A rectangular prism made of wood has a length of 10 centimeters, a width of 8 centimeters, and a height of 12 centimeters. A rectangular hole
with a length of 2 centimeters and a width of 3 centimeters is cut through the prism as shown. What is the volume of the resulting figure?
3 cm
2 cm
12 cm
8 cm
10 cm

A Rectangular Prism Made Of Wood Has A Length Of 10 Centimeters, A Width Of 8 Centimeters, And A Height

Answers

Answer 1

Answer: its B 888 cm

Step-by-step explanation: hope this helps let me know if wrong ill fix it


Related Questions

I NEED HELP PLEASE, THANKS! :)
A rock is tossed from a height of 2 meters at an initial velocity of 30 m/s at an angle of 20° with the ground. Write parametric equations to represent the path of the rock. (Show work)

Answers

Answer:

x = 28.01t,

y = 10.26t - 4.9t^2 + 2

Step-by-step explanation:

If we are given that an object is thrown with an initial velocity of say, v1 m / s at a height of h meters, at an angle of theta ( θ ), these parametric equations would be in the following format -

x = ( 30 cos 20° )( time ),

y = - 4.9t^2 + ( 30 cos 20° )( time ) + 2

To determine " ( 30 cos 20° )( time ) " you would do the following calculations -

( x = 30 * 0.93... = ( About ) 28.01t

This represents our horizontal distance, respectively the vertical distance should be the following -

y = 30 * 0.34 - 4.9t^2,

( y = ( About ) 10.26t - 4.9t^2 + 2

In other words, our solution should be,

x = 28.01t,

y = 10.26t - 4.9t^2 + 2

These are are parametric equations

I need help pls pls pls pls​

Answers

Answer:

D.  4

Step-by-step explanation:

If he leaves the science assignments for the next day, he will spend zero hours on science assignments.  This means that y is equal to 0.  Plug this into the given equation and solve for x.

2x + y = 8

2x + 0 = 8

2x = 8

x = 4

Gerald can complete 4 math assignments.

Given a right triangle with a hypotenuse length of radical 26 and base length of 3. Find the length of the other leg (which is also the height).

Answers

Answer:

  √17

Step-by-step explanation:

The Pythagorean theorem can be used for the purpose.

  hypotenuse² = base² +height²

  (√26)² = 3² +height²

  26 -9 = height²

  height = √17

The length of the other leg is √17.

Kylie and miranda began arguing about who did better on their tests, but they couln't decide who did better given that they took different tests, kylie took a test in Art History and earned a 77.3, and Tan took a test in English and earned a 62.9. Use the fact that all the students' test grades in the Art History class had a mean of 73 and a standard deviation of 10.7, and all the students' test grades in English had a mean of 66.8 and a standard deviation of 10.8 to answer the following questions.
a) Calculate the Z-score for Isaac's test grade.
b) Calculate the 2-score for lan's test grade.
c) Which person did relatively better?
A. Kylie
B. miranda
C. They did equally well.

Answers

Answer:

a) 77.3-73/10.7= 0.40187

b) 62.9-66.8/10.8= -0.36111

c) Kylie did relatively better

Step-by-step explanation:

a) Al usar un microscopio el microscopio se amplía una célula 400 veces. Escribe el factor de ampliación como cociente o como escala.
b) La imagen de una célula usando dicho microscopio mide 1,5 mm ¿ Cuánto mide la célula en la realidad?

Answers

Answer:

x = 0,00375 mm

Step-by-step explanation:

a) El factor de ampliación es 400/1   es decir el tamaño real se verá ampliado 400 veces mediante el uso del microscopio

b) De acuerdo a lo establecido en la respuesta a la pregunta referida en a (anterior) podemos establecer una regla de tres, según:

Si al microscopio el tamaño de la célula es 1,5 mm, cual será el tamaño verdadero ( que es reducido 400 en relación al que veo en el microscopio)

Es decir     1,5 mm      ⇒    400

                    x (mm)    ⇒       1 (tamaño real de la célula)

Entonces

x  =  1,5 /400

x = 0,00375 mm

M/J Grade 8 Pre-Algebra-PT-FL-1205070-003

Answers

Answer:

Following are the description of the given course code:

Step-by-step explanation:

The given course code is Pre-Algebra, which is just an introduction arithmetic course programs to train high school in the Algebra 1. This course aims to strengthen required problem solving skills, datatypes, equations, as well as graphing.

