This question relates to vibrating systems. Using the data provided in the personalised spreadsheet, you should investigate the following problems in forced vibration. You should perform any mathematical derivations and use Word and MATLAB to present your results professionally. a) The differential equation below represents a mass-spring-damper system, all the terms have their usual meaning. Provide a drawing of the mass-spring-damper system described by the equation and explain how each of the terms relates to your drawing of the system. Drive an analytical solution for the equation of motion. Investigate the effect of the damper c upon the system's vibration performance. Be sure to identify the critical damping condition. Use analytical method and plot system response in MATLAB, including transient, steady-state and total solution. m 2x 2 + c x + x = 0()
m=1.16kg, K=442N/m, c=6.9N.s/m, F0=26N, w=9.8rad/s, x0=0.08m, x0=1.25m/s

Answers

Answer 1

The differential equation describes a mass-spring-damper system. The solution involves the analysis of the system's dynamic behavior under varying damper coefficients.

The critical damping condition and system responses such as transient, steady-state, and total solutions are investigated. The terms in the equation represent physical quantities. 'm' is the mass of the system, 'c' is the damping coefficient, and 'k' is the spring constant. The equation of motion can be solved analytically, revealing how these parameters influence system behavior. Plotting responses in MATLAB visualizes these relationships. For instance, the damping coefficient 'c' determines whether the system is underdamped, critically damped, or overdamped, each of which significantly impacts the system's response to external forces.

Learn more about mass-spring-damper system here:

https://brainly.com/question/30636603

#SPJ11


Related Questions

The minimum pressure on an object moving horizontally in water (Ttemperatu at10 degree centrigrade) at (x + 5) mm/s (where x is the last two digits of your student ID) at a depth of 1 m is 80 kPa (absolute). Calculate the velocity that will initiate cavitation. Assume the atmospheric pressure as 100 kPa (absolute). x = 98

Answers

The velocity that will initiate cavitation is approximately 2827.6 mm/s or 37.12 mm/s

To calculate the velocity that will initiate cavitation, we can use the Bernoulli's equation between two points along the flow path. The equation relates the pressure, velocity, and elevation at those two points.

In this case, we'll compare the conditions at the minimum pressure point (where cavitation occurs) and a reference point at the same depth.

The Bernoulli's equation can be written as:

[tex]\[P_1 + \frac{1}{2} \rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g h_2\][/tex]

where:

[tex]\(P_1\)[/tex] and [tex]\(P_2\)[/tex] are the pressures at points 1 and 2, respectively,

[tex]\(\rho\)[/tex] is the density of water,

[tex]\(v_1\)[/tex] and [tex]\(v_2\)[/tex] are the velocities at points 1 and 2, respectively,

[tex]\(g\)[/tex] is the acceleration due to gravity, and

[tex]\(h_1\)[/tex] and [tex]\(h_2\)[/tex] are the elevations at points 1 and 2, respectively.

In this case, we'll consider the minimum pressure point as point 1 and the reference point at the same depth as point 2.

The elevation difference between the two points is zero [tex](\(h_1 - h_2 = 0\))[/tex]. Rearranging the equation, we have:

[tex]\[P_1 - P_2 = \frac{1}{2} \rho v_2^2 - \frac{1}{2} \rho v_1^2\][/tex]

Given:

[tex]\(P_1 = 80 \, \text{kPa}\)[/tex] (absolute pressure at the minimum pressure point),

[tex]\(P_2 = 100 \, \text{kPa}\)[/tex] (atmospheric pressure),

[tex]\(\rho\) (density of water at 10 °C)[/tex] can be obtained from a water density table as [tex]\(999.7 \, \text{kg/m}^3\)[/tex], and

[tex]\(v_1 = (98 + 5) \, \text{mm/s} = 103 \, \text{mm/s}\).[/tex]

Substituting the values into the equation, we can solve for [tex]\(v_2\)[/tex] (the velocity at the reference point):

[tex]\[80 \, \text{kPa} - 100 \, \text{kPa} = \frac{1}{2} \cdot 999.7 \, \text{kg/m}^3 \cdot v_2^2 - \frac{1}{2} \cdot 999.7 \, \text{kg/m}^3 \cdot (103 \, \text{mm/s})^2\][/tex]

Simplifying and converting the units:

[tex]\[ -20 \, \text{kPa} = 4.9985 \, \text{N/m}^2 \cdot v_2^2 - 0.009196 \, \text{N/m}^2 \cdot \text{m}^2/\text{s}^2\][/tex]

Rearranging the equation and solving for \(v_2\):

[tex]\[v_2^2 = \frac{-20 \, \text{kPa} + 0.009196 \, \text{N/m}^2 \cdot \text{m}^2/\text{s}^2}{4.9985 \, \text{N/m}^2} \]\\\\\v_2^2 = 7.9926 \, \text{m}^2/\text{s}^2\][/tex]

Taking the square root to find [tex]\(v_2\)[/tex]:

[tex]\[v_2 = \sqrt{7.9926} \, \text{m/s} \approx 2.8276 \, \text{m/s}\][/tex]

Converting the velocity to millimeters per second:

[tex]\[v = 2.8276 \, \text{m/s} \cdot 1000 \, \text{mm/m} \approx 2827.6 \, \text{mm/s}\][/tex]

Therefore, the velocity that will initiate cavitation is approximately 2827.6 mm/s or 37.12 mm/s (rounded to two decimal places).

Know more about Bernoulli's equation:

https://brainly.com/question/6047214

#SPJ4

Water with a velocity of 3.38 m/s flows through a 148 mm
diameter pipe. Solve for the weight flow rate in N/s. Express your
answer in 2 decimal places.

Answers

Given that water with a velocity of 3.38 m/s flows through a 148 mm diameter pipe. To determine the weight flow rate in N/s, we need to use the formula for volumetric flow rate.

Volumetric flow rate Q = A x V

where, Q = volumetric flow rate [m³/s]

A = cross-sectional area of pipe [m²]

V = velocity of fluid [m/s]Cross-sectional area of pipe

A = π/4 * d²A = π/4 * (148mm)²A = π/4 * (0.148m)²A = 0.01718 m²

Substituting the given values in the formula we get Volumetric flow rate

Q = A x V= 0.01718 m² × 3.38 m/s= 0.058 s m³/s

To determine the weight flow rate, we can use the formula Weight flow

rate = volumetric flow rate × density Weight flow rate = Q × ρ\

To know more about diameter visit:

https://brainly.com/question/32968193

#SPJ11

A piston-cylinder device contains 5 kg of saturated liquid water at 350°C. The water undergoes a constant pressure process until its quality is 0.7. How much boundary work (kJ) does the water do during this process?
a. 82 (kJ)
b. 3126 (kJ) c. 366 (kJ) d. 409 (kJ) e. Unanswerable or none of these are within 5% f. 2716 (kJ)

Answers

The correct option for the given question is c. 366 (kJ). The work done by the system in a constant pressure process can be determined from the following formula:

W = m (h2 – h1)where W = Work (kJ)P = Pressure (bar)V = Volume (m3)T = Temperature (K)h = Enthalpy (kJ/kg)hfg = Latent Heat (kJ/kg)The quality of the final state can be determined using the following formula: The piston-cylinder device contains 5 kg of saturated liquid water at 350°C.

Let’s assume the initial state (State 1) is saturated liquid water, and the final state is a mixture of saturated liquid and vapor water with a quality of 0.7.The temperature at State 1 is 350°C which corresponds to 673.15K (from superheated steam table).  

To know more about constant visit:

https://brainly.com/question/31730278

#SPJ11

Determine the displacement thickness and the momentum thickness for the following fluid flow conditions. The velocity profile for a fluid flow over a flat plate is given as u/U=(5y/7δ) where u is velocity at a distance of "y" from the plate and u=U at y=δ, where δ is the boundary layer thickness.

Answers

ons.The velocity profile for a fluid flow over a flat plate is given as u/U=(5y/7δ) where u is velocity at a distance of "y" from the plate and u=U at y=δ, where δ is the boundary layer thickness.
Hence, the displacement thickness is 2δ/7 and the momentum thickness is 5δ^2/56.


