Answer:
The magnitude of the magnetic field will act in a direction towards me.
Explanation:
When a charged particle enters a magnetic field, it is deflected. The direction of travel of the particle is deflected, but the kinetic energy of the particle is not affected. The force experienced by a charged particle as it enters a magnetic field that acts perpendicular to the path of the velocity of the particle, will produce a force that is perpendicular to both the direction of travel of the particle and the direction of the magnetic field. In this case, the proton moves in the y-direction, the magnetic field is in the x-direction, therefore the force experienced by the particle will be towards me.
A circular coil of wire of 200 turns and diameter 2.0 cm carries a current of 4.0 A. It is placed in a magnetic field of 0.70 T with the plane of the coil making an angle of 30° with the magnetic field. What is the magnetic torque on the coil?
Answer:
0.087976 Nm
Explanation:
The magnetic torque (τ) on a current-carrying loop in a magnetic field is given by;
τ = NIAB sinθ --------- (i)
Where;
N = number of turns of the loop
I = current in the loop
A = area of each of the turns
B = magnetic field
θ = angle the loop makes with the magnetic field
From the question;
N = 200
I = 4.0A
B = 0.70T
θ = 30°
A = π d² / 4 [d = diameter of the coil = 2.0cm = 0.02m]
A = π x 0.02² / 4 = 0.0003142m² [taking π = 3.142]
Substitute these values into equation (i) as follows;
τ = 200 x 4.0 x 0.0003142 x 0.70 sin30°
τ = 200 x 4.0 x 0.0003142 x 0.70 x 0.5
τ = 200 x 4.0 x 0.0003142 x 0.70
τ = 0.087976 Nm
Therefore, the torque on the coil is 0.087976 Nm
A crate of mass 9.2 kg is pulled up a rough incline with an initial speed of 1.58 m/s. The pulling force is 110 N parallel to the incline, which makes an angle of 20.2° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.10 m.A) How much work is done by the gravitational force on thecrate?
B) Determine the increase in internal energy of the crate-inclinesystem owing to friction.
C) How much work is done by the 100N force on the crate?
D) What is the change in kinetic energy of the crate?
E) What is the speed of the crate after being pulled 5.00m?
Given that,
Mass = 9.2 kg
Force = 110 N
Angle = 20.2°
Distance = 5.10 m
Speed = 1.58 m/s
(A). We need to calculate the work done by the gravitational force
Using formula of work done
[tex]W_{g}=mgd\sin\theta[/tex]
Where, w = work
m = mass
g = acceleration due to gravity
d = distance
Put the value into the formula
[tex]W_{g}=9.2\times(-9.8)\times5.10\sin20.2[/tex]
[tex]W_{g}=-158.8\ J[/tex]
(B). We need to calculate the increase in internal energy of the crate-incline system owing to friction
Using formula of potential energy
[tex]\Delta U=-W[/tex]
Put the value into the formula
[tex]\Delta U=-(-158.8)\ J[/tex]
[tex]\Delta U=158.8\ J[/tex]
(C). We need to calculate the work done by 100 N force on the crate
Using formula of work done
[tex]W=F\times d[/tex]
Put the value into the formula
[tex]W=100\times5.10[/tex]
[tex]W=510\ J[/tex]
We need to calculate the work done by frictional force
Using formula of work done
[tex]W=-f\times d[/tex]
[tex]W=-\mu mg\cos\theta\times d[/tex]
Put the value into the formula
[tex]W=-0.4\times9.2\times9.8\cos20.2\times5.10[/tex]
[tex]W=-172.5\ J[/tex]
We need to calculate the change in kinetic energy of the crate
Using formula for change in kinetic energy
[tex]\Delta k=W_{g}+W_{f}+W_{F}[/tex]
Put the value into the formula
[tex]\Delta k=-158.8-172.5+510[/tex]
[tex]\Delta k=178.7\ J[/tex]
(E). We need to calculate the speed of the crate after being pulled 5.00m
Using formula of change in kinetic energy
[tex]\Delta k=\dfrac{1}{2}m(v_{2}^2-v_{1}^{2})[/tex]
[tex]v_{2}^2=\dfrac{2\times\Delta k}{m}+v_{1}^2[/tex]
Put the value into the formula
[tex]v_{2}^2=\dfrac{2\times178.7}{9.2}+1.58[/tex]
[tex]v_{2}=\sqrt{\dfrac{2\times178.7}{9.2}+1.58}[/tex]
[tex]v_{2}=6.35\ m/s[/tex]
Hence, (A). The work done by the gravitational force is -158.8 J.
(B). The increase in internal energy of the crate-incline system owing to friction is 158.8 J.
(C). The work done by 100 N force on the crate is 510 J.
(D). The change in kinetic energy of the crate is 178.7 J.
(E). The speed of the crate after being pulled 5.00m is 6.35 m/s
Doubling the potential across a given capacitor causes the energy stored in that capacitor to reduce to:_______
a. one-half.
b. double.
c. reduce to one-fourth.
d. quadruple.
