A plane flies 240 miles due north, then 320 miles due west. How
many miles must it fly to return to its starting point by the shortest
route? (Enter your answer without units.)

Answers

Answer 1

Answer: The distance of the shortest route of return is 400

Step-by-step explanation:

The direction of travel of the plane forms a right angle triangle ABC as shown in the attached photo. C represents the starting point of the plane. To determine the distance of the shortest by which the plane can return to its starting point, BC, we would apply the Pythagorean theorem which is expressed as

Hypotenuse² = opposite side² + adjacent side²

BC² = 320² + 240²

BC² = 160000

BC = √160000

BC = 400

A Plane Flies 240 Miles Due North, Then 320 Miles Due West. Howmany Miles Must It Fly To Return To Its

Related Questions

Any help would be greatly appreciated

Answers

Answer:

[tex]\boxed{\sf \ \ \ 49a^8b^6c^2 \ \ \ }[/tex]

Step-by-step explanation:

Hello,

[tex](-7a^4b^3c)^2=(-1)^27^2a^{4*2}b^{3*2}c^2=49a^8b^6c^2[/tex]

as

[tex](-1)^2=1[/tex]

Given a normal distribution with (mean) μ= 50 and (standard deviation) σ = 4, what is the probability that:__________.
a) x>43
b) x<42
c) x>57.5
d) 42 e) x<40 or x>55
f) 5% of the values are less than what X value?
g) 60% of the values are between what two X values (symmetrically distributed around the mean)?
h) 85% of the values will be above what X value?

Answers

Answer:

a) P(x > 43) = 0.9599

b) P(x < 42) = 0.0228

c) P(x > 57.5) = 0.03

d) P(x = 42) = 0.

e) P(x<40 or x>55) = 0.1118

f) 43.42

g) Between 46.64 and 53.36.

h) Above 45.852.

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:

[tex]\mu = 50, \sigma = 4[/tex]

a) x>43

This is 1 subtracted by the pvalue of Z when X = 43. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{43 - 50}{4}[/tex]

[tex]Z = -1.75[/tex]

[tex]Z = -1.75[/tex] has a pvalue of 0.0401

1 - 0.0401 = 0.9599

P(x > 43) = 0.9599

b) x<42

This is the pvalue of Z when X = 42.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{42 - 50}{4}[/tex]

[tex]Z = -2[/tex]

[tex]Z = -2[/tex] has a pvalue of 0.0228

P(x < 42) = 0.0228

c) x>57.5

This is 1 subtracted by the pvalue of Z when X = 57.5. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{57.5 - 50}{4}[/tex]

[tex]Z = 1.88[/tex]

[tex]Z = 1.88[/tex] has a pvalue of 0.97

1 - 0.97 = 0.03

P(x > 57.5) = 0.03

d) P(x = 42)

In the normal distribution, the probability of an exact value is 0. So

P(x = 42) = 0.

e) x<40 or x>55

x < 40 is the pvalue of Z when X = 40. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{40 - 50}{4}[/tex]

[tex]Z = -2.5[/tex]

[tex]Z = -2.5[/tex] has a pvalue of 0.0062

x > 55 is 1 subtracted by the pvalue of Z when X = 55. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{55 - 50}{4}[/tex]

[tex]Z = 1.25[/tex]

[tex]Z = 1.25[/tex] has a pvalue of 0.8944

1 - 0.8944 = 0.1056

0.0062 + 0.1056 = 0.1118

P(x<40 or x>55) = 0.1118

f) 5% of the values are less than what X value?

X is the 5th percentile, which is X when Z has a pvalue of 0.05, so X when Z = -1.645.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-1.645 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = -1.645*4[/tex]

[tex]X = 43.42[/tex]

43.42 is the answer.

g) 60% of the values are between what two X values (symmetrically distributed around the mean)?

Between the 50 - (60/2) = 20th percentile and the 50 + (60/2) = 80th percentile.

20th percentile:

X when Z has a pvalue of 0.2. So X when Z = -0.84.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-0.84 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = -0.84*4[/tex]

[tex]X = 46.64[/tex]

80th percentile:

X when Z has a pvalue of 0.8. So X when Z = 0.84.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]0.84 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = 0.84*4[/tex]

[tex]X = 53.36[/tex]

Between 46.64 and 53.36.

h) 85% of the values will be above what X value?

Above the 100 - 85 = 15th percentile, which is X when Z has a pvalue of 0.15. So X when Z = -1.037.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-1.037 = \frac{X - 50}{4}[/tex]

[tex]X - 50 = -1.037*4[/tex]

[tex]X = 45.852[/tex]

Above 45.852.

Suppose that we want to generate the outcome of the flip of a fair coin, but that all we have at our disposal is a biased coin which lands on heads with some unknown probability p that need not be equal to1/2. Consider the following procedure for accomplishing our task:
1. Flip the coin.
2. Flip the coin again.
3. If both flips land on heads or both land on tails, return to step 1. 4. Let the result of the last flip be the result of the experiment.
(a) Show that the result is equally likely to be either heads or tails.
(b) Could we use a simpler procedure that continues to flip the coin until the last two flips are different and then lets the result be the outcome of the final flip?