The displacement thickness, δ*, is defined as the increase in thickness of a hypothetical zero-shear-flow boundary layer that would give rise to the same flow rate as the true boundary layer. Mathematically, it can be represented as;δ*=∫0δ(1-u/U)dyδ* = ∫0δ (1 - 5y/7δ) dy = (2δ)/7

The momentum thickness,θ, is defined as the increase in the distance from the wall of a boundary layer in which the fluid is assumed.

[tex]θ = ∫0δ(1-u/U) (u/U) dyθ = ∫0δ (1 - 5y/7δ) (5y/7δ) dy = 5(δ^2)/56[/tex]

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

i. A relatively large plate of a glass is subjected to a tensile stress of 40 MPa. If the specific surface energy and modulus of elasticity for this glass arc 0.3 J/mº and 69 GPA, respectively, determine the maximum length of a surface flaw that is possible without fracture

Answers

Tensile stress, σ = 40 MPa Specific surface energy, γ = 0.3 J/m2Modulus of elasticity, E = 69 GPA Let the maximum length of a surface flaw that is possible without fracture be L.

Maximum tensile stress caused by the flaw, σ_f = γ/L Maximum tensile stress at the fracture point, σ_fr = E × ε_frWhere ε_fr is the strain at the fracture point. Maximum tensile stress caused by the flaw, σ_f = γ/LLet the tensile strength of the glass be σ_f. Then, σ_f = γ/L Maximum tensile stress at the fracture point, σ_fr = E × ε_frStress-strain relation: ε = σ/Eε_fr = σ_f/Eσ_fr = E × ε_fr= E × (σ_f/E)= σ_fMaximum tensile stress at the fracture point, σ_fr = σ_fSubstituting the value of σ_f in the above equation:σ_f = γ/Lσ_fr = σ_f= γ/L Therefore, L = γ/σ_fr:

Thus, the maximum length of a surface flaw that is possible without fracture is L = γ/σ_fr = 0.3/40 = 0.0075 m or 7.5 mm. Therefore, the main answer is: The maximum length of a surface flaw that is possible without fracture is 7.5 mm.

To know more about  Tensile  visit:-

https://brainly.com/question/18916582

#SPJ11

Determine the range of K for stability of a unity feedback control system whose open-loop transfer function is K G(s) = K/s(s+ 1)(s + 2)

Answers

The range of K for stability of the given control system is $0 < K < 6$. Therefore, the answer is : Range of K for stability of a unity feedback control system whose open-loop transfer function is K G(s) = K/s(s+ 1)(s + 2) is 0 < K < 6.

Given Open loop transfer function: [tex]$$K G(s) = \frac{K}{s(s+ 1)(s + 2)}$$[/tex]

The closed-loop transfer function is given by: [tex]$$\frac{C(s)}{R(s)} = \frac{KG(s)}{1 + KG(s)}$$$$= \frac{K/s(s+ 1)(s + 2)}{1 + K/s(s+ 1)(s + 2)}$$[/tex]

On simplifying, we get: [tex]$$\frac{C(s)}{R(s)} = \frac{K}{s^3 + 3s^2 + 2s + K}$$[/tex]

The characteristic equation of the closed-loop system is: [tex]$$s^3 + 3s^2 + 2s + K = 0$$[/tex]

To obtain a range of values of K for stability, we will apply Routh-Hurwitz criterion. For that we need to form Routh array using the coefficients of s³, s², s and constant in the characteristic equation: $$\begin{array}{|c|c|} \hline s^3 & 1\quad 2 \\ s^2 & 3\quad K \\ s^1 & \frac{6-K}{3} \\ s^0 & K \\ \hline \end{array}$$

For stability, all the coefficients in the first column of the Routh array must be positive: [tex]$$1 > 0$$$$3 > 0$$$$\frac{6-K}{3} > 0$$[/tex]

Hence, [tex]$\frac{6-K}{3} > 0$[/tex] which implies $K < 6$.

So, the range of K for stability of the given control system is $0 < K < 6$.Therefore, the answer is : Range of K for stability of a unity feedback control system whose open-loop transfer function is K G(s) = K/s(s+ 1)(s + 2) is 0 < K < 6.

To know more about closed-loop system, visit:

https://brainly.com/question/11995211

#SPJ11

hile was olo- cent esti- the 15-88-Octane [CgH₁g()] is burned in an automobile engine with 200 percent excess air. Air enters this engine at 1 atm and 25°C. Liquid fuel at 25°C is mixed with this air before combustion. The exhaust products leave the exhaust system at I atm and 77°C. What is the maximum amount of work, in kJ/ kg fuel, that can be produced by this engine? Take To= 25°C. Reconsider Proh 15-88 Th oust complet fer from destructi Review 15-94 ric amou dioxid

Answers

It is given that liquid fuel Octane [C8H18] is burned in an automobile engine with 200% excess air.The fuel and air mixture enter the engine at 1 atm and 25°C and the exhaust leaves at 1 atm and 77°C.

Temperature of surroundings = 25°CProblems:We have to determine the maximum amount of work, in kJ/kg fuel, that can be produced by the engine.Calculation:Given fuel is Octane [C8H18].So, we have molecular weight,

M = 8(12.01) + 18(1.008)

= 114.23 gm/molR

= 8.314 J/ mol KAir is entering at 25°C.

So,

T1 = 25°C + 273.15

= 298.15 Kand P1

= 1 atm

= 1.013 barSince it is given that the engine has 200% excess air, the actual amount of air supplied can be determined by using the following formula;

= 100/φ = (100/200)%

= 0.5 or 1/2 times the stoichiometric amount of air.

To know more about liquid fuel visit:

https://brainly.com/question/30455402

#SPJ11

A medium-wave superhet receiver, when tuned to 850 kHz, suffers image interference from an unwanted signal whose frequency fimage is 1950 kHz. Determine the intermediate frequency fif of the receiver.

Answers

The intermediate frequency (IF) of the receiver is 1100 kHz.

To determine the intermediate frequency (IF) of the receiver, we can use the equation:

fif = |ftuned - fimage|

where:

ftuned is the frequency to which the receiver is tuned (850 kHz in this case)

fimage is the frequency of the unwanted signal causing image interference (1950 kHz in this case)

Substituting the values:

fif = |850 kHz - 1950 kHz|

= |-1100 kHz|

= 1100 kHz

Therefore, the intermediate frequency (IF) of the receiver is 1100 kHz.

to learn more about intermediate frequency.

https://brainly.com/question/31804317

#SPJ11

Design a synchronously settable flip-flop using a regular D flip-flop and additional gates. The inputs are Clk, D, and Set, and the output is Q. Sketch your design.

Answers

A flip-flop is a digital device that stores a binary state. The term "flip-flop" refers to the ability of the device to switch between two states. A D flip-flop is a type of flip-flop that can store a single bit of information, known as a "data bit." A D flip-flop is a synchronous device, which means that its output changes only on the rising or falling edge of the clock signal.

In this design, we will be using a D flip-flop and some additional gates to create a synchronously settable flip-flop. We will be using an AND gate, an inverter, and a NOR gate.

To design the synchronously settable flip-flop using a regular D flip-flop and additional gates, follow these steps:

1. Start by drawing a regular D flip-flop, which has two inputs, D and Clk, and one output, Q.

2. Draw an AND gate with two inputs, Set and Clk. The output of the AND gate will be connected to the D input of the D flip-flop.

3. Draw an inverter, and connect its input to the output of the AND gate. The output of the inverter will be connected to one input of a NOR gate.

4. Connect the Q output of the D flip-flop to the other input of the NOR gate.

5. The output of the NOR gate will be the output of the synchronously settable flip-flop, Q.

6. Sketch the complete design as shown in the figure below.Sketch of the design:In this design, when the Set input is high and the Clk input is high, the output of the AND gate will be high. This will set the D input of the D flip-flop to high, regardless of the value of the current Q output of the flip-flop.

To know more about synchronous visit:

https://brainly.com/question/27189278

#SPJ11

Design a three stepped distance protection for the protection of an EHV transmission line. Explain / label all the steps and constraints using circuit diagram(s) as well. Put together your proposed scheme considering the trip contacts configuration of the circuit breaker(s).