In this course students start to see the "big picture" of maths but also understand that mathematical, algorithmic, and angular principles are intertwined to form a basis for higher mathematics education.The duration of this code is in year and it is divided into two levels. In this, code it includes PreK to 12 Education Courses , with the general mathematics .

Answer:

A

Step-by-step explanation:

The following data represent the miles per gallon for a particular make and model car for six randomly selected vehicles. Compute the mean, median, and mode miles per gallon 24.2. 22.2. 37.8, 22.7. 35 4. 31.61. Compute the mean miles per gallon. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The mean mileage per gallon is _______B. The mean does not exist 2. Compute the median miles per gallon. Select the correct choice below and, if necessary, fill in the answer box to complete your choice A. The median mileage per gallon is __________B. The median does not exist. 3. Compute the mode miles per gallon. Select the correct choice below and, if necessary,fill in the answer box to complete your choice. A. The mode is _________B. The mode does not exist.

Answers

Answer:

A. The mean mileage per gallon is _____ 28.99__

A. The median mileage per gallon is _____27.905_____

B. The mode does not exist.

Step-by-step explanation:

Mean= Sum of values/ No of Values

            Mean =  24.2 + 22.2+  37.8+ 22.7 + 35.4 +31.61/ 6

           Mean = 173.91/6= 28.985 ≅ 28.99

The median is the middle value of an ordered data which divides the data into two equal halves. For an even data the median is  the average of n/2 and n+1/2 value where n is the number of values.

Rearranging the above data

22.2 , 22.7 , 24.2 , 31.61 , 35.4, 37.8

Third and fourth values are =24.2 + 31.61 = 55.81

Average of third and fourth values is = 55.81/2= 27.905

Mode is the values which is occurs repeatedly.

In this data there is no mode.

Evaluate the expression (image provided). A.) 1.5 B.) 6 C.) 6^15 D.) 1.5^6

Answers

Answer:

1.5

Step-by-step explanation:

6 to the log base of 6 will be one (they essentially cancel each other out, log is the opposite of exponents) and we are left with 1.5.

Please answer this correctly without making mistakes

Answers

Answer:

Question 2

Step-by-step explanation:

2) The time when she woke up was -  3° C

During nature walk, temperature got 3° C warmer than when she woke up.

So, temperature during nature walk = - 3 + 3 = 0° C

will give brainliest Evaluate 15/k when k is 3

Answers

Answer:

Hey there!

15/k, when k=3

15/3=5

Answer:

5

Step-by-step explanation:

its a simple as 15/3 = 5

have fun

Suppose you pay a dollar to roll two dice. if you roll 5 or a 6 you Get your dollar back +2 more just like it the goal will be to find the amount of money you can expect to win or lose if you play this game 100 times. How many times would you win? how many times would you lose?

Answers

Answer:

(a)$67

(b)You are expected to win 56 Times

(c)You are expected to lose 44 Times

Step-by-step explanation:

The sample space for the event of rolling two dice is presented below

[tex](1,1), (2,1), (3,1), (4,1), (5,1), (6,1)\\(1,2), (2,2), (3,2), (4,2), (5,2), (6,2)\\(1,3), (2,3), (3,3), (4,3), (5,3), (6,3)\\(1,4), (2,4), (3,4), (4,4), (5,4), (6,4)\\(1,5), (2,5), (3,5), (4,5), (5,5), (6,5)\\(1,6), (2,6), (3,6), (4,6), (5,6), (6,6)[/tex]

Total number of outcomes =36

The event of rolling a 5 or a 6 are:

[tex](5,1), (6,1)\\ (5,2), (6,2)\\( (5,3), (6,3)\\ (5,4), (6,4)\\(1,5), (2,5), (3,5), (4,5), (5,5), (6,5)\\(1,6), (2,6), (3,6), (4,6), (5,6), (6,6)[/tex]

Number of outcomes =20

Therefore:

P(rolling a 5 or a 6)  [tex]=\dfrac{20}{36}[/tex]

The probability distribution of this event is given as follows.

[tex]\left|\begin{array}{c|c|c}$Amount Won(x)&-\$1&\$2\\&\\P(x)&\dfrac{16}{36}&\dfrac{20}{36}\end{array}\right|[/tex]

First, we determine the expected Value of this event.