Answers

Answer:

Step-by-step explanation:

Given that;

the following procedure for accomplishing our task are:

1. Flip the coin.

2. Flip the coin again.

From here will know that the coin is first flipped twice

3. If both flips land on heads or both land on tails, it implies that we return to step 1 to start again. this makes the flip to be insignificant since both flips land on heads or both land on tails

But if the outcomes of the two flip are different i.e they did not land on both heads or both did not land on tails , then we will consider such an outcome.

Let the probability of head = p

so P(head) = p

the probability of tail be = (1 - p)

This kind of probability follows a conditional distribution and the probability  of getting heads is :

[tex]P( \{Tails, Heads\})|\{Tails, Heads,( Heads ,Tails)\})[/tex]

[tex]= \dfrac{P( \{Tails, Heads\}) \cap \{Tails, Heads,( Heads ,Tails)\})}{ {P( \{Tails, Heads,( Heads ,Tails)\}}}[/tex]

[tex]= \dfrac{P( \{Tails, Heads\}) }{ {P( \{Tails, Heads,( Heads ,Tails)\}}}[/tex]

[tex]= \dfrac{P( \{Tails, Heads\}) } { {P( Tails, Heads) +P( Heads ,Tails)}}[/tex]

[tex]=\dfrac{(1-p)*p}{(1-p)*p+p*(1-p)}[/tex]

[tex]=\dfrac{(1-p)*p}{2(1-p)*p}[/tex]

[tex]=\dfrac{1}{2}[/tex]

Thus; the probability of getting heads is [tex]\dfrac{1}{2}[/tex] which typically implies that the coin is fair

(b) Could we use a simpler procedure that continues to flip the coin until the last two flips are different and then lets the result be the outcome of the final flip?

For a fair coin (0<p<1) , it's certain that both heads and tails at the end of the flip.

The procedure that is talked about in (b) illustrates that the procedure gives head if and only if the first flip comes out tail with probability 1 - p.

Likewise , the procedure gives tail if and and only if the first flip comes out head with probability of  p.

In essence, NO, procedure (b) does not give a fair coin flip outcome.

Simplify 8x + 10y + 9x - 3y by identifying and combining like terms. A. 17x + 13y B.24y C.17x+7 D.17x + 7y

Answers

Answer:

17x +7y

Step-by-step explanation:

8x + 10y + 9x - 3y

Combine like terms

8x+ 9x          + 10y - 3y

17x                   +7y

8x+9x are like terms    and 10y -3y are like terms

Answer:

17x + 7y

Step-by-step explanation:

8x + 10y + 9x - 3y

Rearrange.

8x + 9x + 10y - 3y

Factor out x and y.

x (8 + 9) + y (10 - 3)

Add or subtract.

x (17) + y (7)

17x + 7y

A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 409 gram setting. It is believed that the machine is underfilling the bags. A 42 bag sample had a mean of 404 grams. Assume the population standard deviation is known to be 24. A level of significance of 0.01 will be used. Find the P-value of the test statistic. You may write the P-value as a range using interval notation, or as a decimal value rounded to four decimal places.

Answers

Answer:

[tex]z=\frac{404-409}{\frac{24}{\sqrt{42}}}=-1.35[/tex]  

The p value for this case is given by:

[tex]p_v =P(z<-1.35)=0.0885[/tex]  

For this case the p value is higher than the significance level given so we have enough evidence to FAIL to reject the null hypothesis and we can't conclude that the true mean is significantly less than 409

Step-by-step explanation:

Information given

[tex]\bar X=404[/tex] represent the sample mean

[tex]\sigma=24[/tex] represent the population standard deviation

[tex]n=42[/tex] sample size  

[tex]\mu_o =409[/tex] represent the value to verify

[tex]\alpha=0.01[/tex] represent the significance level for the hypothesis test.  

z would represent the statistic (variable of interest)  

[tex]p_v[/tex] represent the p value

Hypothesis to test

We want to verify if the true mean is less than 409, the system of hypothesis would be:  

Null hypothesis:[tex]\mu \geq 409[/tex]  

Alternative hypothesis:[tex]\mu < 409[/tex]  

The statistic for this case is given by:

[tex]z=\frac{\bar X-\mu_o}{\frac{\sigma}{\sqrt{n}}}[/tex] (1)  

Replacing the info we got:

[tex]z=\frac{404-409}{\frac{24}{\sqrt{42}}}=-1.35[/tex]  

The p value for this case is given by:

[tex]p_v =P(z<-1.35)=0.0885[/tex]  

For this case the p value is higher than the significance level given so we have enough evidence to FAIL to reject the null hypothesis and we can't conclude that the true mean is significantly less than 409

The graphs below have the same shape. What is the equation of the blue
graph?

Answers

Answer: b

Explanation:

The -2 outside of the parentheses means it’s at y=-2 and the -4 inside the parentheses means it’s at x= 4 because it’s always the opposite

what is the answer to the equation -(-(-(-2)))

Answers

Answer:

2

Step-by-step explanation:

Since there are four negative signs, we have -1 multiplying each other 4 times,  multiplying by positive 2. This is then 1 * 2, which is 2.