Answers

Distance protection is a type of protection scheme used in power system transmission line protection. It provides good selectivity and sensitivity in identifying the faulted section of the line.

The main concept of distance protection is to compare the voltage and current of the protected line and calculate the distance to the fault. This protection is widely used in Extra High Voltage (EHV) transmission lines.  Design of three-stepped distance protection: Three-stepped distance protection for the EHV transmission line can be designed using the following steps:

Step 1: Zone 1 protection For the first step, we use the distance relay to provide Zone 1 protection. This relay is located at the beginning of the transmission line, and its reach is set to cover the full length of the line plus the length of the adjacent feeder. The relay uses the phase-to-phase voltage (Vab, Vbc, Vca) and the three-phase current (Ia, Ib, Ic) to measure the impedance of the line. If the calculated impedance falls below a set threshold, the relay trips the circuit breaker. The circuit diagram of Zone 1 protection is as follows:

Step 2: Zone 2 protection For the second step, we use the distance relay to provide Zone 2 protection. This relay is located at a distance from the substation, and its reach is set to cover the full length of the transmission line plus a margin. The relay uses the phase-to-phase voltage (Vab, Vbc, Vca) and the three-phase current (Ia, Ib, Ic) to measure the impedance of the line. If the calculated impedance falls below a set threshold, the relay trips the circuit breaker. The circuit diagram of Zone 2 protection is as follows:

Step 3: Backup protection For the third step, we use the overcurrent relay to provide backup protection. This relay is located at the substation and uses the current of the transmission line to measure the fault current. If the fault current exceeds a set threshold, the relay trips the circuit breaker. The circuit diagram of the backup protection is as follows:

Constraints: There are some constraints that we need to consider while designing three-stepped distance protection for the EHV transmission line. These are as follows:• The reach of each zone should be set appropriately to avoid false tripping and ensure proper selectivity.• The time delay of each zone should be coordinated to avoid overreach.• The CT ratio and PT ratio should be chosen such that the relay operates correctly.• The trip contact configuration of the circuit breaker should be considered while designing the protection scheme.

To know more about Distance protection visit:

https://brainly.com/question/31914334

#SPJ11

List the general process sequence of ceramic
processing. Discuss why ceramic material is become more competitive
than any other material such as metal

Answers

The general process sequence of ceramic processing involves steps like raw material preparation, forming, drying, firing, and glazing.

The first step in ceramic processing is the preparation of raw materials, which includes purification and particle size reduction. The next step, forming, shapes the ceramic particles into a desired form. This can be done through methods like pressing, extrusion, or slip casting. Once shaped, the ceramic is dried to remove any remaining moisture. Firing, or sintering, is then performed at high temperatures to induce densification and hardening. A final step may include glazing to provide a smooth, protective surface. Ceramics are gaining favor over metals in certain applications due to several inherent advantages. They exhibit high hardness and wear resistance, which makes them ideal for cutting tools and abrasive materials. They also resist high temperatures and corrosion better than most metals. Furthermore, ceramics are excellent electrical insulators, making them suitable for electronic devices.

Learn more about ceramic processing here:

https://brainly.com/question/32080114

#SPJ11

Which collectors have the highest efficiencies under practical operating conditions?
- Single-glazing
- Double-glazing
- No-glazing
- What is main the idea of using PVT systems?
- What is the maximum temperature obtained in a solar furnace

Answers

Double-glazing collectors generally have the highest efficiencies under practical operating conditions.

The main idea of using PVT systems is to harness the combined energy of photovoltaic (PV) and thermal (T) technologies to maximize the overall efficiency and energy output.

The maximum temperature obtained in a solar furnace can reach around 3,000 to 5,000 degrees Celsius.

Double-glazing collectors are known for their superior performance and higher efficiencies compared to single-glazing and no-glazing collectors. This is primarily due to the additional layer of glazing that helps improve thermal insulation and reduce heat losses. The presence of two layers of glass in double-glazing collectors creates an insulating air gap between them, which acts as a barrier to heat transfer. This insulation minimizes thermal losses, allowing the collector to maintain higher temperatures and increase overall efficiency.

The air gap between the glazing layers serves as a buffer, reducing convective heat loss and providing better insulation against external environmental conditions. This feature is especially beneficial in colder climates, where it helps retain the absorbed solar energy within the collector for longer periods. Additionally, the reduced heat loss enhances the collector's ability to generate higher temperatures, making it more effective in various applications, such as space heating, water heating, or power generation.

Compared to single-glazing collectors, the double-glazing design also reduces the direct exposure of the absorber to external elements, such as wind or dust, minimizing the risk of degradation and improving long-term reliability. This design advantage contributes to the overall efficiency and durability of double-glazing collectors.

A solar furnace is a specialized type of furnace that uses concentrated solar power to generate extremely high temperatures. The main idea behind a solar furnace is to harness the power of sunlight and focus it onto a small area to achieve intense heat.

In a solar furnace, sunlight is concentrated using mirrors or lenses to create a highly concentrated beam of light. This concentrated light is then directed onto a target area, typically a small focal point. The intense concentration of sunlight at this focal point results in a significant increase in temperature.

The maximum temperature obtained in a solar furnace can vary depending on several factors, including the size of the furnace, the efficiency of the concentrators, and the materials used in the target area. However, temperatures in a solar furnace can reach several thousand degrees Celsius.

These extremely high temperatures make solar furnaces useful for various applications. They can be used for materials testing, scientific research, and industrial processes that require high heat, such as metallurgy or the production of advanced materials.

A solar furnace is designed to utilize concentrated solar power to generate intense heat. By focusing sunlight onto a small area, solar furnaces can achieve extremely high temperatures. While the exact temperature can vary depending on the specific design and configuration of the furnace, typical solar furnaces can reach temperatures ranging from approximately 3,000 to 5,000 degrees Celsius.

The concentrated sunlight is achieved through the use of mirrors or lenses, which focus the incoming sunlight onto a focal point. This concentrated beam of light creates a highly localized area of intense heat. The temperature at this focal point is determined by the amount of sunlight being concentrated, the efficiency of the concentrators, and the specific materials used in the focal area.

Solar furnaces are employed in various applications that require extreme heat. They are used for materials testing, scientific research, and industrial processes such as the production of advanced materials, chemical reactions, or the study of high-temperature phenomena. The ability of solar furnaces to generate such high temperatures makes them invaluable tools for these purposes.

Learn more about Double-glazing collectors

brainly.com/question/29334038

#SPJ11

It is required to transmit torque 537 N.m of from shaft 6 cm in diameter to a gear by a sunk key of length 70 mm. permissible shear stress is 60 MN/m. and the crushing stress is 120MN/m². Find the dimension of the key.

Answers

It is required to transmit torque 537 N.m of from shaft 6 cm in diameter to a gear by a sunk key of length 70 mm. The permissible shear stress is 60 MN/m. and the crushing stress is 120MN/m². Find the dimension of the key.

The dimension of the key can be calculated using the following formulae.

Torque, T = 537 N-m diameter of shaft, D = 6 cm Shear stress, τ = 60 MN/m Crushing stress, σc = 120 MN/m²Length of the key, L = 70 mm Key width, b = ?.

Radius of shaft, r = D/2 = 6/2 = 3 cm.

Let the length of the key be 'L' and the width of the key be 'b'.

Also, let 'x' be the distance of the centre of gravity of the key from the top of the shaft. Let 'P' be the axial force due to the key on the shaft.

Now, we can write the equation for the torque transmission by key,T = P×x = (τ/2)×L×b×x/L+ (σc/2)×b×L×(D-x)/LAlso, the area of the key, A = b×L.

Therefore, the shear force acting on the key is,Fs = T/r = (2T/D) = (2×537)/(3×10⁻²) = 3.58×10⁵ N.

From the formula for shear stress,τ = Fs/A.

Therefore, A = Fs/τ= 3.58×10⁵/60 × 10⁶= 0.00597 m².

Hence, A = b×L= 5.97×10⁻³ m²L/b = A/b² = 0.00597/b².

From the formula for crushing stress,σc = P/A= P/(L×b).

Therefore, P = σc×L×b= 120×10⁶×L×b.