Expected Value

[tex]=(-\$1\times \frac{16}{36})+ (\$2\times \frac{20}{36})\\=\$0.67[/tex]

Therefore, if the game is played 100 times,

Expected Profit =$0.67 X 100 =$67

If you play the game 100 times, you can expect to win $67.

(b)

Probability of Winning  [tex]=\dfrac{20}{36}[/tex]

If the game is played 100 times

Number of times expected to win

[tex]=\dfrac{20}{36} \times 100\\=56$ times[/tex]

Therefore, number of times expected to loose

= 100-56

=44 times

Fill in the table using this function rule.

Answers

Answer:

1, 2.2, 5.5, 10.2.

Step-by-step explanation: these are simplified to the nearest tenth

The picture isn’t loading for me

Determine the logarithmic regression of the data below using either a calculator or spreadsheet program. Then, estimate the x−value when the y−value is 5.2. Round your answer to one decimal place. (4.7,10.7),(7.8,20.6),(10.5,30.2),(15.6,41),(20.8,56.1),(22,65.1). Please help right away! Thank you so much!

Answers

Answer:

y ≈ 33.7·ln(x) -45.94.6

Step-by-step explanation:

A graphing calculator can perform logarithmic regression, as can a spreadsheet. The least-squares best fit log curve is about ...

  y ≈ 33.7·ln(x) -45.9

The value of x estimated to make y = 5.2 is about 4.6.

[!] Urgent [!] Find the domain of the graphed function.

Answers

There is no way I can answer this without the graph

The graphs below are the same shape what is the equation of the blue graph

Answers

Answer:

B. g(x) = (x-2)^2 +1

Step-by-step explanation:

When you see this type of equation your get the variables H and K in a quadratic equation. In this case the (x-2)^2 +1  is your H. The (x-2)^2 +1 is your K.

For the H you always do the opposite so in this case instead of going to the left 2 times you go to the right 2 times (affects your x)

For the K you go up or down which in this case you go up one (affects your y)

And that's how you got your (2,1) as the center of the parabola

-Hope this helps :)

The average life a manufacturer's blender is 5 years, with a standard deviation of 1 year. Assuming that the lives of these blenders follow approximately a normal distribution, find the probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

Answers

Answer:

55.11% probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question:

[tex]\mu = 5, \sigma = 1, n = 9, s = \frac{1}{\sqrt{9}} = 0.3333[/tex]

Find the probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

This is the pvalue of Z when X = 5.1 subtracted by the pvalue of Z when X = 4.5. So

X = 5.1

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{5.1 - 5}{0.3333}[/tex]

[tex]Z = 0.3[/tex]

[tex]Z = 0.3[/tex] has a pvalue of 0.6179

X = 4.5

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{4.5 - 5}{0.3333}[/tex]

[tex]Z = -1.5[/tex]

[tex]Z = -1.5[/tex] has a pvalue of 0.0668

0.6179 - 0.0668 = 0.5511

55.11% probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

7. The mean age at first marriage for respondents in a survey is 23.33,
with a standard deviation of 6.13. For an age at first marriage of 33.44,
the proportion of area beyond the Z score associated with this age is
.05. What is the percentile rank for this score?

Answers

Answer:

[tex] \mu = 23.33, \sigma =6.13[/tex]

And for this case we are analyzing the value os 33.44 and we can use the z score formula given by:

[tex] z=\frac{X -\mu}{\sigma}[/tex]

And replacing we got:

[tex] z=\frac{33.44 -23.33}{6.13}= 1.649[/tex]

We know that the proportion of area beyond the Z score associated with this age is  .05 so then the percentile would be: 95

Step-by-step explanation:

For this case we have the following parameters:

[tex] \mu = 23.33, \sigma =6.13[/tex]

And for this case we are analyzing the value os 33.44 and we can use the z score formula given by:

[tex] z=\frac{X -\mu}{\sigma}[/tex]

And replacing we got:

[tex] z=\frac{33.44 -23.33}{6.13}= 1.649[/tex]

We know that the proportion of area beyond the Z score associated with this age is  .05 so then the percentile would be: 95

Find the length and width of a rectangle that has the given perimeter and a maximum area. Perimeter: 116 meters

Answers

Answer:

Length = 29 m

Width = 29 m

Step-by-step explanation:

Let x and y be the length and width of the rectangle, respectively.