Answer:

+2

Step-by-step explanation:

=> -(-(-(-2))))

=> -(-(+2))

=> -(-2)

=> +2

An individual who has automobile insurance from a certain company is randomly selected. Let Y be the number of moving violations for which the individual was cited during the last 3 years. The pmf of Y is the following.
y 0 1 2 3
p(y) 0.50 0.25 0.20 0.05
A) Compute E(Y).
B) Suppose an individual with Y violations incurs a surcharge of $110Y2. Calculate the expected amount of the surcharg.

Answers

Answer:

A. The E(Y) is 0.80

B. The expected amount of the surcharges is $165

Step-by-step explanation:

A. In order to calculate the E(Y), we would have to calculate the following formula:

E(Y)=∑yp(y)

E(Y)=(0*0.5)+(1*0.25)+(2*0.20)+(3*0.05)

E(Y)=0+0.25+0.40+0.15

E(Y)=0.80

B. In order to calculate the expected amount of the surcharges we would have to calculate the following formula:

E($110Y∧2)=110E(Y∧2)

=110∑y∧2p(y)

=110((0∧2*0.5)+(1∧2*0.25)+(2∧2*0.20)+(3∧2*0.05))

110(0+0.25+0.80+0.45)

=$165

Please help me find Jebel dhanna in UAE map.​

Answers

Jebel dhanna is in Abu Dhabi

Answer:

The full name of the place is the "Danat Jebel Dhanna".  The Jebel Dhanna is currently located in the Abu Dhabi.  It is said that it is one of the most best beach in the UAE, they also say that it is the biggest resort, of course, with a bunch of hotels.

hope this helps ;)

best regards,

`FL°°F~` (floof)

D
С
Micaela tried to rotate the square 180° about the origin.
Is her rotation correct? If not, explain why.
O No, she translated the figure instead of rotating it.
O No, she reflected the figure instead of rotating it.
O No, the vertices of the image and pre-image do not
correspond.
Yes, the rotation is correct.
cu

Answers

Answer:

it’s C

Step-by-step explanation:

No, the vertices of the image and pre-image do not correspond

No, the vertices of the image and pre-image do not correspond, Micaela tried to rotate the square 180° about the origin. Hence, option C is correct.

What is rotation about the origin?

A figure can be rotated by 90 degrees clockwise by rotating each vertex of the figure 90 degrees clockwise about the origin.

Let's take the vertices of a square with points at (+1,+1), (-1,+1), (-1,-1), and (+1,-1), centered at the origin, can be found in the following positions after rotation:

The vertex (+1,+1) would be rotated to the point (-1,-1).The vertex (-1,+1) would be rotated to the point (+1,-1).The vertex (-1,-1) would be rotated to the point (+1,+1).The vertex (+1,-1) would be rotated to the point (-1,+1).

Micaela's rotation must be accurate if it led to the same points. Her rotation is incorrect if the points are different, though.

It is impossible to tell if Micaela's rotation is accurate without more details or a diagram.

Thus, option C is correct.

For more information about rotation about the origin, click here:

https://brainly.com/question/30198965

#SPJ7

Use the given degree of confidence and sample data to construct a confidence interval for the population mean μ. Assume that the population has a normal distribution. Thirty randomly selected students took the calculus final. If the sample mean was 95 and the standard deviation was 6.6, construct a 99% confidence interval for the mean score of all students.
A. 91.68

B. 92.03 < μ < 97.97
C. 92.95

D. 91.69 < μ < 98.31

Answers

Answer:

B) 92.03 < μ < 97.97

99% confidence interval for the mean score of all students.

92.03 < μ < 97.97

Step-by-step explanation:

Step(i):-

Given sample mean (x⁻) = 95

standard deviation of the sample (s) = 6.6

Random sample size 'n' = 30

99% confidence interval for the mean score of all students.

[tex]((x^{-} - Z_{0.01} \frac{S}{\sqrt{n} } , (x^{-} + Z_{0.01} \frac{S}{\sqrt{n} })[/tex]

step(ii):-

Degrees of freedom

ν =   n-1 = 30-1 =29

[tex]t_{0.01} = 2.462[/tex]

99% confidence interval for the mean score of all students.

[tex]((95 - 2.462 \frac{6.6}{\sqrt{30} } , 95 + 2.462\frac{6.6}{\sqrt{30} } )[/tex]

( 95 - 2.966 , 95 + 2.966)

(92.03 , 97.97)

Final answer:-

99% confidence interval for the mean score of all students.

92.03 < μ < 97.97

Help me with answer B

Thank you

Answers

Answer:

  193.77 < p < 1806.23

Step-by-step explanation:

You want R(p) > 2,100,000, so ...