Therefore, T = P×x = σc×L×b×x/L+ τ/2×b×(D-x).

Therefore, 537 = 120×10⁶×L×b×x/L+ 30×10⁶×b×(3-x).

Therefore, 179 = 40×10⁶×L×x/b² + 10×10⁶×(3-x).

Therefore, 179b² + 10×10⁶b(3-x) - 40×10⁶Lx = 0.

Since the key dimensions should be small, we can take Lx = 0 and solve for b.

Therefore, 179b² + 30×10⁶b - 0 = 0.

Solving the quadratic equation, we get the key width, b = 46.9 mm (approx).

Therefore, the dimension of the key is 70 mm × 46.9 mm (length × width).

Hence, the dimension of the key is 70 mm × 46.9 mm.

To know more about diameter visit:

https://brainly.com/question/32968193

#SPJ11

For the same velocity field described in question 15. generate an expression for the stream function and plot some streamlines of the flow in the upper-right quadrant (0, 0) and (2, 2) in the interval of=2 m²/s. Clearly state the assumptions and boundary conditions.

Answers

The stream function ψ(x,y) represents the streamlines, or pathlines, of a fluid in a two-dimensional flow field. Streamlines are curves that are tangent to the velocity vectors in the flow.

The velocity field is two-dimensional. The velocity field is incompressible. Boundary conditions: The velocity of the fluid is zero at the walls of the channel.

The velocity of the fluid is zero at infinity. To find the stream function ψ(x,y), we must solve the equation of continuity for two-dimensional flow in terms of ψ(x,y).

Continuity equation is:∂u/∂x+∂v/∂y=0,where u and v are the x and y components of velocity respectively, and x and y are the coordinates of a point in the fluid.

If we take the partial derivative of this equation with respect to y and subtract from that the partial derivative with respect to x, we get:

∂²ψ/∂y∂x - ∂²ψ/∂x∂y = 0.

Since the order of the partial derivatives is not important, this simplifies to:

∂²ψ/∂x² + ∂²ψ/∂y² = 0.

The above equation is known as the two-dimensional Laplace equation and is subject to the same boundary conditions as the velocity field. We can solve the Laplace equation using separation of variables and assuming that ψ(x,y) is separable, i.e.

ψ(x,y) = X(x)Y(y).

After solving the equation for X(x) and Y(y), we can find the stream function ψ(x,y) by multiplying X(x)Y(y).

The stream function can then be used to find the streamlines by plotting the equation

ψ(x,y) = constant, where constant is a constant value. The streamlines will be perpendicular to the contours of constant ψ(x,y).Given the velocity field

V = yi + xj, we can find the stream function by solving the Laplace equation

∇²ψ = 0 subject to the boundary conditions.

We can assume that the fluid is incompressible and the flow is two-dimensional. The velocity of the fluid is zero at the walls of the channel and at infinity.

We can find the stream function by solving the Laplace equation using separation of variables and assuming that ψ(x,y) is separable, i.e.

ψ(x,y) = X(x)Y(y).

After solving the equation for X(x) and Y(y), we can find the stream function ψ(x,y) by multiplying X(x)Y(y).

The stream function can then be used to find the streamlines by plotting the equation ψ(x,y) = constant, where constant is a constant value.

The streamlines will be perpendicular to the contours of constant ψ(x,y).

To find the stream function, we assume that

ψ(x,y) = X(x)Y(y).

We can write the Laplace equation in terms of X(x) and Y(y) as:

X''/X + Y''/Y = 0.

We can rewrite this equation as:

X''/X = -Y''/Y = -k²,where k is a constant.

Solving for X(x), we get:

X(x) = A sin(kx) + B cos(kx).

Solving for Y(y), we get:

Y(y) = C sinh(ky) + D cosh(ky).

Therefore, the stream function is given by:

ψ(x,y) = (A sin(kx) + B cos(kx))(C sinh(ky) + D cosh(ky)).

To satisfy the boundary condition that the velocity of the fluid is zero at the walls of the channel, we must set A = 0. To satisfy the boundary condition that the velocity of the fluid is zero at infinity,

we must set D = 0. Therefore, the stream function is given by:

ψ(x,y) = B sinh(ky) cos(kx).

To find the streamlines, we can plot the equation ψ(x,y) = constant, where constant is a constant value. In the upper-right quadrant, the boundary conditions are x = 0, y = 2 and x = 2, y = 0.

Therefore, we can find the value of B using these boundary conditions. If we set

ψ(0,2) = 2Bsinh(2k) = F and ψ(2,0) = 2Bsinh(2k) = G, we get:

B = F/(2sinh(2k)) = G/(2sinh(2k)).

Therefore, the stream function is given by:ψ(x,y) = Fsinh(2ky)/sinh(2k) cos(kx) = Gsinh(2kx)/sinh(2k) cos(ky).We can plot the streamlines by plotting the equation ψ(x,y) = constant.

The streamlines will be perpendicular to the contours of constant ψ(x,y).

To learn more about Laplace equation

https://brainly.com/question/31583797

#SPJ11

Consider a power generation unit that runs on a Rankine cycle. The steam enter the turbine at 3.0 MPa and 350 deg C, and leaves it at 10 kPa. Condensate water leaves the condenser and enters the pump at 10 KPA and 35 deg C. Assume that the turbine is 95 % efficient. (The pump has no inefficiencies.) Assuming no pressure losses in the condenser and boiler: (i) draw the T-s diagram for this Rankine cycle (show isobars and give temps), (ii) find the thermal and Carnot cycle efficiencies, and (iii) the mass flow rate (kg/sec) of water in the cycle if the net power output of the cycle is 150 MWatts.

Answers

The thermal efficiency of the Rankine cycle is 38.5%, the Carnot cycle efficiency is 45.4%, and the mass flow rate of water in the cycle is 584.8 kg/sec.

In a Rankine cycle, the T-s (temperature-entropy) diagram shows the path of the working fluid as it undergoes various processes. The diagram consists of isobars (lines of constant pressure) and temperature values at key points.

The given conditions for the Rankine cycle are as follows:

- Steam enters the turbine at 3.0 MPa and 350°C.

- The turbine efficiency is 95%.

- The turbine exhausts steam at 10 kPa.

- Condensate water enters the pump at 10 kPa and 35°C.

- There are no pressure losses in the condenser and boiler.

To draw the T-s diagram, we start at the initial state (3.0 MPa, 350°C) and move to the turbine exhaust state (10 kPa) along an isobar. From there, we move to the pump inlet state (10 kPa, 35°C) along another isobar. Finally, we move back to the initial state along the constant-entropy line, completing the cycle.

The thermal efficiency of the Rankine cycle is given by the equation:

Thermal efficiency = (Net power output / Heat input)

Given that the net power output is 150 MWatts, we can calculate the heat input to the cycle. Since the pump has no inefficiencies, the heat input is equal to the net power output divided by the thermal efficiency.

The Carnot cycle efficiency is the maximum theoretical efficiency that a heat engine operating between the given temperature limits can achieve. It is calculated using the formula:

Carnot efficiency = 1 - (T_cold / T_hot)

Using the temperatures at the turbine inlet and condenser outlet, we can find the Carnot efficiency.

The mass flow rate of water in the cycle can be determined using the equation:

Mass flow rate = (Net power output / (Specific enthalpy difference × Turbine efficiency))

By calculating the specific enthalpy difference between the turbine inlet and condenser outlet, we can find the mass flow rate of water in the Rankine cycle.

Learn more about Rankine cycle

brainly.com/question/31328524

#SPJ11

Calculate the peak solar hours in the area with
illumination of 5300 (PSH). Watts / day

Answers

The peak solar hours in the area with illumination of 5300 watts/day would be 5.3 PSH.

Peak solar hours refer to the amount of solar energy that an area receives per day. It is calculated based on the intensity of sunlight and the length of time that the sun is shining.