Answer:
D. quadrupleExplanation:
The stored energy varies with the square of the electric charge stored in the capacitor. If you double the charge, the stored energy in the capacitor will quadruple or increase by a factor of 4.
Doubling the potential across a given capacitor causes the energy stored in that capacitor to reduce to :
D. Quadruple
"Energy"Doubling the potential across a given capacitor causes the energy stored in that capacitor to reduce to Quadruple.
The stored energy shifts with the square of the electric charge put away within the capacitor.
In case you twofold the charge, the put away vitality within the capacitor will fourfold or increment by a calculate of 4.
Thus, the correct answer is D.
Learn more about "energy":
https://brainly.com/question/1932868?referrer=searchResults
A goalie kicks a soccer ball straight vertically into the air. It takes 5.00 s for the ball to reach its maximum height and come back down to the level of the crossbar. Assume the crossbar of a soccer goal is 2.44 m above the ground. (a) How fast was the ball originally moving when it was kicked. (b) How much longer would it take the ball to reach the ground?
Answer:
(a) vo = 24.98m/s
(b) t = 5.09 s
Explanation:
(a) In order to calculate the the initial speed of the ball, you use the following formula:
[tex]y=y_o+v_ot-\frac{1}{2}gt^2[/tex] (1)
y: vertical position of the ball = 2.44m
yo: initial vertical position = 0m
vo: initial speed of the ball = ?
g: gravitational acceleration = 9.8m/s²
t: time on which the ball is at 2.44m above the ground = 5.00s
You solve the equation (1) for vo and replace the values of the other parameters:
[tex]v_o=\frac{y-y_o+1/2gt^2}{t}[/tex]
[tex]v_o=\frac{2.44m-0.00m+1/2(9.8m/s^2)(5.00s)^2}{5.00s}\\\\v_o=24.98\frac{m}{s}[/tex]
The initial speed of the ball is 24.98m/s
(b) To find the time the ball takes to arrive to the ground you use the equation (1) for y = 0m (ground) and solve for t:
[tex]0=24.98t-\frac{1}{2}(9.8)t^2\\\\t=5.09s[/tex]
The time that the ball takes to arrive to the ground is 5.09s
We have that for the Question, it can be said that the speed of ball and How much longer would it take the ball to reach the ground is
u=25.13m/sX=0.095sec
From the question we are told
A goalie kicks a soccer ball straight vertically into the air. It takes 5.00 s for the ball to reach its maximum height and come back down to the level of the crossbar. Assume the crossbar of a soccer goal is 2.44 m above the ground.
(a) How fast was the ball originally moving when it was kicked.
(b) How much longer would it take the ball to reach the ground?
a)
Generally the Newton equation for the Motion is mathematically given as
[tex]S=ut+1/2at^2\\\\Therefore\\\\2.44=ut+1/2(9.8)(5)^2\\\\u=25.13m/s\\\\[/tex]
b)
Generally the Newton equation for the Motion is mathematically given as
[tex]S=ut+1/2at^2\\\\Therefore\\\\t=\frac{-24}{a}\\\\t=\frac{-2*25.013}{9.81}\\\\t=5.095sec\\\\[/tex]
Therefore
[tex]X=5.095-5[/tex]
X=0.095sec
For more information on this visit
https://brainly.com/question/23379286
A particle with charge q is to be brought from far away to a point near an electric dipole. Net nonzero work is done if the final position of the particle is on:__________
A) any point on the line through the charges of the dipole, excluding the midpoint between the two charges.
B) any point on a line that is a perpendicular bisector to the line that separates the two charges.
C) a line that makes an angle of 30 ∘ with the dipole moment.
D) a line that makes an angle of 45 ∘with the dipole moment.
Answer:
Net nonzero work is done if the final position of the particle is on options A, C and D
Explanation:
non zero work is done if following will be the final position of the charges :
A) Any point on the line through the charges of the dipole , excluding the midpoint between the two charges.
C) A line that makes an angle 30° with the dipole moment.
D) A line that makes an angle 45° with the dipole moment.
The ball tends to come back to the centerline of the flow when it is pushed by an external disturbance. Explain this phenomenon using the curvature of streamlines.
Answer is given below
Explanation:
given data
we will consider here
Ping-Pong ball weighs = 3.1 g
diameter = 4.2 cm
solution
Whenever the ball is pushed, the length of the airflow along the outer edge increases and it accelerates. According to Bernoulli's equation. As the speed increases, the pressure decreases, so the pressure at the outer end is reduced. As the pressure at the outer edge is low, the extra air jet pushes it back to the center line.