The area and perimeter are given by:

[tex]A=xy\\p=116=2x+2y\\y=58-x[/tex]

Rewriting the area as a function of x:

[tex]A(x) = x(58-x)\\A(x) = 58x-x^2[/tex]

The value of x for which the derivate of the area function is zero, is the length that maximizes the area:

[tex]A(x) = 58x-x^2\\\frac{dA}{dx}=0=58-2x\\ x=29\ m[/tex]

The value of y is:

[tex]y = 58-29\\y=29\ m[/tex]

Length = 29 m

Width = 29 m

The problem is: On a Map, 3 inches represents 40 miles, How many inches represents 480 miles?

Answers

Answer: 36

480/40=12
12x3=36

In a survey, 205 people indicated they prefer cats, 160 indicated they prefer dots, and 40 indicated they don’t enjoy either pet. Find the probability that if a person is chosen at random, they prefer cats

Answers

Answer: probability =  0.506

Step-by-step explanation:

The data we have is:

Total people: 205 + 160 + 40 = 405

prefer cats: 205

prefer dogs: 160

neither: 40

The probability that a person chosen at random prefers cats is equal to the number of people that prefer cats divided the total number of people:

p = 205/405 = 0.506

in percent form, this is 50.6%

A cardboard box without a lid is to have a volume of 8,788 cm3. Find the dimensions that minimize the amount of cardboard used.

Answers

Answer:

x = y = 26 cm; z = 13 cm

Step-by-step explanation:

We can calculate the dimensions of the square base as

∛(2·8788) = 26 cm

the height of the box will be half of 26/2 which is 13 cm.

x = y = 26 cm; z = 13 cm

then the minimum area for the given volume can be calculated using what we call Lagrange multipliers, this makes it easier

area = xy +2(xz +yz)

But we were given the volume as 8788

Now we will make the partial derivatives of L to be in respect to the cordinates x, y, z, as well as λ to be equal to zero, then

L = xy +2(xz +yz) +λ(xyz -8788)

For x: we have

y+2z +λyz=0

For y we have

y: x +2z +λxz=0

For z we have 2x+2y +λxy=0............eqn(*)

For we have xyz -8788=0

If we simplify the partial derivative equation of y and x above then we have

λ = (y +2z)/(yz).

= 1/z +2/y............eqn(1)

λ = (x +2z)/(xz)

= 1/z +2/x.............eqn(2)

Set eqn(1 and 2) to equate we have

1/z +2/y = 1/z +2/x

x = y

From eqn(*) we can get z

λ = (2x +2y)/(xy) = 2/y +2/x

If we simplify we have

1/z +2y = 2/x +2/y

Then z = x/2

26/2 =13

Therefore,

x = y = 2z = ∛(2·8788)

X= 26

y = 26 cm

z = 13 cm

The width of a casing for a door is normally distributed with a mean of 24 inches and a standard deviation of 1/8 inch. The width of a door is normally distributed with a mean of 23 7/8 inches and a standard deviation of 1/16 inch. Assume independence. a. Determine the mean and standard deviation of the difference between the width of the casing and the width of the door. b. What is the probability that the width of the casing minus the width of the door exceeds 1/4 inch? c. What is the probability that the door does not fit in the casing?

Answers

Answer:

a) Mean = 0.125 inch

Standard deviation = 0.13975 inch

b) Probability that the width of the casing minus the width of the door exceeds 1/4 inch = P(X > 0.25) = 0.18673

c) Probability that the door does not fit in the casing = P(X < 0) = 0.18673

Step-by-step explanation:

Let the distribution of the width of the casing be X₁ (μ₁, σ₁²)

Let the distribution of the width of the door be X₂ (μ₂, σ₂²)

The distribution of the difference between the width of the casing and the width of the door = X = X₁ - X₂

when two independent normal distributions are combined in any manner, the resulting distribution is also a normal distribution with

Mean = Σλᵢμᵢ

λᵢ = coefficient of each disteibution in the manner that they are combined

μᵢ = Mean of each distribution

Combined variance = σ² = Σλᵢ²σᵢ²

λ₁ = 1, λ₂ = -1

μ₁ = 24 inches

μ₂ = 23 7/8 inches = 23.875 inches

σ₁² = (1/8)² = (1/64) = 0.015625

σ₂ ² = (1/16)² = (1/256) = 0.00390625

Combined mean = μ = 24 - 23.875 = 0.125 inch

Combined variance = σ² = (1² × 0.015625) + [(-1)² × 0.00390625] = 0.01953125

Standard deviation = √(Variance) = √(0.01953125) = 0.1397542486 = 0.13975 inch

b) Probability that the width of the casing minus the width of the door exceeds 1/4 inch = P(X > 0.25)