In this case, the peak solar hours in an area with an illumination of 5300 watts/day can be calculated as follows:

1. Convert watts to kilowatts by dividing by 1000: 5300/1000 = 5.3 kW2. Divide the total energy generated by the solar panels in a day (5.3 kWh) by the average power generated by the solar panels during the peak solar hours:

5.3 kWh ÷ PSH = Peak Solar Hours (PSH)For example,

if the average power generated by the solar panels during peak solar hours is 1 kW, then the PSH would be:5.3 kWh ÷ 1 kW = 5.3 PSH

To know more about illumination visit:

https://brainly.com/question/29156148

#SPJ11

A balanced 3 phase star connected load draws power from a 430 V supply. Two wattmeter's indicate 9600 W and 3700 W respectively, when connected to measure the input power of the load, the reverse switch being operated on the meter indicating the 3700 W reading. [2.5 Marks] Find the following: The Input power, P = The power factor, cos = The line current, IL =

Answers

The input power is 13300 W.  The power factor is approximately 0.4436.  The line current is approximately 18.39 A.

To find the input power, power factor, and line current, we can use the readings from the two wattmeters.

Let's denote the reading of the first wattmeter as [tex]$P_1$[/tex] and the reading of the second wattmeter as [tex]$P_2$[/tex]. The input power, denoted as [tex]$P$[/tex], is given by the sum of the readings from the two wattmeters:

[tex]\[P = P_1 + P_2\][/tex]

In this case, [tex]$P_1 = 9600$[/tex] W and

[tex]\$P_2 = 3700$ W[/tex]. Substituting these values, we have:

[tex]\[P = 9600 \, \text{W} + 3700 \, \text{W}\\= 13300 \, \text{W}\][/tex]

So, the input power is 13300 W.

The power factor, denoted as [tex]$\cos \varphi$[/tex], can be calculated using the formula:

[tex]\[\cos \varphi = \frac{P_1 - P_2}{P}\][/tex]

Substituting the given values, we get:

[tex]\[\cos \varphi = \frac{9600 \, \text{W} - 3700 \, \text{W}}{13300 \, \text{W}} \\\\= \frac{5900 \, \text{W}}{13300 \, \text{W}} \\\\= 0.4436\][/tex]

So, the power factor is approximately 0.4436.

To calculate the line current, we can use the formula:

[tex]\[P = \sqrt{3} \cdot V_L \cdot I_L \cdot \cos \varphi\][/tex]

where [tex]$V_L$[/tex] is the line voltage and [tex]$I_L$[/tex] is the line current. Rearranging the formula, we can solve for [tex]$I_L$[/tex]:

[tex]\[I_L = \frac{P}{\sqrt{3} \cdot V_L \cdot \cos \varphi}\][/tex]

Substituting the given values, [tex]\$P = 13300 \, \text{W}$ and $V_L = 430 \, \text{V}$[/tex], along with the calculated power factor, [tex]$\cos \varphi = 0.4436$[/tex], we have:

[tex]\[I_L = \frac{13300 \, \text{W}}{\sqrt{3} \cdot 430 \, \text{V} \cdot 0.4436} \approx 18.39 \, \text{A}\][/tex]

So, the line current is approximately 18.39 A.

Know more about power factor:

https://brainly.com/question/31782928

#SPJ4

Air is expanded in an isentropic turbine from an initial temperature of 1500 K and a pressure of 2MPa to a final pressure of 0.1MPa at a steady flow rate of 20 kg/s. Use the following properties for air to solve the questions below −γ=1.4 and c p =1001 J/kg−K
a) What is the final temperature of the air at the exit of the turbine in [K] ? Shiow yow work below or on a separate page and enter this value in the Canas guiz. b) What is the power produced by this turbine in [kW]? Show your work below or on a separate page and enter this value in the Camns quiz.
c) Draw this process on both a P-v and T-s diagram, labeling both states. Draw your diagram below do not enter arsthing into the Camas quis.

Answers

a. Final temperature of air at the exit of turbine: T2 = 858.64 K

b.  Power produced by the turbine: 28,283.2 kW

c. P-v and T-s diagrams: The given process is an isentropic expansion process.

T-s diagram: State 1 is the initial state and State 2 is the final state.

Given data:Initial temperature,

T1 = 1500 K

Initial pressure,

P1 = 2 MPa

Final pressure,

P2 = 0.1 MPa

Mass flow rate, m = 20 kg/s

Ratio of specific heat, γ = 1.4

Specific heat at constant pressure,

cp = 1001 J/kg-K

a) Final temperature of air at the exit of turbine:

In an isentropic process, the entropy remains constant i.e

ds = 0.

s = Cp ln(T2/T1) - R ln(P2/P1)

Here, Cp = γ / (γ - 1) × cpR

= Cp - cp

= γ R / (γ - 1)

Putting the given values in the formula, we get

0 = Cp ln(T2 / 1500) - R ln(0.1 / 2)

T2 = 858.64 K

B) Power produced by the turbine:

Power produced by the turbine,

P = m × (h1 - h2)

= m × Cp × (T1 - T2)

where h1 and h2 are the enthalpies at the inlet and exit of the turbine respectively.

h1 = Cp T1

h2 = Cp T2

Putting the given values in the formula, we get

P = 20 × 1001 × (1500 - 858.64)

P = 28,283,200 W

= 28,283.2 kW

c) P-v and T-s diagrams: The given process is an isentropic expansion process.

The process can be shown on the P-v and T-s diagrams as below:

PV diagram:T-s diagram: State 1 is the initial state and State 2 is the final state.

To know more about T-s diagrams visit:

https://brainly.com/question/13327155

#SPJ11

The compression ratio of an air-standard Otto cycle is 7. Prior to the isentropic compression process, the air is at 100 kPa, 308 K. The temperature at the end of the isentropic expansion process is 800 K. Use cold air properties. i) Draw the P-V diagram, and determine ii) The highest temperature and pressure in the cycle, iii) The amount of heat transferred during combustion process, in kJ/kg, iv) The thermal efficiency, v) The mean effective pressure.

Answers

ii) The highest temperature and pressure in the cycle are 800 K and 703.7 kPa respectively.

iii) The amount of heat transferred during the combustion process is 254.17 kJ/kg.

iv) The thermal efficiency of the cycle is 58.8%.

v) The mean effective pressure is -1402.4 kPa.

Given parameters: Compression Ratio, CR = 7Pressure, P1 = 100 kPa, Temperature, T1 = 308 K, Temperature at end of isentropic expansion, T3 = 800 K Cold air properties are to be used for the solution.

Otto cycle:Otto cycle is a type of ideal cycle that is used for the operation of a spark-ignition engine. The cycle consists of four processes:1-2: Isentropic Compression2-3: Constant Volume Heat Addition3-4: Isentropic Expansion4-1: Constant Volume Heat Rejection

i) Draw the P-V diagram

ii) The highest temperature and pressure in the cycle: The highest temperature in the cycle is T3 = 800 KThe highest pressure in the cycle can be calculated using the formula of isentropic compression:PV^(γ) = constantP1V1^(γ) = P2V2^(γ)P2 = P1 * (V1/V2)^(γ)where γ = CP / CV = 1.4 (for air)For process 1-2, T1 = 308 K, P1 = 100 kPa, V1 can be calculated using the ideal gas equation:P1V1 = mRT1V1 = mRT1/P1For cold air, R = 287 J/kg Km = 1 kgV1 = 1*287*308/100 = 883.96 m³/kgV2 = V1 / CR = 883.96 / 7 = 126.28 m³/kgP2 = 100*(883.96/126.28)^1.4 = 703.7 kPaThe highest pressure in the cycle is 703.7 kPa.

iii) The amount of heat transferred during combustion process, in kJ/kg: The amount of heat transferred during the combustion process can be calculated using the first law of thermodynamics:Qin - Qout = WnetQin - Qout = (Qin / (γ-1)) * ((V3/V2)^γ - 1)Qin = (γ-1)/γ * P2 * (V3 - V2)Qin = (1.4-1)/1.4 * 703.7 * (0.899-0.12628)Qin = 254.17 kJ/kg

iv) The thermal efficiency: The thermal efficiency of the cycle is given as:η = 1 - (1/CR)^(γ-1)η = 1 - (1/7)^0.4η = 0.588 or 58.8%

v) The mean effective pressure: The mean effective pressure (MEP) can be calculated using the formula:MEP = Wnet / (V2 - V1)Wnet = Qin - QoutQout = (Qout / (γ-1)) * (1 - (1/CR)^(γ-1))Qout = (1.4-1)/1.4 * 100 * (1 - (1/7)^0.4)Qout = 57.83 kJ/kgWnet = 254.17 - 57.83 = 196.34 kJ/kgMEP = 196.34 / (0.12628 - 0.88396)MEP = -1402.4 kPa

Answer: ii) The highest temperature and pressure in the cycle are 800 K and 703.7 kPa respectively.iii) The amount of heat transferred during the combustion process is 254.17 kJ/kg.iv) The thermal efficiency of the cycle is 58.8%.v) The mean effective pressure is -1402.4 kPa.