  -6p^2 +12000p > 2100000

  p^2 -2000p < -350000 . . . . divide by -6

Adding (2000/2)^2 = 1000000 will "complete the square".

  p^2 -2000p +1000000 < 650000 . . . . complete the square

  (p -1000)^2 < 650000

  -√650000 < p -1000 < √650000 . . . . take the square root

  1000 -806.23 < p < 1000 +806.23 . . . .add 1000

  193.77 < p < 1806.23 . . . . range of prices for desired revenue

Teresa's parents are getting phones that each and 64 GB of storage how many bits of storage come with each phone answer both in scientific in standard notation

Answers

Answer:

5.12 x 10¹¹ bit

Step-by-step explanation:

1GB = 8 x 10⁹ bits

so 64gb = 64 x 8 x 10⁹

= 512 x 10⁹

= 5.12 x 10¹¹ bits

scientific notation = 5.12 x 10¹¹ bits

standard Notation = 512 ,000,000,000 bits.

what 826,497 in standard form answer

Answers

Answer:8.2 x 10^5

Step-by-step explanation:

if rectangle ABCD was reflected over the y-axis, reflected over x axis, and rotated 180°, where would point A' lie?​

Answers

Answer:

Option C (-4,-1) (In Quadrant III)

Step-by-step explanation:

Coordinate = (-4,1)

=> Reflecting over y-axis will make the coordinate (4,1)

=> Reflecting across x-axis will make the coordinate (4,-1)

=> Rotating 180 will make it (-4,-1)

The percent defective for parts produced by a manufacturing process is targeted at 4%. The process is monitored daily by taking samples of sizes n = 160 units. Suppose that today’s sample contains 14 defectives. Determine a 88% confidence interval for the proportion defective for the process today. Place your LOWER limit, rounded to 3 decimal places, in the first blank. For example, 0.123 would be a legitimate answer. Place your UPPER limit, rounded to 3 decimal places, in the second blank. For example, 0.345 would be a legitimate entry.

Answers

Answer:

The 88% confidence interval for the proportion of defectives today is (0.053, 0.123)

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

For this problem, we have that:

[tex]n = 160, \pi = \frac{14}{160} = 0.088[/tex]

88% confidence level

So [tex]\alpha = 0.12[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.12}{2} = 0.94[/tex], so [tex]Z = 1.555[/tex].

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.088 - 1.555\sqrt{\frac{0.088*0.912}{160}} = 0.053[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.088 + 1.555\sqrt{\frac{0.088*0.912}{160}} = 0.123[/tex]

The 88% confidence interval for the proportion of defectives today is (0.053, 0.123)

You are given an n×n board, where n is an even integer and 2≤n≤30. For how many such boards is it possible to cover the board with T-shaped tiles like the one shown? Each cell of the shape is congruent to one cell on the board.

Answers

Answer:

  7

Step-by-step explanation:

The number of cells in a tile is 4. If colored alternately, there are 3 of one color and 1 of the alternate color. To balance the coloring, an even number of tiles is needed. Hence the board dimensions must be multiples of 4.

In the given range, there are 7 such boards:

  4×4, 8×8, 12×12, 16×16, 20×20, 24×24, and 28×28

Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x4 ln(x) (a) Find the interval on which f is increasing. (Enter your answer using interval notation.) Find the interval on which f is decreasing. (Enter your answer using interval notation.) (b) Find the local minimum and maximum values of f. local minimum value local maximum value (c) Find the inflection point. (x, y) = Find the interval on which f is concave up. (Enter your answer using interval notation.) Find the interval on which f is concave down. (Enter your answer using interval notation.)

Answers

Answer: (a) Interval where f is increasing: (0.78,+∞);

Interval where f is decreasing: (0,0.78);

(b) Local minimum: (0.78, - 0.09)

(c) Inflection point: (0.56,-0.06)

Interval concave up: (0.56,+∞)

Interval concave down: (0,0.56)

Step-by-step explanation:

(a) To determine the interval where function f is increasing or decreasing, first derive the function:

f'(x) = [tex]\frac{d}{dx}[/tex][[tex]x^{4}ln(x)[/tex]]

Using the product rule of derivative, which is: [u(x).v(x)]' = u'(x)v(x) + u(x).v'(x),

you have:

f'(x) = [tex]4x^{3}ln(x) + x_{4}.\frac{1}{x}[/tex]

f'(x) = [tex]4x^{3}ln(x) + x^{3}[/tex]

f'(x) = [tex]x^{3}[4ln(x) + 1][/tex]

Now, find the critical points: f'(x) = 0

[tex]x^{3}[4ln(x) + 1][/tex] = 0

[tex]x^{3} = 0[/tex]

x = 0

and

[tex]4ln(x) + 1 = 0[/tex]

[tex]ln(x) = \frac{-1}{4}[/tex]

x = [tex]e^{\frac{-1}{4} }[/tex]

x = 0.78

To determine the interval where f(x) is positive (increasing) or negative (decreasing), evaluate the function at each interval:

interval                 x-value                      f'(x)                       result

0<x<0.78                 0.5                 f'(0.5) = -0.22            decreasing

x>0.78                       1                         f'(1) = 1                  increasing

With the table, it can be concluded that in the interval (0,0.78) the function is decreasing while in the interval (0.78, +∞), f is increasing.

Note: As it is a natural logarithm function, there are no negative x-values.