This is a normal distribution problem

Mean = μ = 0.125 inch

Standard deviation = σ = 0.13975 inch

We first normalize/standardize 0.25 inch

The standardized score of any value is that value minus the mean divided by the standard deviation.

z = (x - μ)/σ = (0.25 - 0.125)/0.13975 = 0.89

P(X > 0.25) = P(z > 0.89)

Checking the tables

P(x > 0.25) = P(z > 0.89) = 1 - P(z ≤ 0.89) = 1 - 0.81327 = 0.18673

c) Probability that the door does not fit in the casing

If X₂ > X₁, X < 0

P(X < 0)

We first normalize/standardize 0 inch

z = (x - μ)/σ = (0 - 0.125)/0.13975 = -0.89

P(X < 0) = P(z < -0.89)

Checking the tables

P(X < 0) = P(z < -0.89) = 0.18673

Hope this Helps!!!

how many solution does this equation have LOOK AT SCREENSHOT ATTACHED

Answers

Answer:

One solution

Step-by-step explanation:

99% of the time, linear equations (equations that have the first degree) have only one solution. However, it's always good to check.

6 - 3x = 12 - 6x

6 = 12 - 3x

-3x = -6

x = 2

As you can see, only one solution. Hope this helps!

An instructor asks students to rate their anxiety level on a scale of 1 to 100 (1 being low anxiety and 100 being high anxiety) just before the students take their final exam. The responses are shown below. Construct a relative frequency table for the instructor using five classes. Use the minimum value from the data set as the lower class limit for the first row, and use the lowest possible whole-number class width that will allow the table to account for all of the responses. Use integers or decimals for all answers.
48,50,71,58,56,55,53,70,63,74,64,33,34,39,49,60,65,84,54,58
Provide your answer below:
Lower Class Limit Upper Class Limit Relative Frequency

Answers

Answer:

The frequency table is shown below.

Step-by-step explanation:

The data set arranged ascending order is:

S = {33 , 34 , 39 , 48 , 49 , 50 , 53 , 54 , 55 , 56 , 58 , 58,  60 , 63 , 64 , 65 , 70 , 71 , 74 , 84}

It is asked to use the minimum value from the data set as the lower class limit for the first row.

So, the lower class limit for the first class interval is 33.

To determine the class width compute the range as follows:

[tex]\text{Range}=\text{Maximum}-\text{Minimum}[/tex]

          [tex]=84-33\\=51[/tex]

The number of classes requires is 5.

The class width is:

[tex]\text{Class width}=\frac{Range}{5}=\frac{51}{2}=10.2\approx 10[/tex]

So, the class width is 10.

The classes are:

33 - 42

43 - 52

53 - 62

63 - 72

73 - 82

83 - 92

Compute the frequencies of each class as follows:

Class Interval                  Values                        Frequency

   33 - 42                      33 , 34 , 39                             3

   43 - 52                      48 , 49 , 50                            3

   53 - 62          53 , 54 , 55 , 56 , 58 , 58,  60              7

   63 - 72                 63 , 64 , 65 , 70 , 71                      5

   73 - 82                              74                                  1

   83 - 92                             84                                   1

   TOTAL                                                                   20

Compute the relative frequencies as follows:

Class Interval          Frequency        Relative Frequency

   33 - 42                        3                   [tex]\frac{3}{20}\times 100\%=15\%[/tex]

   43 - 52                        3                   [tex]\frac{3}{20}\times 100\%=15\%[/tex]

   53 - 62                        7                   [tex]\frac{7}{20}\times 100\%=35\%[/tex]

   63 - 72                        5                   [tex]\frac{5}{20}\times 100\%=25\%[/tex]

   73 - 82                         1                   [tex]\frac{1}{20}\times 100\%=5\%[/tex]

   83 - 92                         1                   [tex]\frac{1}{20}\times 100\%=5\%[/tex]

   TOTAL                        20                          100%

Which of the following statements about feasible solutions to a linear programming problem is true?A. Min 4x + 3y + (2/3)z
B. Max 5x2 + 6y2
C. Max 5xy
D. Min (x1+x2)/3

Answers

Answer:

The answer is "Option A"

Step-by-step explanation:

The valid linear programming language equation can be defined as follows:

Equation:

[tex]\Rightarrow \ Min\ 4x + 3y + (\frac{2}{3})z[/tex]

The description of a linear equation can be defined as follows:

It is an algebraic expression whereby each term contains a single exponent, and a single direction consists in the linear interpolation of the equation.