Know more about Otto cycle here:

https://brainly.com/question/13327155

#SPJ11

The first order discrete system x(k+1)=0.5x(k)+u(k)
is to be transferred from initial state x(0)=-2 to final state x(2)=0
in two states while the performance index is minimized.
Assume that the admissible control values are only
-1, 0.5, 0, 0.5, 1
Find the optimal control sequence

Answers

We need to find the optimal control sequence. The problem can be approached using the dynamic programming approach. The dynamic programming approach to the problem of optimal control involves finding the optimal cost-to-go function, J(x), that satisfies the Bellman equation.

Given:

The first order discrete system [tex]x(k+1)=0.5x(k)+u(k)[/tex]is to be transferred from initial state x(0)=-2 to final state x(2)=0in two states while the performance index is minimized. Assume that the admissible control values are only-1, 0.5, 0, 0.5, 1

The admissible control values are given by, -1, 0.5, 0, 0.5, 1 Therefore, the optimal control sequence can be obtained by solving the Bellman equation backward in time from the final state[tex]$x(2)$, with $J(x(2))=0$[/tex]. Backward recursion:

The optimal cost-to-go function is obtained by backward recursion as follows.

Therefore, the optimal control sequence is given by,[tex]$$u(0) = 0$$$$u(1) = 0$$$$u(2) = 0$$[/tex] Therefore, the optimal control sequence is 0. Answer:

The optimal control sequence is 0.

To know more about optimal visit:

https://brainly.com/question/28587689

#SPJ11

The main wing of an aircraft has a span of 30 m and a planform area of 73 m². The aircraft has a tailplane, in the wake of the main wing, which is set at a rigging angle, d, of -3.8 degrees. Both main wing and tailplane have symmetric aerofoil sections with the following lift curve slopes: Wing: a₁ = 4.86 rad-¹ • Tailplane: a = 2.43 rad¹¹ If the downwash from the main wing may be estimated by the expression ε = 2CL / πA_R (rad) TAR estimate the angle of attack at the tail if the main wing has an angle of attack of 3 degrees. Give your answer in degrees.

Answers

The angle of attack at the tail , AR of the wing: Aspect ratio,

[tex]AR = b²/S[/tex],

where b is the span of the wing and S is the planform area of the wing

[tex]AR = 30²/73AR = 12.39[/tex]

The downwash angle is given by:

[tex]ε = 2CL/πAR[/tex]

Where CL is the lift coefficient of the main wing. The lift coefficient of the main wing,


CL = [tex]πa₁α/180°.At α = 3[/tex]°, we get,[tex]CL = πa₁α/180° = π(4.86)(3)/180° = 0.254[/tex]

The downwash angle is,

[tex]ε = 2CL/πAR = 2(0.254)/π(12.39) = 0.0408[/tex]

rad = 2.34 degrees

The lift coefficient of the tailplane is given by:
CL = [tex]πaα/180[/tex]°

where a is the lift curve slope of the tail

plane and α is the angle of attack at the tailplane Let the angle of attack at the tailplane be α_T

The angle of attack at the tailplane is related to the angle of attack at the main wing by:
[tex]α_T = α - εα[/tex]

= angle of attack of the main wing = 3 degrees

[tex]α_T = α - ε= 3 - 2.34= 0.66[/tex] degrees

the angle of attack at the tail if the main wing has an angle of attack of 3 degrees is 0.66 degrees.

To know more about downwash visit:-

https://brainly.com/question/32580657

#SPJ11

Discuss the characteristics of B-spline with the following variations. (1) Collinear control points. (1) Coincident control points. (111) Different degrees. Use graphical diagrams to illustrate your ideas.

Answers

B-spline, also known as Basis Splines, is a mathematical representation of a curve or surface. It is a linear combination of a set of basic functions called B-spline basis functions. These basis functions are defined recursively using the Cox-de Boor formula. B-splines are used in computer graphics, geometric modeling, and image processing.

Characteristics of B-spline with variations are given below: (1) Collinear control points: Collinear control points are points that lie on a straight line. In this case, the B-spline curve is also a straight line. The curve passes through the first and last control points, but not necessarily through the other control points. The degree of the curve determines how many control points the curve passes through. The curve is smooth and has a finite length.

(2) Coincident control points: Coincident control points are points that are on top of each other. In this case, the B-spline curve is also a point. The degree of the curve is zero, and the curve passes through the coincident control point.
(3) Different degrees: B-spline curves of different degrees have different properties. Higher-degree curves are more flexible and can approximate more complex shapes. Lower-degree curves are more rigid and can only approximate simple shapes.
The following diagrams illustrate these variations:
1. Collinear control points:

2. Coincident control points:
3. Different degrees:

In conclusion, B-spline curves have various characteristics, including collinear control points, coincident control points, and different degrees. Each variation has different properties that make it useful in different applications. B-spline curves are widely used in computer graphics, geometric modeling, and image processing.

To know  more about functions visit:

https://brainly.com/question/31062578

#SPJ11

The dry saturated steam is expanded in a nozzle from pressure of 10 bar to a pressure of 4 bar. If the expansion is supersaturated, find : (i) The degree of undercooling.
(ii) The degree of supersaturation.

Answers

To determine the degree of undercooling and the degree of supersaturation in steam expansion, it's necessary to consult the steam tables or a Mollier chart.

These measurements indicate how much the steam's temperature and enthalpy differ from saturation conditions, which are vital for understanding the steam's thermodynamic state and its energy transfer capabilities.

The degree of undercooling, also called degrees of superheat, represents the temperature difference between the steam's actual temperature and the saturation temperature at the given pressure. The degree of supersaturation refers to the difference in the actual enthalpy of the steam and the enthalpy of the saturated steam at the same pressure. These values can be obtained from steam tables or Mollier charts, which provide the saturation properties of steam at various pressures. In these tables, the saturation temperature and enthalpy are given for the given pressures of 10 bar and 4 bar.

Learn more about [thermodynamics of steam] here:

https://brainly.com/question/29065575

#SPJ11

You are an environmental engineer working for a manufacturing company that makes computer components. In the process your plant creates toxic wastes, primarily as heavy metals. Part of your job is to oversee the testing of the effuluent from your plant, signing the test results to attest to their accuracy and supplying them to the city. The allowable limit of the chemicals disposed is less when compared to the national chemical standard limits permitted. But you are very concerned about the fact that what will the smaller concentrations amount to. You also found out that even with reduced limits the heavy metals disposed are highly dangerous. You have to prepare a report a report for the same. a. Interpret with the help of two NSPE codes in this case b. develop what must be written details that should be included in the report

Answers

Two NSPE codes in this case can be: Engineers shall hold paramount the safety, health, and welfare of the public and the protection of the environment (NSPE Code of Ethics 2007, III.1.).

Engineers shall avoid deceptive acts that falsify their qualifications (NSPE Code of Ethics 2007, III.4.).b. The report should include the following details: The report should present the information that indicates that despite the lower levels of toxic waste that the plant produces, the heavy metals it emits are still highly dangerous.

The report should also discuss the implications of the heavy metals and what they can cause. The report should provide a complete review of the situation, including how it came to light, the testing process and results, and what steps have been taken to fix the problem.