Given a double slit apparatus with slit distance 1 mm, what is the theoretical maximum number of bright spots that I would see when I shine light with a wavelength 400 nm on the slits
Answer:
The maximum number of bright spot is [tex]n_{max} =5001[/tex]
Explanation:
From the question we are told that
The slit distance is [tex]d = 1 \ mm = 0.001 \ m[/tex]
The wavelength is [tex]\lambda = 400 \ nm = 400*10^{-9 } \ m[/tex]
Generally the condition for interference is
[tex]n * \lambda = d * sin \theta[/tex]
Where n is the number of fringe(bright spots) for the number of bright spots to be maximum [tex]\theta = 90[/tex]
=> [tex]sin( 90 )= 1[/tex]
So
[tex]n = \frac{d }{\lambda }[/tex]
substituting values
[tex]n = \frac{ 1 *10^{-3} }{ 400 *10^{-9} }[/tex]
[tex]n = 2500[/tex]
given there are two sides when it comes to the double slit apparatus which implies that the fringe would appear on two sides so the maximum number of bright spots is mathematically evaluated as
[tex]n_{max} = 2 * n + 1[/tex]
The 1 here represented the central bright spot
So
[tex]n_{max} = 2 * 2500 + 1[/tex]
[tex]n_{max} =5001[/tex]
When a certain capacitor carries charge of magnitude Q on each of its plates, it stores energy Ep. In order to store twice as much energy, how much charge should it have on its plates
2Q
Explanation:
When a capacitor carries some certain charge, the energy stored in the capacitor is its electric potential energy E. The magnitude of this potential energy is given by;
E = [tex]\frac{1}{2}qV[/tex] ------------(i)
Where;
q = charge between the plates of the capacitor
V = potential difference between the plates of the capacitor
From the question;
q = Q
E = Ep
Therefore, equation (i) becomes;
Ep = [tex]\frac{1}{2} QV[/tex] ----------------(ii)
Make V subject of the formula in equation (ii)
V = [tex]\frac{2E_{p}}{Q}[/tex]
Now, when the energy is doubled i.e E = 2Ep, equation (i) becomes;
2Ep = [tex]\frac{1}{2}qV[/tex]
Substitute the value of V into the equation above;
2Ep = [tex]\frac{1}{2}[/tex]([tex]q *\frac{2E_{p}}{Q}[/tex])
Solve for q;
[tex]2E_{p}[/tex] = [tex]\frac{2qE_p}{2Q}[/tex]
[tex]2E_{p}[/tex] = [tex]\frac{qE_p}{Q}[/tex]
[tex]q = 2Q[/tex]
Therefore, the charge, when the energy stored is twice the originally stored energy, is twice the original charge. i.e 2Q
Two small identical speakers are connected (in phase) to the same source. The speakers are 3 m apart and at ear level. An observer stands at X, 4 m in front of one speaker. If the amplitudes are not changed, the sound he hears will be least intense if the wavelength is:
a. 1 m
b. 2 m
c. 3 m
d. 4 m
e. 5 m
Answer:
b. 2 m
Explanation:
Given that:
the identical speakers are connected in phases ;
Let assume ; we have speaker A and speaker B which are = 3 meter apart
An observer stands at X = 4m in front of one speaker.
If the amplitudes are not changed, the sound he hears will be least intense if the wavelength is:
From above; the distance between speaker A and speaker B can be expressed as:
[tex]\sqrt{3^2 + 4^2 } \\ \\ = \sqrt{9+16 } \\ \\ = \sqrt{25} \\ \\ = 5 \ m[/tex]
The path length difference will now be:
= 5 m - 4 m
= 1 m
Since , we are to determine the least intense sound; the destructive interference for that path length will be half the wavelength; which is
= [tex]\dfrac{1}{2}*4 \ m[/tex]
= 2 m
The sound will be heard with least intensity if the wavelength is 2 m. Hence, option (b) is correct.
Given data:
The distance between the speakers is, d = 3 m.
The distance between the observer and speaker is, s = 4 m.
The amplitude of sound wave is the vertical distance from the base to peak of wave. Since sound amplitudes are not changed in the given problem. Then the distance between speaker A and speaker B can be expressed as:
[tex]=\sqrt{3^{2}+4^{2}}\\\\=\sqrt{25}\\\\=5\;\rm m[/tex]
And the path length difference is,
= 5 m - 4 m
= 1 m
Since , we are to determine the least intense sound; the destructive
interference for that path length will be half the wavelength; which is
[tex]=\dfrac{1}{2} \times s\\\\=\dfrac{1}{2} \times 4[/tex]
= 2 m
Thus, we can conclude that the sound will be heard with least intensity if the wavelength is 2 m.
Learn more about the interference here:
https://brainly.com/question/16098226
Consider the Earth and the Moon as a two-particle system.
Find an expression for the gravitational field g of this two-particle system as a function of the distance r from the center of the Earth. (Do not worry about points inside either the Earth or the Moon. Assume the Moon lies on the +r-axis. Give the scalar component of the gravitational field. Do not substitute numerical values; use variables only. Use the following as necessary: G, Mm, Me, r, and d for the distance from the center of Earth to the center of the Moon.)"
sorry but I don't understand
Two cannonballs are dropped from a second-floor physics lab at height h above the ground. Ball B has four times the mass of ball A. When the balls pass the bottom of a first-floor window at height above the ground, the relation between their kinetic energies, KA and KB, is
Answer:
1:4
Explanation:
The formula for calculating kinetic energy is:
[tex]KE=\dfrac{1}{2}mv^2[/tex]
If the mass is multiplied by 4, then, the kinetic energy must be increased by 4 as well. Since they will be travelling at the same speed when they are at the same point, the relation between KA and KB must be 1:4 or 1/4. Hope this helps!
