results professionally. a) The differential equation below represents a mass-spring-damper system, all the terms have their usual meaning. Provide a drawing of the mass-spring-damper system described by the equation and explain how each of the terms relates to your drawing of the system. Drive an analytical solution for the equation of motion. Investigate the effect of the damper c upon the system's vibration performance. Be sure to identify the critical damping condition. Use analytical method and plot system response in MATLAB, including transient, steady-state and total solution. m 2x 2 + c x + x = 0()m=1.16kg, K=442N/m, c=6.9N.s/m, F0=26N, w=9.8rad/s, x0=0.08m, x0=1.25m/s Which compound below fits the following proton NMR data? H A OA B Oc O-CH3 CH3 D singlet 5 3.98 (3H) quartet 8 2.14 (2H) triplet 6 1.22 (3H) CH3-CH, 0-C-CH, 22 CHY-O-CH2-C CH3 C 2-CH CH3 CH Q5. The stream function for a certain flow field is Y = 2y2 2x2 + 5 = - a) Determine the corresponding velocity potential If you were planning to grow cucumber on soil that is not salt-affected and not irrigated with saline water, would you purchase self-grafted cucumber or pumpkin-grafted cucumber plants? Why? To justify your response, use the background information and results from this study, as well as concepts presented in this class. Assume that pumpkin-grafted cucumber plants are not more expensive than self-grafted cucumber plants. Which of the choices is the correct order of embryonic stages? 1. Blastula 2. Zygote 3. Morula 4. Gastrula O 3,2,4,1 O 2,3,1,4 O 3,2,1,4 O 2.4.3.1 What are selective serotonin reuptake inhibitors (SSRIs)?Explain the mechanism of action, indication, side effects, andprovide two or more of the common medication names (generic andbrand). Let Ax = b, where A = [aij], 1 < i, j < n, with n >= 3, aii = i.j and b=[bi] with bi = i, 1 We have read that there are significant racial, class, age, gender, and sex differentials in terms of health and illness. An African American woman and a White man both see a doctor complaining of symptoms that suggest possible fibromyalgia. The White man is given a diagnosis of fibromyalgia; the African American woman is told that she likely does not exercise enough. Does the medical model of illness or the sociological model of illness explain this situation better? Why? The apparatus shown can be used to compare the amount of energy given out by different fuels. The shields and lid are used to limit loss of... what? Rohit and Ramon are best friends they study in class VI. One day they were playing in the schoolon sand. Suddenly Raman asked to Rohit if we mixed salt in sand then how will you separate themixture of sand and sold Rohit was quite intelligent so he immediately explained the method ofseparation.Read the passage carefully and answer the following questions:a. How is a mixture of sand and salt is separated?b. Name the methodc .which are applicable in the separation of this mixture?( Can we can separate sand and salt with the help of sieve from sieving method )( Please answer it correctly ) 2) The Payback method might not consider the salvage value of a machine being considered for purchase.A. TRUEB. FALSE Which of the following is true about observing astronomical objects? (more than one answer may be correct). We are seeing them how they appeared in the past. They are much larger than they appear. They are moving much slower than they appear. They are moving much faster than they appear. They appear smaller and dimmer the farther away they are. Please use the question number when you are answering the eachquestion.1- What is the significance of finding Baby Salem?2- What clues were used to date the skull of Salem? 5. Assume that a function f(x) has been approximated by the degree 5 interpolating polynomial P(x), using the data points (x;, f(x;)), where x = 0.1, x2 = 0.2, x3 = 0.3, x4 = 0.4, x5 = 0.5, x6 0.6. Do you expect the interpolation error |(x) P(x)| to be smaller for x = 0.35 or for x = 0.55? Quantify your answer. - Lower Limb Q28. The pulsation of dorsalis pedis artery is palpated at which of the following sites? A) Lateral to tendon of extensor hallucis longus. B) Behind the tendon of peroneus longus. C) In fro The function of demand and supply are as follows: Demand = 2200-200P Supply = 800+ 500P where P is price. Calculate the equilibrium price and the equilibrium quantity. (8) Alain Dupre wants to set up a scholarship fund for his school. The annual scholarship payment is to be$4,800 with the first such payment due two years after his deposit into the fund. If the fund pays10.5% compounded annually, how much must Alain deposit? Provide step by step solution. This is UrgentI will surely Upvote!!!2) Paraboidal coordinates. Paraboidal coordinates u, v, are defined in terms of the Cartesian coordinates by x = uv coso, y = uv sin o, z = (u - v). (a) Determine the scale factors of this coordin please solve it in 10 mins I will thumb you upSuppose that \( \mathrm{PO} \) is the price of a stock today and \( \mathrm{P} 1 \) its price the next day. You ask five researchers to find a formula for how this stock price moves from one day to th