(b) A extremum point (maximum or minimum) is found where f is defined and f' changes signs. In this case:

Between 0 and 0.78, the function decreases and at point and it is defined at point 0.78;After 0.78, it increase (has a change of sign) and f is also defined;

Then, x=0.78 is a point of minimum and its y-value is:

f(x) = [tex]x^{4}ln(x)[/tex]

f(0.78) = [tex]0.78^{4}ln(0.78)[/tex]

f(0.78) = - 0.092

The point of minimum is (0.78, - 0.092)

(c) To determine the inflection point (IP), calculate the second derivative of the function and solve for x:

f"(x) = [tex]\frac{d^{2}}{dx^{2}}[/tex] [[tex]x^{3}[4ln(x) + 1][/tex]]

f"(x) = [tex]3x^{2}[4ln(x) + 1] + 4x^{2}[/tex]

f"(x) = [tex]x^{2}[12ln(x) + 7][/tex]

[tex]x^{2}[12ln(x) + 7][/tex] = 0

[tex]x^{2} = 0\\x = 0[/tex]

and

[tex]12ln(x) + 7 = 0\\ln(x) = \frac{-7}{12} \\x = e^{\frac{-7}{12} }\\x = 0.56[/tex]

Substituing x in the function:

f(x) = [tex]x^{4}ln(x)[/tex]

f(0.56) = [tex]0.56^{4} ln(0.56)[/tex]

f(0.56) = - 0.06

The inflection point will be: (0.56, - 0.06)

In a function, the concave is down when f"(x) < 0 and up when f"(x) > 0, adn knowing that the critical points for that derivative are 0 and 0.56:

f"(x) =  [tex]x^{2}[12ln(x) + 7][/tex]

f"(0.1) = [tex]0.1^{2}[12ln(0.1)+7][/tex]

f"(0.1) = - 0.21, i.e. Concave is DOWN.

f"(0.7) = [tex]0.7^{2}[12ln(0.7)+7][/tex]

f"(0.7) = + 1.33, i.e. Concave is UP.

A financial advisor is analyzing a family's estate plan. The amount of money that the family has invested in different real estate properties is normally distributed with a mean of $225,000 and a standard deviation of $50,000. Use a calculator to find how much money separates the lowest 80% of the amount invested from the highest 20% in a sampling distribution of 10 of the family's real estate holdings.

Answers

Answer:

The amount of money separating the lowest 80% of the amount invested from the highest 20% in a sampling distribution of 10 of the family's real estate holdings is $238,281.57.

Step-by-step explanation:

Let the random variable X represent the amount of money that the family has invested in different real estate properties.

The random variable X follows a Normal distribution with parameters μ = $225,000 and σ = $50,000.

It is provided that the family has invested in n = 10 different real estate properties.

Then the mean and standard deviation of amount of money that the family has invested in these 10 different real estate properties is:

[tex]\mu_{\bar x}=\mu=\$225,000\\\\\sigma_{\bar x}=\frac{\sigma}{\sqrt{n}}=\frac{50000}{\sqrt{10}}=15811.39[/tex]

Now the lowest 80% of the amount invested can be represented as follows:

[tex]P(\bar X<\bar x)=0.80\\\\\Rightarrow P(Z<z)=0.80[/tex]

The value of z is 0.84.

*Use a z-table.

Compute the value of the mean amount invested as follows:

[tex]\bar x=\mu_{\bar x}+z\cdot \sigma_{\bar x}[/tex]

   [tex]=225000+(0.84\times 15811.39)\\\\=225000+13281.5676\\\\=238281.5676\\\\\approx 238281.57[/tex]

Thus, the amount of money separating the lowest 80% of the amount invested from the highest 20% in a sampling distribution of 10 of the family's real estate holdings is $238,281.57.

You are interested in estimating the the mean age of the citizens living in your community. In order to do this, you plan on constructing a confidence interval; however, you are not sure how many citizens should be included in the sample. If you want your sample estimate to be within 5 years of the actual mean with a confidence level of 97%, how many citizens should be included in your sample

Answers

Question:

You are interested in estimating the the mean age of the citizens living in your community. In order to do this, you plan on constructing a confidence interval; however, you are not sure how many citizens should be included in the sample. If you want your sample estimate to be within 5 years of the actual mean with a confidence level of 97% , how many citizens should be included in your sample? Assume that the standard deviation of the ages of all the citizens in this community is 18 years.

Answer:

61.03

Step-by-step explanation:

Given:

Standard deviation = 18

Sample estimate = 5

Confidence level = 97%

Required:

Find sample size, n.

First find the Z value. Using zscore table

Z-value at a confidence level of 97% = 2.17

To find the sample size, use the formula below:

[tex] n = (Z * \frac{\sigma}{E})^2[/tex]

[tex] n = ( 2.17 * \frac{18}{5})^2 [/tex]

[tex] n = (2.17 * 3.6)^2 [/tex]

[tex] n = (7.812)^2 [/tex]

[tex] n = 61.03 [/tex]

Sample size = 61.03

For the dilation, DO, K = (10, 0) → (5, 0), the scale factor is equal to _____.