The relation between the kinetic energies of the freely falling balls A and B is obtained as [tex]\frac{KE_{A}}{KE_{B}} =\frac{1}{4}[/tex].
Kinetic EnergyThe kinetic energy of an object depends on the mass and velocity with which it moves.
While under free-fall, the mass of an object does not affect the velocity with which it falls.
So, the velocities of both the balls are the same.
Let the mass of ball A is 'm'
So, the mass of ball B is '4m'
The kinetic energy of ball A is given by;
[tex]KE_{A}=\frac{1}{2} mv^2[/tex]
The kinetic energy of ball B is given by;
[tex]KE_{B}=\frac{1}{2} 4mv^2 = 2mv^2[/tex]
Therefore, the ratio of kinetic energies of A and B is,
[tex]\frac{KE_{A}}{KE_{B}} =\frac{1}{4}[/tex]
Learn more about kinetic energy here:
https://brainly.com/question/11580018
How much work will it take to lift a 2-kg pair of hiking boots 2 meters off the
ground and onto a shelf in your closet?
O A. 2.45 J
OB. 4J
C. 39.2 J
D. 20 J
Answer:
Option C - 39.2 J
Explanation:
We are given that;
Mass; m = 2 kg.
Distance moved off the floor;d = 10 m.
Acceleration due to gravity;g = 9.8 m/s².
We want to find the work done.
Now, the Formula for work done is given by;
Work = Force × displacement.
In this case, it's force of gravity to lift up the boots, thus;
Formula for this force is;
Force = mass x acceleration due to gravity
Force = 2 × 9.8 = 19.2 N
∴ Work done = 19.6 × 2
Work done = 39.2 J.
Hence, the Work done to life the boot of 2 kg to a height of 2 m is 39.2 J.
Answer:39.2J
Explanation: I just answered this question and this was the correct answer. 4J is the wrong answer.
5) What is the weight of a body in earth. if its weight is 5Newton
in moon?
Answer:
8.167
Explanation:
1) A net force of 75.5 N is applied horizontally to slide a 225 kg crate across the floor.
a. Compute the acceleration of the crate?
Answer:
The acceleration of the crate is [tex]0.3356\,\frac{m}{s^2}[/tex]
Explanation:
Recall the formula that relates force,mass and acceleration from newton's second law;
[tex]F=m\,a[/tex]
Then in our case, we know the force applied and we know the mass of the crate, so we can solve for the acceleration as shown below:
[tex]F=m\,a\\75.5\,N=225\,\,kg\,\,a\\a=\frac{75.5}{225} \,\frac{m}{s^2} \\a=0.3356\,\,\frac{m}{s^2}[/tex]
A charging bull elephant with a mass of 5500 kg comes directly toward you with a speed of 4.70 m/s . You toss a 0.160-kg rubber ball at the elephant with a speed of 7.50 m/s(a) When the ball bounces back toward you, what is its speed? (b) How do you account for the fact that the ball's kinetic energy has increased?
Answer:
v2 = - 16.899 m/s
velocity of ball increases so that the kinetic energy of the ball increases.
Explanation:
given data
mass of elephant, m1 = 5500 kg
mass of ball, m2 = 0.160 kg
initial velocity of elephant, u1 = - 4.70 m/s
initial velocity of ball, u2 = 7.50 m/s
solution
we consider here final velocity of ball = v2
so collision formula is express as for v2
[tex]v_{2}=\left ( \frac{2m_{1}}{m_{1}+m_{2}} \right )u_{1}+\left ( \frac{m_{2}-m_{1}}{m_{1}+m_{2}} \right )u_{2}[/tex] .................1
put here value and we get
[tex]v_{2}=\left ( \frac{2\times 5500}{5500+0.160} \right )(-4.70)+\left ( \frac{0.16-5500}{5500+0.160} \right )(7.50)[/tex]
solve it we get
v2 = - 16.899 m/s
here negative sign shows that the ball bounces back towards you
and
here we know the velocity of ball increases so that the kinetic energy of the ball increases.
and due to this effect, it will gain in energy is due to the energy from the elephant mass
The average density of the body of a fish is 1080kg/m^3 . To keep from sinking, the fish increases its volume by inflating an internal air bladder, known as a swim bladder, with air.
By what percent must the fish increase its volume to be neutrally buoyant in fresh water? Use 1.28kg/m^3 for the density of air at 20 degrees Celsius. (change in V/V)
Answer:
Increase of volume (F) = 8.01%
Explanation:
Given:
Density of fish = 1,080 kg/m³
Density of water = 1,000 kg/m³
density of air = 1.28 kg/m³
Find:
Increase of volume (F)
Computation:
1,080 kg/m³ + [F × 1.28 kg/m³ ] = (1+F) × 1,000 kg/m³
1,080 + 1.28 F =1,000 F + 1,000
80 = 998.72 F
F = 0.0801 (Approx)
F = 8.01% (Approx)
at the temperature at which we live, earth's core is solid or liquid?