Formula:

[tex]\to \boxed{y= mx+c}[/tex]

HELP ASAP WILL MARK BRAINIEST IF YOU ARE RIGHT !Which of the following represents a function?

Answers

Answer:

Option C.

Step-by-step explanation:

This is a function because all of the numbers have a partner, and none of them have more than one.

                                    Example of Not a Function

Function                                Not a Function

-4 to 5                                       -4 to 5                             <

9 to 7                                       -4 to 3                              <

13 to 3                                       13 to 3                              ^

-7 to 5                                        9 to 7                               ^

                                                 -7 to 5                               ^

                                           Not a Function because of this

If -5(x+8) =-25, then x=-3

Answers

Answer:

Correct!

Step-by-step explanation:

-5(x+8)=-25

x+8=5

x=-3

Answer:

here, -5(x+8)=-25

or, -5x +(-40)= -25

or, -5x=-25+40

or, x= 15/-5

therefore the value of x is -3....ans..

hope u understood..

Jeremy makes $57,852 per year at his accounting firm. How much is Jeremy’s monthly salary? (There are 12 months in a year.) How much is Jeremy’s weekly salary? (There are 52 weeks in a year.)

Answers

Answer:

Monthly: $4,821

Weekly: $1112.54

Step-by-step explanation:

Monthly

A monthly salary can be found by dividing the yearly salary by the number of months.

salary / months

His salary is $57,852 and there are 12 months in a year.

$57,852/ 12 months

Divide

$4,821 / month

Jeremy makes $4,821 per month.

Weekly

To find the weekly salary, divide the yearly salary by the number of weeks.

salary / weeks

He makes $57,852 each year and there are 52 weeks in one year.

$57,852 / 52 weeks

Divide

$1112.53846 / week

Round to the nearest cent. The 8 in the thousandth place tells use to round the 3 up to a 4 in the hundredth place.

$1112.54 / week

Jeremy makes $1112.54 per week

The number of people arriving for treatment at an emergency room can be modeled by a Poisson process with a rate parameter of six per hour.
(a) What is the probability that exactly three arrivals occur during a particular hour? (Round your answer to three decimal places.)
(b) What Is the probability that at least three people arrive during a particular hour? (Round your answer to three decimal places.)
(c) How many people do you expect to arrive during a 15-min period?

Answers

Answer:

a) P(x=3)=0.089

b) P(x≥3)=0.938

c) 1.5 arrivals

Step-by-step explanation:

Let t be the time (in hours), then random variable X is the number of people arriving for treatment at an emergency room.

The variable X is modeled by a Poisson process with a rate parameter of λ=6.

The probability of exactly k arrivals in a particular hour can be written as:

[tex]P(x=k)=\lambda^{k} \cdot e^{-\lambda}/k!\\\\P(x=k)=6^k\cdot e^{-6}/k![/tex]

a) The probability that exactly 3 arrivals occur during a particular hour is:

[tex]P(x=3)=6^{3} \cdot e^{-6}/3!=216*0.0025/6=0.089\\\\[/tex]

b) The probability that at least 3 people arrive during a particular hour is:

[tex]P(x\geq3)=1-[P(x=0)+P(x=1)+P(x=2)]\\\\\\P(0)=6^{0} \cdot e^{-6}/0!=1*0.0025/1=0.002\\\\P(1)=6^{1} \cdot e^{-6}/1!=6*0.0025/1=0.015\\\\P(2)=6^{2} \cdot e^{-6}/2!=36*0.0025/2=0.045\\\\\\P(x\geq3)=1-[0.002+0.015+0.045]=1-0.062=0.938[/tex]

c) In this case, t=0.25, so we recalculate the parameter as:

[tex]\lambda =r\cdot t=6\;h^{-1}\cdot 0.25 h=1.5[/tex]

The expected value for a Poisson distribution is equal to its parameter λ, so in this case we expect 1.5 arrivals in a period of 15 minutes.