Answers

Answer:

[tex] \frac{1}{2} [/tex]

Step-by-step explanation:

[tex]scale \: factor = \frac{5}{10} = \frac{1}{2} \\ [/tex]

Tasha wants to take money out of the ATM for a taxi fare. She wants to do a quick estimate to see if taking $120 out of her bank account will overdraw it. She knows she had $325 in the account this morning when she checked her balance. Today she bought lunch for $19, a dress for $76, a pair of shoes for $53, and a necklace for $23. She also saw a movie with a friend for $12. Rounding each of her expenses to the nearest tens place, estimate how much money Tasha has left in her account before she goes to the ATM. Do not include the $ in your answer.

Answers

Answer:145

Step-by-step explanation: $19=20 76=80 53=50 23=20 12=10 total = 180 325-180 =145

The volume of a trianglular prism is 54 cubic units. What is the value of x?
3
5
7
9

Answers

Answer:

X is 3 units.

Step-by-step explanation:

Volume of prism is cross sectional area multiplied by length. So 1/2 ×2× x ×2 into 3x, which is equal to 6x^2. So, 6x^2=54. Therefore, x=3.

A researcher used the technique with 9 students and observed that they had a mean of 10.8 hours with a standard deviation of 1.5. A level of significance of 0.05 will be used to determine if the technique performs differently than the traditional method. Assume the population distribution is approximately normal. Find the value of the test statistic. Round your answer to three decimal places.

Answers

Answer:

[tex]t=\frac{10.8-11}{\frac{1.5}{\sqrt{9}}}=-0.4[/tex]    

The degrees of freedom are given by:

[tex]df=n-1=9-1=8[/tex]  

And the p value would be given by:

[tex]p_v =P(t_{(8)}<-0.4)=0.350[/tex]  

Since the p value is higher than the the significance level of 0.05 we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is not significantly different from the traditional methods.

Step-by-step explanation:

Assuming this first part of the problem obtained from the web: "Using traditional methods, it takes 11.0 hours to receive a basic driving license. A new license training method using Computer Aided Instruction (CAI) has been proposed"

Information given

[tex]\bar X=10.8[/tex] represent the mean height for the sample  

[tex]s=1.5[/tex] represent the sample standard deviation

[tex]n=9[/tex] sample size  

[tex]\mu_o =11[/tex] represent the value that we want to test

[tex]\alpha=0.05[/tex] represent the significance level

t would represent the statistic  

[tex]p_v[/tex] represent the p value

Hypothesis to test

We want to check if the true mean for this case is equal to 11 or not, the system of hypothesis would be:  

Null hypothesis:[tex]\mu = 11[/tex]  

Alternative hypothesis:[tex]\mu \neq 11[/tex]  

The statistic would be given by:

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex]  (1)  

Replacing the info given we got:

[tex]t=\frac{10.8-11}{\frac{1.5}{\sqrt{9}}}=-0.4[/tex]    

The degrees of freedom are given by:

[tex]df=n-1=9-1=8[/tex]  

And the p value would be given by:

[tex]p_v =P(t_{(8)}<-0.4)=0.350[/tex]  

Since the p value is higher than the the significance level of 0.05 we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is not significantly different from the traditional methods.

A video game requires at least 4 points to advance. Each solved puzzle is worth two points. Each solved riddle is worth 1 point. If x is the number of solved puzzles and y is the number of solved riddles, which graph represents the overall equation represented by this scenario (all points may not apply to the scenario)? On a coordinate plane, a solid straight line has a negative slope and goes through (0, 2) and (4, 0). Everything below the line is shaded. On a coordinate plane, a solid straight line has a negative slope and goes through (0, 2) and (4, 0). Everything above the line is shaded. On a coordinate plane, a solid straight line has a negative slope and goes through (0, 4) and (2, 0). Everything to the left of the line is shaded. On a coordinate plane, a solid straight line has a negative slope and goes through (0, 4) and (2, 0). Everything to the right of the line is shaded.

Answers

Answer:

Its D The Last Graph

Step-by-step explanation:

it just is my guy

A rectangle is constructed with its base on the​ x-axis and two of its vertices on the parabola yequals25minusxsquared. What are the dimensions of the rectangle with the maximum​ area? What is the​ area?

Answers

Answer:

The answer is "[tex]\bold{\frac{32}{3}}\\[/tex]"

Step-by-step explanation:

The rectangle should also be symmetrical to it because of the symmetry to the y-axis  The pole of the y-axis.  Its lower two vertices are (-x,0). it means that  

and (-x,0), and (x,0). Therefore the base measurement of the rectangle is 2x. The top vertices on the parabola are as follows:  

The calculation of the height of the rectangle also is clearly 16-x^2, (-x,16,-x^2) and (x,16,-x^2).  

The area of the rectangle:

[tex]A(x)=(2x)(16-x^2)\\\\A(x)=32x-2x^3[/tex]

The local extremes of this function are where the first derivative is 0:

[tex]A'(x)=32-6x^2\\\\32-6x^2=0\\\\x= \pm\sqrt{\frac{32}{6}}\\\\x= \pm\frac{4\sqrt{3}}{3}\\\\[/tex]

Simply ignore the negative root because we need a positive length calculation

It wants a maximum, this we want to see if the second derivative's profit at the end is negative.