Explanation:
The Earth has a solid inner core
Use Kepler's third law to determine how many days it takes a spacecraft to travel in an elliptical orbit from a point 6 590 km from the Earth's center to the Moon, 385 000 km from the Earth's center.
Answer:
1.363×10^15 seconds
Explanation:
The spaceship travels an elliptical orbit from a point of 6590km from the earth center to the moon and 38500km from the earth center.
To calculate the time taken from Kepler's third Law :
T^2 = ( 4π^2/GMe ) r^3
Where Me is the mass of the earth
r is the average distance travel
G is the universal gravitational constant. = 6.67×10-11 m3 kg-1 s-2
π = 3.14
Me = mass of earth = 5.972×10^24kg
r =( r minimum + r maximum)/2 ......1
rmin = 6590km
rmax = 385000km
From equation 1
r = (6590+385000)/2
r = 391590/2
r = 195795km
From T^2 = ( 4π^2/GMe ) r^3
T^2 = (4 × 3.14^2/ 6.67×10-11 × 5.972×10^24) × 195795^3
= ( 4×9.8596/ 3.983×10^14 ) × 7.5059×10^15
= 39.4384/ 3.983×10^14 ) × 7.5059×10^15
= (9.901×10^14) × 7.5059×10^15
T^2 = 7.4321× 10^30
T =√7.4321× 10^30
T = 2.726×10^15 seconds
The time for one way trip from Earth to the moon is :
∆T = T/2
= 2.726×10^15 /2
= 1.363×10^15 secs
An inquisitive physics student and mountain climber climbs a 47.0-m-high cliff that overhangs a calm pool of water. He throws two stones vertically downward, 1.00 s apart, and observes that they cause a single splash. The first stone has an initial speed of 2.12 m/s.
(a) How long after release of the first stone do the two stones hit the water?
(b) What initial velocity must the second stone have if the two stones are to hit the water simultaneously?
magnitude =
(c) What is the speed of each stone at the instant the two stones hit the water?
first stone =
second stone =
Answer:
a) Only the first root is physically reasonable. Therefore, both stones hit the water in 2.866 seconds, b) The initial velocity of the second stone is -16.038 meters per second, c) The speed of the first stone is 30.227 meters per second and the speed of the second stone is 34.338 meters per second.
Explanation:
a) The time after the release after the release of the first stone can be get from the following kinematic formula for the first rock:
[tex]y_{1} = y_{1,o} + v_{1,o} \cdot t +\frac{1}{2}\cdot g \cdot t^{2}[/tex]
Where:
[tex]y_{1}[/tex] - Final height of the first stone, measured in meters.
[tex]y_{1,o}[/tex] - Initial height of the first stone, measured in meters.
[tex]v_{1,o}[/tex] - Initial speed of the first stone, measured in meters per second.
[tex]t[/tex] - Time, measured in seconds.
[tex]g[/tex] - Gravity constant, measured in meters per square second.
Given that [tex]y_{1,o} = 47\,m[/tex], [tex]y_{1} = 0\,m[/tex], [tex]v_{1,o} = -2.12\,\frac{m}{s}[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], the following second-order polynomial is built:
[tex]-4.984\cdot t^{2} - 2.12\cdot t + 47 = 0[/tex]
Roots of the polynomial are, respectively:
[tex]t_{1} \approx 2.866\,s[/tex] and [tex]t_{2}\approx -3.291\,s[/tex]
Only the first root is physically reasonable. Therefore, both stones hit the water in 2.866 seconds.
b) As the second stone is thrown a second later than first one, its height is represented by the following kinematic expression:
[tex]y_{2} = y_{2,o} + v_{2,o}\cdot (t-t_{o}) + \frac{1}{2}\cdot g \cdot (t-t_{o})^{2}[/tex]
[tex]y_{2}[/tex] - Final height of the second stone, measured in meters.
[tex]y_{2,o}[/tex] - Initial height of the second stone, measured in meters.
[tex]v_{2,o}[/tex] - Initial speed of the second stone, measured in meters per second.
[tex]t[/tex] - Time, measured in seconds.
[tex]t_{o}[/tex] - Initial absolute time, measured in seconds.
[tex]g[/tex] - Gravity constant, measured in meters per square second.
Given that [tex]y_{2,o} = 47\,m[/tex], [tex]y_{2} = 0\,m[/tex], [tex]t_{o} = 1\,s[/tex], [tex]t = 2.866\,s[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], the following expression is constructed and the initial speed of the second stone is:
[tex]1.866\cdot v_{2,o}+29.926 = 0[/tex]
[tex]v_{2,o} = -16.038\,\frac{m}{s}[/tex]
The initial velocity of the second stone is -16.038 meters per second.
c) The final speed of each stone is determined by the following expressions:
First stone
[tex]v_{1} = v_{1,o} + g \cdot t[/tex]
Second stone
[tex]v_{2} = v_{2,o} + g\cdot (t-t_{o})[/tex]
Where:
[tex]v_{1,o}, v_{1}[/tex] - Initial and final velocities of the first stone, measured in meters per second.
[tex]v_{2,o}, v_{2}[/tex] - Initial and final velocities of the second stone, measured in meters per second.