[tex]E(x)=\lambda=1.5[/tex]

find the circumference of a circle with a diameter of 6 cm

Answers

Circumference = πd

~substitute (π)(6 cm)

~simplify → 6π cm.

So the circumference of the circle shown here is 6π cm.

Answer:

18.85 cm

Step-by-step explanation:

The circumference of a circle has a formula.

Circumference = π × diameter

The diameter is 6 centimeters.

Circumference = π × 6

Circumference ≈ 18.85

The circumference of the circle is 18.85 centimeters.

Other Questions
Gwen is travelling to another country. She flies for 3 hours at an average speed of 625 km/h on one plane. She then flies for 4 hours 15 minutes at an average speed of 880 km/h on a second plane. What is the total distance, in km, she travelled by plane? The first glycolysis rate-limiting enzyme is under various allosteric regulations. This protein is nearly inactive because of inhibition by ( ) under physiological conditions. The activity is restored by ( ), its most potent allosteric activator.a. AMP :::: citrateb. AMP :::: Fru-2,6-P2c. ATP :::: citrated. ATP :::: Fru-2,6-P2e. All of these Proteins are complex molecules. True or False Use each of the digits 2,4,6 and 7 to make this calculation correct ?.?+?.?=10 Ronald ran 6 laps in 12 minutes. Which ratio can be used to find the number of laps that Ronald ran in 1 minute? What are good metaphors and similes for broken shards of glass scattered on the floor? ANSWERFind the scale factor of the dilation shown in the diagram. 1/2 1/3 2 3 Muons are elementary particles that are formed high in the atmosphere by the interactions of cosmic rays with atomic nuclei. Muons are radioactive and have average lifetimes of about two-millionths of a second. Even though they travel at almost the speed of light, they have so far to travel through the atmosphere that very few should be detected at sea level - at least according to classical physics. Laboratory measurements, however, show that muons in great number do reach the earth's surface. What is the explanation? The views expressed in the passage best reflect which of the following trends in European Christendom? A rivalry for supremacy between competing sects An effort to resolve internal disputes over doctrine An indifferent attitude toward a threat to a peripheral region A willingness to unify against an opposing ideology Refer to the passage. "We will build transports to carry four thousand five hundred horses, and nine thousand squires, and ships for four thousand five hundred knights, and twenty thousand sergeants of foot. And we will agree also to purvey food for these horses and people during nine months. This is what we undertake to do at the least, on condition that you pay us for each horse four marks, and for each man two marks. And . . . we undertake to keep, wheresoever we may be, for a year, reckoning from the day on which we sail from the port of Venice in the service of God and of Christendom. Now the sum total of the expenses above named amounts to 85,000 marks. And this will we do moreover. For the love of God, we will add to the fleet fifty armed galleys on condition that, so long as we act in company, of all conquests in land or money, whether at sea or on dry ground, we shall have the half, and you the other half. Now consult together to see if you, on your parts, can accept and fulfil these covenants. Geoffrey de Villehardouin, knight and historian, Chronicle of the Fourth Crusade and the Conquest of Constantinople solve 2x - 1/5 + 2x - 19.6 A professional football prospect runs 40 yards dash in 5 seconds. What is the player's average speed over this distance Find a solution to the linear equation y=12x24 can someone please help me What is the solution of the following system 5x+2y+z=4 x+2z=4 2x+y-z=-1 Please answer this question now in two minutes need help with this question, i dont think its hard for you. An object of height 2.50cm is placed 20.0cm from a converging mirror of focal length 10.0cm. What are the height and the magnification of the image formed? George has opened a new store and he is monitoring its success closely. He has found that this stores revenue each month can be modeled by r(x)=x2+5x+14 where x represents the number of months since the store opens the doors and r(x) is measured in hundreds of dollars. He has also found that his expenses each month can be modeled by c(x)=x23x+4 where x represents the number of months the store has been open and c(x) is measured in hundreds of dollars. What does (rc)(3) mean about George's new store? Using Figurative Language to Make Meaning I walked back there that evening and checked on the beans. They'd picked themselves up and were looking fine. Seedfolks Paul Fleischman How does the authors use of personification help you better understand the text? It shows that the plants are healthier. It shows that the plants are dying in the sun. It shows that the plants had too much water. It shows that someone needs to take better care of the plants. What is the symbolic meaning of the relationship between light and dark in the story?