[tex]A''\frac{4\sqrt{3}}{3} = -12\frac{4\sqrt{3}}{3}<0\\\\2.\frac{4\sqrt{3}}{3}= \frac{8\sqrt{3}}{3}\\\\\vertical \ dimension\\\\16-(\frac{4\sqrt{3}}{3})^2= \frac{32}{3}[/tex]

Subtract -6 4/9-3 2/9-8 2/9

Answers

Answer:

[tex]-\frac{161}{9}=\\or\\-16\frac{8}{9}[/tex]

Step-by-step explanation:

[tex]-6\frac{4}{9}-3\frac{2}{9}-8\frac{2}{9}=\\\\-\frac{58}{9}-\frac{29}{9}-\frac{74}{9}=\\\\-\frac{161}{9}=\\\\-16\frac{8}{9}[/tex]

What is the common difference of the sequence 20, 17, 14, 11, 8.... ?

Answers

Answer:

-3

Step-by-step explanation:

every sequence goes down by -3

Answer:

take away 3. the common difference is 3

Step-by-step explanation:

take away 3

Suppose the proportion X of surface area in a randomly selected quadrat that is covered by a certain plant has a standard beta distribution with α = 4 and β = 3.(a) Compute E(X) and V(X). (Round your answers to four decimal places.)E(X) = Correct: Your answer is correct.V(X) = Correct: Your answer is correct.(b) Compute P(X ≤ 0.5). (Round your answer to four decimal places.)

Answers

Answer:

(a) The value of E (X) is 4/7.

    The value of V (X) is 3/98.

(b) The value of P (X ≤ 0.5) is 0.3438.

Step-by-step explanation:

The random variable X is defined as the proportion of surface area in a randomly selected quadrant that is covered by a certain plant.

The random variable X follows a standard beta distribution with parameters α = 4 and β = 3.

The probability density function of X is as follows:

[tex]f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)} ; \hspace{.3in}0 \le x \le 1;\ \alpha, \beta > 0[/tex]

Here, B (α, β) is:

[tex]B(\alpha,\beta)=\frac{(\alpha-1)!\cdot\ (\beta-1)!}{((\alpha+\beta)-1)!}[/tex]

            [tex]=\frac{(4-1)!\cdot\ (3-1)!}{((4+3)-1)!}\\\\=\frac{6\times 2}{720}\\\\=\frac{1}{60}[/tex]

So, the pdf of X is:

[tex]f(x) = \frac{x^{4-1}(1-x)^{3-1}}{1/60}=60\cdot\ [x^{3}(1-x)^{2}];\ 0\leq x\leq 1[/tex]

(a)

Compute the value of E (X) as follows:

[tex]E (X)=\frac{\alpha }{\alpha +\beta }[/tex]

         [tex]=\frac{4}{4+3}\\\\=\frac{4}{7}[/tex]

The value of E (X) is 4/7.

Compute the value of V (X) as follows:

[tex]V (X)=\frac{\alpha\ \cdot\ \beta}{(\alpha+\beta)^{2}\ \cdot\ (\alpha+\beta+1)}[/tex]

         [tex]=\frac{4\cdot\ 3}{(4+3)^{2}\cdot\ (4+3+1)}\\\\=\frac{12}{49\times 8}\\\\=\frac{3}{98}[/tex]

The value of V (X) is 3/98.

(b)

Compute the value of P (X ≤ 0.5) as follows:

[tex]P(X\leq 0.50) = \int\limits^{0.50}_{0}{60\cdot\ [x^{3}(1-x)^{2}]} \, dx[/tex]

                    [tex]=60\int\limits^{0.50}_{0}{[x^{3}(1+x^{2}-2x)]} \, dx \\\\=60\int\limits^{0.50}_{0}{[x^{3}+x^{5}-2x^{4}]} \, dx \\\\=60\times [\dfrac{x^4}{4}+\dfrac{x^6}{6}-\dfrac{2x^5}{5}]\limits^{0.50}_{0}\\\\=60\times [\dfrac{x^4\left(10x^2-24x+15\right)}{60}]\limits^{0.50}_{0}\\\\=[x^4\left(10x^2-24x+15\right)]\limits^{0.50}_{0}\\\\=0.34375\\\\\approx 0.3438[/tex]

Thus, the value of P (X ≤ 0.5) is 0.3438.

A nationwide survey of seniors by the University of Michigan reveals that almost 18.0% disapprove of daily pot smoking. If 8 seniors are selected at random, what is the probability that at least 2 disapprove of daily pot smoking.