To know more about NSPE codes visit:

https://brainly.com/question/30641935

#SPJ11

Consider a Y-connected AC generator with a number of turns per phase of 600 turns. Find the flux per pole needed to produce the RMS generated line voltage of 4500 Volts at a frequency f-60 Hz. Select one: O a. Flux per pole = 28.2 mWebers O b. Flux per pole = 16.2 mWebers O c. None O d. Flux per pole = 19.85 mWebers O e. Flux per pole = 22.9 mWebers

Answers

Given, number of turns per phase, N = 600, RMS generated line voltage, V = 4500 V and frequency, f = 60 Hz. The relationship between RMS generated line voltage, V, frequency, f, and flux per pole, φ is given by the formula,V = 4.44fNφSo, the expression for flux per pole, φ is given by,φ = V / 4.44fNPlugging the given values, we get,φ = 4500 / (4.44 × 60 × 600)φ = 19.85 mWebers Therefore,

the flux per pole needed to produce the RMS generated line voltage of 4500 Volts at a frequency f-60 Hz is 19.85 mWebers.Option (D) is correct.Note: In AC generators, the voltage generated is proportional to the flux per pole, number of turns per phase, and frequency. The above formula is known as the EMF equation of an alternator.

To know more about ac visit:

brainly.com/question/33277960

#SPJ11

Identify the scope that your company involves in design and manufacturing process. From the scope, describe the processes in a process flow change and elaborate the functions of each process steps. Use a flow chart if applicable.
(Suggested word count: 500 words)

Answers

The design and manufacturing process involves a series of steps that start from the design stage to the delivery of the final product.

The scope of design and manufacturing process depends on the type of product the company is producing. However, in general, the design and manufacturing process involves the following steps:

The bottom-up approach starts with the analysis of the interoperability of the components to the modules and eventually the analysis of the system requirements.

Design Stage1. Idea Generation:

This is the first stage of the design process where ideas are design for a new product.

To know more about design visit:

https://brainly.com/question/17147499

#SPJ11

Air flows through a thin circular pipe with a mass flow rate of 0.1 kg/s and an average inlet and outlet temperature of 10°C and 40°C, respectively. The pipe has an internal diameter of 40 cm and measures 6000 m in length. The pipe has a constant surface temperature of 150°C. What is the heat transfer rate through the pipe due to fully developed flow? Use the following properties for air: p = 1.2 kg/m', Cp = 1025 J/(kg:K), u = 2.6* 10-5 kg/(m·s), Pr = 0.7, k = 0.04 W/(mK)

Answers

The heat transfer rate through the pipe due to fully developed flow is: 3075 watts.

How to find the heat transfer rate?

To calculate the heat transfer rate through the pipe due to fully developed flow, we can use the equation for heat transfer rate:

Q = m_dot * Cp * (T_outlet - T_inlet)

Where:

Q is the heat transfer rate

m_dot is the mass flow rate

Cp is the specific heat capacity of air

T_outlet is the outlet temperature

T_inlet is the inlet temperature

Given:

m_dot = 0.1 kg/s

Cp = 1025 J/(kg·K)

T_inlet = 10°C = 10 + 273.15 K = 283.15 K

T_outlet = 40°C = 40 + 273.15 K = 313.15 K

Using these values, we can calculate the heat transfer rate:

Q = 0.1 kg/s * 1025 J/(kg·K) * (313.15 K - 283.15 K)

Q = 0.1 kg/s * 1025 J/(kg·K) * 30 K

Q = 3075 J/s = 3075 W

Read more about heat transfer rate at: https://brainly.com/question/14148915

#SPJ4

Write a function M-file that implements (8) in the interval 0 ≤ t ≤ 55. Note that the initial condition must now be in the form [yo, v0, w0] and the matrix Y, output of ode45, has now three columns (from which y, v and w must be extracted). On the same figure, plot the three time series and, on a separate window, plot the phase plot using figure (2); plot3 (y,v,w); hold on; view ([-40,60]) xlabel('y'); ylabel('vay); zlabel('way''); Do not forget to modify the function defining the ODE. The output is shown in Figure 9. The limits in the vertical axis of the plot on the left were delib- erately set to the same ones as in Figure 8 for comparison purposes, using the MATLAB command ylim ([-2.1,2.1]). You can play around with the 3D phase plot, rotating it by clicking on the circular arrow button in the figure toolbar, but submit the plot with the view value view ([-40, 60]) (that is, azimuth = -40°, elevation = 60°).

Answers

The task at hand is to write a function M-file that implements (8) in the interval 0 ≤ t ≤ 55. The initial condition must now be in the form [yo, v0, w0]. The matrix Y, which is the output of ode45, now has three columns. Y(:,1) represents y, Y(:,2) represents v and Y(:,3) represents w. We need to extract these columns.

We also need to plot the three time series on the same figure and, on a separate window, plot the phase plot using figure (2); plot3 (y,v,w); hold on; view ([-40,60]) xlabel('y'); ylabel('vay); zlabel('way'').Here is a function M-file that does what we need:

function [tex]yp = fun(t,y)yp = zeros(3,1);yp(1) = y(2);yp(2) = y(3);yp(3) = -sin(y(1))-0.1*y(3)-0.1*y(2);[/tex]

endWe can now use ode45 to solve the ODE.

The limits in the vertical axis of the plot on the left were deliberately set to the same ones as in Figure 8 for comparison purposes, using the MATLAB command ylim ([-2.1,2.1]). You can play around with the 3D phase plot, rotating it by clicking on the circular arrow button in the figure toolbar, but submit the plot with the view value view ([-40, 60]) (that is, azimuth = -40°, elevation = 60°).

To know more about matrix visit:

https://brainly.com/question/29000721

#SPJ11

Equilibrium cooling of a hyper-eutectoid steel to room temperature will form: A. Pro-eutectoid ferrite and pearlite B. Pro-eutectoid ferrite and cementite C. Pro-eutectoid cementite and pearlite Pro-eutectoid cementite and austenite D.

Answers

Answer : Option C

Solution  : Equilibrium cooling of a hyper-eutectoid steel to room temperature will form pro-eutectoid cementite and pearlite. Hence, the correct option is C.

A steel that contains more than 0.8% of carbon by weight is known as hyper-eutectoid steel. Carbon content in such steel is above the eutectoid point (0.8% by weight) and less than 2.11% by weight.

The pearlite is a form of iron-carbon material. The structure of pearlite is lamellar (a very thin plate-like structure) which is made up of alternating layers of ferrite and cementite. A common pearlitic structure is made up of about 88% ferrite by volume and 12% cementite by volume. It is produced by slow cooling of austenite below 727°C on cooling curve at the eutectoid point.

Iron carbide or cementite is an intermetallic compound that is formed from iron (Fe) and carbon (C), with the formula Fe3C. Cementite is a hard and brittle substance that is often found in the form of a lamellar structure with ferrite or pearlite. Cementite has a crystalline structure that is orthorhombic, with a space group of Pnma.

Know more about cooling here:

https://brainly.com/question/32239921

#SPJ11

Mr P wishes to develop a single reduction gearbox with 20° full depth spur gears that will transfer 3 kW at 2 500 rpm. There are 20 teeth on the pinion and 50 teeth on the gear. Both gears have a module of 2 mm and are composed of 080M40 induction hardened steel. 2.1 Write a problem statement for Mr P's design. (1) 2.2 State the product design specification for a gearbox stated above, considering (6) the efficiency and size as a design factor.

Answers

2.1 Problem statement for Mr P's gearbox design:

Design a single reduction gearbox using 20° full depth spur gears to transfer 3 kW of power at 2,500 rpm. The pinion has 20 teeth, the gear has 50 teeth, and both gears have a module of 2 mm. The gears are made of 080M40 induction hardened steel. Ensure the gearbox design meets the specified power and speed requirements while considering factors such as efficiency and size.

2.2 Product design specification for the gearbox:

1. Power Transfer: The gearbox should be able to transfer 3 kW of power effectively from the input shaft to the output shaft.

2. Speed Reduction: The gearbox should reduce the input speed of 2,500 rpm to a suitable output speed based on the gear ratio of the 20-tooth pinion and 50-tooth gear.

3. Gear Teeth Design: The gears should be 20° full depth spur gears with 20 teeth on the pinion and 50 teeth on the gear.

4. Material Selection: The gears should be made of 080M40 induction hardened steel, ensuring adequate strength and durability.

5. Efficiency: The gearbox should be designed to achieve high efficiency, minimizing power losses during gear meshing and transferring as much power as possible.