If [tex]v_{1,o} = -2.12\,\frac{m}{s}[/tex] and [tex]v_{2,o} = -16.038\,\frac{m}{s}[/tex], the final speeds of both stones are:
First stone
[tex]v_{1} = -2.12\,\frac{m}{s} + \left(-9.807\,\frac{m}{s^{2}} \right)\cdot (2.866\,s)[/tex]
[tex]v_{1} = -30.227\,\frac{m}{s}[/tex]
Second stone
[tex]v_{2} = -16.038\,\frac{m}{s} + \left(-9.807\,\frac{m}{s^{2}} \right) \cdot (2.866\,s-1\,s)[/tex]
[tex]v_{2} = -34.338\,\frac{m}{s}[/tex]
The speed of the first stone is 30.227 meters per second and the speed of the second stone is 34.338 meters per second.
A 2.5-kg object falls vertically downward in a viscous medium at a constant speed of 2.5 m/s. How much work is done by the force the viscous medium exerts on the object as it falls 80 cm?
Answer:
The workdone is [tex]W_v = - 20 \ J[/tex]
Explanation:
From the question we are told that
The mass of the object is [tex]m = 2.5 \ kg[/tex]
The speed of fall is [tex]v = 2.5 \ m/s[/tex]
The depth of fall is [tex]d = 80\ cm = 0.8 \ m[/tex]
Generally according to the work energy theorem
[tex]W = \frac{1}{2} mv_2^2 - \frac{1}{2} mv_1^2[/tex]
Now here given the that the velocity is constant i.e [tex]v_1 = v_2 = v[/tex] then
We have that
[tex]W = \frac{1}{2} mv^2 - \frac{1}{2} mv^2 = 0 \ J[/tex]
So in terms of workdone by the potential energy of the object and that of the viscous liquid we have
[tex]W = W_v - W_p[/tex]
Where [tex]W_v[/tex] is workdone by viscous liquid
[tex]W_p[/tex] is the workdone by the object which is mathematically represented as
[tex]W_p = mgd[/tex]
So
[tex]0 = W_v + mgd[/tex]
=> [tex]W_v = - m * g * d[/tex]
substituting values
[tex]W_v = - (2.5 * 9.8 * 0.8)[/tex]
[tex]W_v = - 20 \ J[/tex]
How do I find an apparent weight in N for a metal connected to a string submerged in water if a scale shows the mass 29.52 g when it is submerged ? Also how do I measure its density
The Tension of the string is going to be less when submerged in water by a value called the buoyancy force, so below in the attached file is explanation on how to calculate the apparent weight and density of the submerged object
Water is boiled at 1 atm pressure in a 20-cm-internal diameter polished copper pan on an electric range. If it is observed that the water level in the pan drops by 8.00 cm in 15 minutes, determine the inner surface temperature of the pan.
Answer:
11.3298W
Explanation:
The rate of heat transfer is determined from the enthalpy of vaporization at the give pressure obtained and the mass flow rate. The mass flow rate is determined from the volume of the boiled water, the given time interval and the specific volume of the saturated liquid.
Given that
1atm as the atmospheric pressure
Internal diameter = 20cm = 0.2m
Time = 15mins = (15×60)secs
Latent heat of vaporization (hevap) = 2256.6
Q = mh(evap)
= m/∆t . hevap
= V/αliq∆t ×h(evap)
D^2π∆h/4αliq ∆t × hevap
= 0.2^2 ×π×0.8×2256.5/4×0.001043×15×60
=0.04×3.142×0.08×2256.6/2.00256
= 22.68876/2.00256
Q = 11.3298W
A cowboy fires a silver bullet with a muzzle speed of 200 m/s into the pine wall of a saloon. Assume all the internal energy generated by the impact remains with the bullet. What is the temperature change of the bullet?
Explanation:
KE = q
½ mv² = mCΔT
ΔT = v² / (2C)
ΔT = (200 m/s)² / (2 × 236 J/kg/°C)
ΔT = 84.7°C
This question involves the concepts of the law of conservation of energy.
The temperature change of the bullet is "84.38°C".
What is the Law of Conservation of Energy?According to the law of conservation of energy, total energy of the system must remain constant. Therefore, in this situation.