Answers

Answer:

[tex] P(X\geq 2)=1- P(X<2)= 1-[P(X=0) +P(X=1)][/tex]

And using the probability mass function we can find the individual probabilities:

[tex]P(X=0)=(8C0)(0.18)^0 (1-0.18)^{8-0}=0.2044[/tex]

[tex]P(X=1)=(8C1)(0.18)^1 (1-0.18)^{0-1}=0.3590[/tex]

And replacing we got:

[tex] P(X\geq 2)=1 -[0.2044 +0.3590]= 0.4366[/tex]

Then the probability that at least 2 disapprove of daily pot smoking is 0.4366

Step-by-step explanation:

Let X the random variable of interest "number of seniors who disapprove of daily smoking ", on this case we now that:

[tex]X \sim Binom(n=8, p=0.18)[/tex]

The probability mass function for the Binomial distribution is given as:

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]

Where (nCx) means combinatory and it's given by this formula:

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]

And we want to find this probability:

[tex] P(X\geq 2)=1- P(X<2)= 1-[P(X=0) +P(X=1)][/tex]

And using the probability mass function we can find the individual probabilities:

[tex]P(X=0)=(8C0)(0.18)^0 (1-0.18)^{8-0}=0.2044[/tex]

[tex]P(X=1)=(8C1)(0.18)^1 (1-0.18)^{0-1}=0.3590[/tex]

And replacing we got:

[tex] P(X\geq 2)=1 -[0.2044 +0.3590]= 0.4366[/tex]

Then the probability that at least 2 disapprove of daily pot smoking is 0.4366

Other Questions
Can someone please help Suppose that Bob is paid two times his normal hourly rate for each hour worked in excess of 40 hours in a week. Last weekhe earned $420 for 50 hours of work. What is his hourly wage? The sets of numbers 7,24,25 and 9,40,41 are Pythagorean triples. Use what you know about the Pythagorean Theorem and explain or show why they are Pythagorean triples. Be sure to show your work for each set of triples Use the following to answer question 46I . increase the currentII. use a stronger magnetIII. use thicker wireIV. reverse the batteryV. add more coils of wire inside the magnet46. To increase the force with which the wire is pushed when the switch is closed, which ofthe following things could be done?a. I and II onlyb. II, III, and IV onlyC. II and IV onlyd. I, II and V only47. A group of students had built a homemade motor and were in the process of trying totest it. When they hooked it up to their battery they found that the wires in their coil got hot, but the coil would not turn. Of the following solutions, which would be their bestcourse of action to make the motor spin?a. add more wire to the coilb. use a stronger magnetC. use a higher voltage batteryd. plug into an AC source SOMEONE HELP ASAP! IM STUCKKKKKK answer please anybody ??? Group 2 in the penodic table contains the elements beryllium (Be), magnesium (Mg) , calcium (Ca) , strontium (Sf) )barium (Ba)and radium (Ra) What characteristic do these elements share ? What is the measure of angle A'?45637298 How would driving from Boston (near sea level) to summit of Mt. Washington affect the rate of oxygen exchange in your lungs? Explain in 1-2 sentences plz The British Department of Transportation studied to see if people avoid driving on Friday the 13th. They did a traffic count on a Friday and then again on a Friday the 13th at the same two locations ("Friday the 13th," 2013). The data for each location on the two different dates is in table #9.2.6. Estimate the mean difference in traffic count between the 6th and the 13th using a 90% level. Dates 6th 13th 1990, July 139246 138548 1990, July 134012 132908 1991, September 137055 136018 1991, September 133732 131843 1991, December 123552 121641 1991, December 121139 118723 1992, March 128293 125532 1992, March 124631 120249 1992, November 124609 122770 1992, November 117584 117263 Use the fundamental identities to simply the expression. Which of the following statements is most correct? Many large firms operate different divisions in different industries, and this makes it hard to develop a meaningful set of industry benchmarks for these types of firms. Financial ratios should be interpreted with caution because there exist seasonal and accounting differences that can reduce their comparability. Financial ratios should be interpreted with caution because it may be difficult to say with certainty what is a "good" value is neither high nor low. Ratio analysis facilitates comparisons by standardizing numbers. All of the statements above are correct. Select the correct answer from the drop-down menu.Read the excerpt from Voltaire's Candide. Then complete the sentence.The scene set in the inn helps toA build conflict between characters and environmentb show Candide's true personalityC introduce a new mood and atmosphere Merit Consulting Company regularly performs services for its clients on credit but does not offer discount terms. Because the company was concerned about the credit-worthiness of a new client, that client paid $2,500 in cash at the time that the consulting services were performed. This transaction is recorded into Merit's cash receipts journal by entering __________ A. 2,500 in the Cash Dr. column B. 2,500 in the Accounts Receivable Cr. column and 2,500 in the Other Accounts Cr. column C. 2,500 in the Cash Dr. column and 2,500 in the Accounts Receivable Cr. column D. 2,500 in the Cash Dr. column and 2,500 in the Other Accounts Cr. column M is the midpoint of AB. Find the coordinates of B given A(2, 1) and M(4, 3). (Appendix 11.1) Depreciation for Financial Statements and Income Tax Purposes Dinkle Company purchased equipment for $50,000. The equipment has an estimated residual value of $5,000 and an expected useful life of 10 years. Dinkle uses straight-line depreciation for its financial statements. Required: What is the difference between the company's income before taxes reported on its financial statements and the taxable income reported on its tax return in each of the first 2 years of the asset's life if the asset was purchased on January 2, 2016, and its MACRS life is 5 years? Solids X and Y are similar.X has volume of 64 cm3Y has volume of 729 cm3The surface area of X is 208 cm2Work out the surface area of Y. 40. Find the perimeter of the figure below. in ancient greece the olympic games was? I Need Help Please I'm Out Of Time. :(