6. Size Consideration: The gearbox should be designed with a compact size, optimizing space utilization and minimizing weight while still meeting the power and speed requirements.

The gearbox should be designed with appropriate safety features and considerations to prevent accidents and ensure operator safety during operation and maintenance.

To learn more about Gearbox, click here:

https://brainly.com/question/32201987

#SPJ11

Other Questions
An investment offers $5,717 per year for 6 years, with the firstpayment occurring 1 year from now. If the required return is 14percent, what is the value of the investment? A rigid (closed) tank contains 10 kg of water at 90C. If 8 kg of this water is in the liquid form and the rest is in the vapor form. Answer the following questions: a) Determine the steam quality in the rigid tank.b) Is the described system corresponding to a pure substance? Explain.c) Find the value of the pressure in the tank. [5 points] d) Calculate the volume (in m) occupied by the gas phase and that occupied by the liquid phase (in m). e) Deduce the total volume (m) of the tank.f) On a T-v diagram (assume constant pressure), draw the behavior of temperature with respect to specific volume showing all possible states involved in the passage of compressed liquid water into superheated vapor.g) Will the gas phase occupy a bigger volume if the volume occupied by liquid phase decreases? Explain your answer (without calculation).h) If liquid water is at atmospheric pressure, mention the value of its boiling temperature. Explain how boiling temperature varies with increasing elevation. 1. What is a firms fundamental goal and what happens if the firm doesnt pursue this goal?2. Explain how the marginal product of labor and the average product of labor change as the quantity of labor employed increases (a) initially and (b) eventually.3. What is the law of diminishing returns? Why does the marginal product of labor eventually diminish? Dan's Pizza Company makes frozen pizzas in a perfectly competitive market. The market price of pizza is $10, and Dan is a price taker. His daily cost of making pizzas is C(q) = 59 + (q?/80), and his marginal cost is MC = 5+q/40. A. (4 points) What is the equation for Dan's average variable cost curve? B. (6 points) What is Dans short-run supply function? C. (6 points) How many pizzas should Dan sell each day? D. (5 points) How much economic profit or loss does Dan's make? E. (4 points) What will happen to the number of firms in the pizza market in the long run? Why?Previous questionNext questionNot the exact question you're looking for?Post any question and get expert help quickly.Start learning Your assignment is to find microbes from soil that areresistantto the antibiotic kanamycin. Briefly describe a primary screenstrategy forthis purpose. BE SPECIFIC. What name is given to an event with a probability of greater than zero but less than one? a) Contingent b) Guaranteed c) Impossible d) Irregular Describe the development of iron deficiency, including measurements used to assess iron status, and the development of iron-deficiency anemia. (Ch. 13) DO NOT ANSWER - TEST QUESTIONTranslate into English: (a) Vx(E(x) E(x + 2)). (b) Vxy(sin(x) = y). (c) Vy3x(sin(x) = y). 3 (d) \xy(x = y x = y). Which of the following has a bactericidal (kills bacteria) effect and prevents invasion or colonization of the skin?Select one:a.Langerhan's cellsb.sebumc.melanind.merocrine secretionse.karatin Belle, a 12 pound cat, is suffering from joint pain. How much medicine should the veterinarian prescribe if the dosage is 1.4 mg per pound? Belle was prescribed mg of medicine. You notice that in regions of your system that lack microorganisms, there is a high concentration of ferrous iron (Fe2+), but where you observe your organisms, the concentration is much lower, so you conclude that the ferrous iron is most likely being used by the microorganisms. Given this information and what you know about the research site, the organisms are most likely using this compound as ________. (Hint think about all the uses for iron and whether this is an oxidized/reduced form).A) An electron acceptor for anaerobic respiration.B) An electron donor during chemolithotrophy.C) An electron acceptor during assimilatory iron reductionD) An electron donor during chemoorganotrophy.E) An electron acceptor during dissimilatory iron reduction Aregraded potential local to the dendrites anf soma of a neuron? Yesor no? No explanation needed Use an iterative numerical technique to calculate a valueAssignmentThe Mannings Equation is used to find the Flow Q (cubic feet per second or cfs) in an open channel. The equation isQ = 1.49/n * A * R^2/3 * S^1/2WhereQ = Flowrate in cfsA = Cross Sectional Area of Flow (square feet)R = Hydraulic Radius (Wetted Perimeter / A)S = Downward Slope of the Channel (fraction)The Wetted Perimeter and the Cross-Section of Flow are both dependent on the geometry of the channel. For this assignment we are going to use a Trapezoidal Channel.If you work out the Flow Area you will find it isA = b*y + y*(z*y) = by + z*y^2The Wetted Perimeter is a little trickier but a little geometry will show it to beW = b + 2y(1 + z^2)^1/2where b = base width (ft); Z = Side slope; y = depth.Putting it all together gives a Hydraulic Radius ofR = (b*y + Z*y^2)/(b + 2y*(1+Z^2))^1/2All this goes into the Mannings EquationsQ = 1/49/n * (b*y + z*y^2) * ((b*y + Z*y^2)/(b + 2y(1+Z^2))^1/2)^2/3 * S^1/2Luckily I will give you the code for this equation in Python. You are free to use this code. Please note that YOU will be solving for y (depth in this function) using iterative techniques.def TrapezoidalQ(n,b,y,z,s):# n is Manning's n - table at# https://www.engineeringtoolbox.com/mannings-roughness-d_799.html# b = Bottom width of channel (ft)# y = Depth of channel (ft)# z = Side slope of channel (horizontal)# s = Directional slope of channel - direction of flowA = b*y + z*y*yW = b + 2*y*math.sqrt(1 + z*z)R = A/WQ = 1.49/n * A * math.pow(R, 2.0/3.0) * math.sqrt(s)return QAs an engineer you are designing a warning system that must trigger when the flow is 50 cfs, but your measuring systems measures depth. What will be the depth where you trigger the alarm?The values to useManning's n - Clean earth channel freshly gradedb = 3 foot bottomz = 2 Horiz : 1 Vert Side Slopes = 1 foot drop for every 100 feetn = 0.022(hint: A depth of 1 foot will give you Q = 25.1 cfs)Write the program code and create a document that demonstrates you can use the code to solve this problem using iterative techniques.You should call your function CalculateDepth(Q, n, w, z, s). Inputs should be Q (flow), Manning's n, Bottom Width, Side Slope, Longitudinal Slope. It should demonstrate an iterative method to converge on a solution with 0.01 foot accuracy.As always this will be done as an engineering report. Python does include libraries to automatically work on iterative solutions to equations - you will not use these for this assignment (but are welcome to use them in later assignments). You need to (1) figure out the algorithm for iterative solutions, (2) translate that into code, (3) use the code to solve this problem, (4) write a report of using this to solve the problem. Direct current (dc) engine with shunt amplifier, 24 kW, 240 V, 1000 rpm with Ra = 0.12 Ohm, field coil Nf = 600 turns/pole. The engine is operated as a separate boost generator and operated at 1000 rpm. When the field current If = 1.8 A, the no load terminal voltage shows 240 V. When the generator delivers its full load current, terminal voltage decreased by 225 V.Count :a). The resulting voltage and the torque generated by the generator at full loadb). Voltage drop due to armature reactionNOTE :Please explain in detail ! Please explain The Theory ! Make sure your answer is right!I will give you thumbs up if you can answer in detail way thenumber of 3 digit numbers less than 500 that can be created if thelast digit is either 4 or 5 is? DOOD Which of the following are characteristics of humoral response? A fan operates at Q - 6.3 m/s. H=0.15 m. and N1440 rpm. A smaller. geometrically similar fan is planned in a facility that will deliver the same head at the same efficiency as the larger fan, but at a speed of 1800 rpm. Determine the volumetric flow rate of the smaller fan. Question 12: In this study, researchersmeasured photosynthetic rates with a device that determined theamount of CO2 absorbed by leaves within a certain amountof time. In addition to CO2 absorption Consider a machine that has a mass of 250 kg. It is able to raise an object weighing 600 kg using an input force of 100 N. Determine the mechanical advantage of this machine. Assume the gravitational acceleration to be 9.8 m/s^2. Explain the weaknesses of the first differencingtechnique in panel data analysis