[tex]Kinetic\ energy\ of\ bullet\ before\ impact=heat\ absorbed\ in\ bullet\\\\\frac{1}{2}mv^2=mC\Delta T\\\\\Delta T = \frac{v^2}{2C}[/tex]
where,
ΔT = change in temperature of the bullet = ?C = specific heat capacity of silver = 237 J/kg°Cv = speed of bullet = 200 m/sTherefore,
[tex]\Delta T = \frac{(200\ m/s)^2}{2(237\ J/kg.^oC)}[/tex]
ΔT = 84.38°C
Learn more about the law of conservation of energy here:
https://brainly.com/question/20971995
#SPJ2
Two people play tug of war. The 100-kg person on the left pulls with 1,000 N, and the 70-kg person on the right pulls with 830 N. Assume that neither person releases their grip on the rope with either hand at any time, assume that the rope is always taut, and assume that the rope does not stretch. What is the magnitude of the tension in the rope in Newtons
Answer:
The tension on the rope is T = 900 N
Explanation:
From the question we are told that
The mass of the person on the left is [tex]m_l = 100 \ kg[/tex]
The force of the person on the left is [tex]F_l = 1000 \ N[/tex]
The mass of the person on the right is [tex]m_r = 70 \ kg[/tex]
The force of the person on the right is [tex]F_r = 830 \ N[/tex]
Generally the net force is mathematically represented as
[tex]F_{Net} = F_l - F_r[/tex]
substituting values
[tex]F_{Net} = 1000-830[/tex]
[tex]F_{Net} = 170 \ N[/tex]
Now the acceleration net acceleration of the rope is mathematically evaluated as
[tex]a = \frac{F_{net}}{m_I + m_r }[/tex]
substituting values
[tex]a = \frac{170}{100 + 70 }[/tex]
[tex]a = 1 \ m/s ^2[/tex]
The force [tex]m_i * a[/tex]) of the person on the left that caused the rope to accelerate by a is mathematically represented as
[tex]m_l * a = F_r -T[/tex]
Where T is the tension on the rope
substituting values
[tex]100 * 1 = 1000 - T[/tex]
=> T = 900 N
The electric field must be zero inside a conductor in electrostatic equilibrium, but not inside an insulator. It turns out that we can still apply Gauss's law to a Gaussian surface that is entirely within an insulator by replacing the right-hand side of Gauss's law, Qin/eo, with Qin/e, where ε is the permittivity of the material. (Technically, Eo is called the vacuum permittivity.) Suppose that a 70 nC point charge is surrounded by a thin, 32-cm-diameter spherical rubber shell and that the electric field strength inside the rubber shell is 2500 N/C.
What is the permittivity of rubber?
Answer:
The permittivity of rubber is [tex]\epsilon = 8.703 *10^{-11}[/tex]
Explanation:
From the question we are told that
The magnitude of the point charge is [tex]q_1 = 70 \ nC = 70 *10^{-9} \ C[/tex]
The diameter of the rubber shell is [tex]d = 32 \ cm = 0.32 \ m[/tex]
The Electric field inside the rubber shell is [tex]E = 2500 \ N/ C[/tex]
The radius of the rubber is mathematically evaluated as
[tex]r = \frac{d}{2} = \frac{0.32}{2} = 0.16 \ m[/tex]
Generally the electric field for a point is in an insulator(rubber) is mathematically represented as
[tex]E = \frac{Q}{ \epsilon } * \frac{1}{4 * \pi r^2}[/tex]
Where [tex]\epsilon[/tex] is the permittivity of rubber
=> [tex]E * \epsilon * 4 * \pi * r^2 = Q[/tex]
=> [tex]\epsilon = \frac{Q}{E * 4 * \pi * r^2}[/tex]
substituting values
[tex]\epsilon = \frac{70 *10^{-9}}{2500 * 4 * 3.142 * (0.16)^2}[/tex]
[tex]\epsilon = 8.703 *10^{-11}[/tex]
A car moving at a speed of 25 m/s enters a curve that traces a circular quarter turn of radius 129 m. The driver gently applies the brakes, slowing the car with a constant tangential acceleration of magnitude 1.2 m/s2.a) Just before emerging from the turn, what is the magnitudeof the car's acceleration?
b) At that same moment, what is the angle q between the velocity vector and theacceleration vector?
I am having trouble because this problem seems to have bothradial and tangential accleration. I tried finding the velocityusing V^2/R, but then that didnt take into account thedeceleration. Any help would be great.
Answer:
8.7 m/s^2
82.15°
Explanation:
Given:-
- The initial speed of the car, vi = 25 m/s
- The radius of track, r = 129 m
- Car makes a circular " quarter turn "
- The constant tangential acceleration, at = 1.2 m/s^2
Solution:-
- We will solve the problem using rotational kinematics. Determine the initial angular velocity of car ( wi ) as follows:
[tex]w_i = \frac{v_i}{r} \\\\w_i = \frac{25}{129}\\\\w_i = 0.19379 \frac{rad}{s}[/tex]
- Now use the constant tangential acceleration ( at ) and determine the constant angular acceleration ( α ) for the rotational motion as follows:
at = r*α
α = ( 1.2 / 129 )
α = 0.00930 rad/s^2
- We know that the angular displacement from the initial entry to the exit of the turn is quarter of a turn. The angular displacement would be ( θ = π/2 ).
- Now we will use the third rotational kinematic equation of motion to determine the angular velocity at the exit of the turn (wf) as follows:
[tex]w_f^2 = w_i^2 + 2\alpha*theta\\\\w_f = \sqrt{0.19379^2 + 0.00930\pi } \\\\w_f = 0.25840 \frac{rad}{s}[/tex]
- We will use the evaluated final velocity ( wf ) and determine the corresponding velocity ( vf ) as follows:
[tex]v_f = r*w_f\\\\v_f = 129*0.2584\\\\v_f = 33.33380 \frac{x}{y}[/tex]
- Now use the formulation to determine the centripetal acceleration ( ac ) at this point as follows:
[tex]a_c = \frac{v_f^2}{r} \\\\a_c = \frac{33.3338^2}{129} \\\\a_c = 8.6135 \frac{m}{s^2}[/tex]
- To determine the magnitude of acceleration we will use find the resultant of the constant tangential acceleration ( at ) and the calculated centripetal acceleration at the exit of turn ( ac ) as follows:
[tex]|a| = \sqrt{a^2_t + a_c^2} \\\\|a| = \sqrt{1.2^2 + 8.6135^2} \\\\|a| = 8.7 \frac{m}{s^2}[/tex]
- To determine the angle between the velocity vector and the acceleration vector. We need to recall that the velocity vector only has one component and always tangential to the curved path. Hence, the velocity vector is parallel to the tangential acceleration vector ( at ). We can use the tangential acceleration ( at ) component of acceleration ( a ) and the centripetal acceleration ( ac ) component of the acceleration and apply trigonometric ratio as follows:
[tex]q = arctan \frac{a_c}{a_t} = arctan \frac{8.7}{1.2} \\\\q = 82.15 ^.[/tex]
Answer: The angle ( q ) between acceleration vector ( a ) and the velocity vector ( v ) at the exit of the turn is 82.15° .
Charge of uniform surface density (0.20 nC/m2) is distributed over the entire xy plane. Determine the magnitude of the electric field at any point having z
The question is not complete, the value of z is not given.
Assuming the value of z = 4.0m
Answer:
the magnitude of the electric field at any point having z(4.0 m) =
E = 5.65 N/C
Explanation:
given
σ(surface density) = 0.20 nC/m² = 0.20 × 10⁻⁹C/m²
z = 4.0 m
Recall
E =F/q (coulumb's law)
E = kQ/r²
σ = Q/A
A = 4πr²
∴ The electric field at point z =
E = σ/zε₀
E = 0.20 × 10⁻⁹C/m²/(4 × 8.85 × 10⁻¹²C²/N.m²)
E = 5.65 N/C
Calculate the angular momentum of a solid uniform sphere with a radius of 0.150 m and a mass of 13.0 kg if it is rotating at 5.70 rad/s about an axis through its center.
Answer:
The angular momentum of the solid sphere is 0.667 kgm²/s
Explanation:
Given;
radius of the solid sphere, r = 0.15 m
mass of the sphere, m = 13 kg
angular speed of the sphere, ω = 5.70 rad/s
The angular momentum of the solid sphere is given;
L = Iω
Where;
I is the moment of inertia of the solid sphere
ω is the angular speed of the solid sphere
The moment of inertia of solid sphere is given by;
I = ²/₅mr²
I = ²/₅ x (13 x 0.15²)
I = 0.117 kg.m²
The angular momentum of the solid sphere is calculated as;
L = Iω
L = 0.117 x 5.7
L = 0.667 kgm²/s
Therefore, the angular momentum of the solid sphere is 0.667 kgm²/s
In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with:_________.
1. yellow light.
2. red light.
3. blue light.
4. green light.
5. The separation is the same for all wavelengths.
Answer:
Red light
Explanation:
This because All interference or diffraction patterns depend upon the wavelength of the light (or whatever wave) involved. Red light has the longest wavelength (about 700 nm)
An interference pattern is produced by light with a wavelength 550 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.500 mm .
a. If the slits are very narrow, what would be the angular position of the second- order, two-slit interference maxima?
b. Let the slits have a width 0.300 mm. In terms of the intensity lo at the center of the central maximum, what is the intensity at the angular position in part "a"?
Answer:
a
[tex]\theta = 0.0022 rad[/tex]
b
[tex]I = 0.000304 I_o[/tex]
Explanation:
From the question we are told that
The wavelength of the light is [tex]\lambda = 550 \ nm = 550 *10^{-9} \ m[/tex]
The distance of the slit separation is [tex]d = 0.500 \ mm = 5.0 *10^{-4} \ m[/tex]
Generally the condition for two slit interference is
[tex]dsin \theta = m \lambda[/tex]
Where m is the order which is given from the question as m = 2
=> [tex]\theta = sin ^{-1} [\frac{m \lambda}{d} ][/tex]
substituting values
[tex]\theta = 0.0022 rad[/tex]
Now on the second question
The distance of separation of the slit is
[tex]d = 0.300 \ mm = 3.0 *10^{-4} \ m[/tex]
The intensity at the the angular position in part "a" is mathematically evaluated as
[tex]I = I_o [\frac{sin \beta}{\beta} ]^2[/tex]
Where [tex]\beta[/tex] is mathematically evaluated as
[tex]\beta = \frac{\pi * d * sin(\theta )}{\lambda }[/tex]
substituting values
[tex]\beta = \frac{3.142 * 3*10^{-4} * sin(0.0022 )}{550 *10^{-9} }[/tex]
[tex]\beta = 0.06581[/tex]
So the intensity is
[tex]I = I_o [\frac{sin (0.06581)}{0.06581} ]^2[/tex]
[tex]I = 0.000304 I_o[/tex]