A 2kg block is sitting on a hinged ramp such that you can increase the angle of the incline. The coefficient of static friction between the block and the ramp is 0.67 and the coefficient of kinetic friction is 0.25.
a. What angle do you have to tilt the ramp to get the block to slide?
b. What acceleration does the block experience at this angle when kinetic friction takes over?

Answers

Answer 1

Answer:

θ = 33.8

a = 3.42 m/s²

Explanation:

given data

mass m = 2 kg  

coefficient of static friction μs = 0.67

coefficient of kinetic friction μk = 0.25

solution

when block start slide

N = mg cosθ    .............1

fs = mg sinθ   ...............2

now we divide equation 2 by equation 1 we get

[tex]\frsc{fs}{N} = \frac{sin \theta }{cos \theta }[/tex]

[tex]\frac{\mu s N }{N}[/tex]  = tanθ

put here value we get

tan θ = 0.67

θ = 33.8

and

when block will slide  then we apply newton 2nd law

mg sinθ - fk = ma    ...............3

here fk = μk N = μk mg cosθ

so from equation 3 we get

mg sinθ -  μk mg cosθ = ma

so a will be

a = (sinθ - μk cosθ)g

put here value and we get

a = (sin33.8 - 0.25 cos33.8) 9.8

a = 3.42 m/s²

A 2kg Block Is Sitting On A Hinged Ramp Such That You Can Increase The Angle Of The Incline. The Coefficient

Related Questions

1) A net force of 75.5 N is applied horizontally to slide a 225 kg crate across the floor.
a. Compute the acceleration of the crate?

Answers

Answer:

The acceleration of the crate is [tex]0.3356\,\frac{m}{s^2}[/tex]

Explanation:

Recall the formula that relates force,mass and acceleration from newton's second law;

[tex]F=m\,a[/tex]

Then in our case, we know the force applied and we know the mass of the crate, so we can solve for the acceleration as shown below:

[tex]F=m\,a\\75.5\,N=225\,\,kg\,\,a\\a=\frac{75.5}{225} \,\frac{m}{s^2} \\a=0.3356\,\,\frac{m}{s^2}[/tex]

In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with:_________.
1. yellow light.
2. red light.
3. blue light.
4. green light.
5. The separation is the same for all wavelengths.

Answers

Answer:

Red light

Explanation:

This because All interference or diffraction patterns depend upon the wavelength of the light (or whatever wave) involved. Red light has the longest wavelength (about 700 nm)

The average density of the body of a fish is 1080kg/m^3 . To keep from sinking, the fish increases its volume by inflating an internal air bladder, known as a swim bladder, with air.
By what percent must the fish increase its volume to be neutrally buoyant in fresh water? Use 1.28kg/m^3 for the density of air at 20 degrees Celsius. (change in V/V)

Answers

Answer:

Increase of volume (F)  = 8.01%

Explanation:

Given:

Density of fish = 1,080 kg/m³

Density of water = 1,000 kg/m³

density of air = 1.28 kg/m³

Find:

Increase of volume (F)

Computation:

1,080 kg/m³  + [F × 1.28 kg/m³ ] = (1+F) × 1,000 kg/m³  

1,080 + 1.28 F =1,000 F + 1,000

80 = 998.72 F

F = 0.0801 (Approx)

F = 8.01%  (Approx)

If 2 balls had the same volume but ball a has twice as much mass as babil which one will have the greater density

Answers

The ball with greater mass has more density

How do I find an apparent weight in N for a metal connected to a string submerged in water if a scale shows the mass 29.52 g when it is submerged ? Also how do I measure its density

Answers

The Tension of the string is going to be less when submerged in water by a value called the buoyancy force, so below in the attached file is explanation on how to calculate the apparent weight and density of the submerged object

How much work will it take to lift a 2-kg pair of hiking boots 2 meters off the

ground and onto a shelf in your closet?

O A. 2.45 J

OB. 4J

C. 39.2 J

D. 20 J

Answers

Answer:

Option C - 39.2 J

Explanation:

We are given that;

Mass; m = 2 kg.

Distance moved off the floor;d = 10 m.

Acceleration due to gravity;g = 9.8 m/s².

We want to find the work done.

Now, the Formula for work done is given by;

Work = Force × displacement.

In this case, it's force of gravity to lift up the boots, thus;

Formula for this force is;

Force = mass x acceleration due to gravity

Force = 2 × 9.8 = 19.2 N

∴ Work done = 19.6 × 2

Work done = 39.2 J.

Hence, the Work done to life the boot of 2 kg to a height of 2 m is 39.2 J.

Answer:39.2J

Explanation: I just answered this question and this was the correct answer. 4J is the wrong answer.

An inquisitive physics student and mountain climber climbs a 47.0-m-high cliff that overhangs a calm pool of water. He throws two stones vertically downward, 1.00 s apart, and observes that they cause a single splash. The first stone has an initial speed of 2.12 m/s.

(a) How long after release of the first stone do the two stones hit the water?

(b) What initial velocity must the second stone have if the two stones are to hit the water simultaneously?

magnitude =

(c) What is the speed of each stone at the instant the two stones hit the water?

first stone =

second stone =

Answers

Answer:

a) Only the first root is physically reasonable. Therefore, both stones hit the water in 2.866 seconds, b) The initial velocity of the second stone is -16.038 meters per second, c) The speed of the first stone is 30.227 meters per second and the speed of the second stone is 34.338 meters per second.

Explanation:

a) The time after the release after the release of the first stone can be get from the following kinematic formula for the first rock:

[tex]y_{1} = y_{1,o} + v_{1,o} \cdot t +\frac{1}{2}\cdot g \cdot t^{2}[/tex]

Where:

[tex]y_{1}[/tex] - Final height of the first stone, measured in meters.

[tex]y_{1,o}[/tex] - Initial height of the first stone, measured in meters.

[tex]v_{1,o}[/tex] - Initial speed of the first stone, measured in meters per second.

[tex]t[/tex] - Time, measured in seconds.

[tex]g[/tex] - Gravity constant, measured in meters per square second.

Given that [tex]y_{1,o} = 47\,m[/tex], [tex]y_{1} = 0\,m[/tex], [tex]v_{1,o} = -2.12\,\frac{m}{s}[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], the following second-order polynomial is built:

[tex]-4.984\cdot t^{2} - 2.12\cdot t + 47 = 0[/tex]

Roots of the polynomial are, respectively:

[tex]t_{1} \approx 2.866\,s[/tex] and [tex]t_{2}\approx -3.291\,s[/tex]

Only the first root is physically reasonable. Therefore, both stones hit the water in 2.866 seconds.

b) As the second stone is thrown a second later than first one, its height is represented by the following kinematic expression:

[tex]y_{2} = y_{2,o} + v_{2,o}\cdot (t-t_{o}) + \frac{1}{2}\cdot g \cdot (t-t_{o})^{2}[/tex]

[tex]y_{2}[/tex] - Final height of the second stone, measured in meters.

[tex]y_{2,o}[/tex] - Initial height of the second stone, measured in meters.

[tex]v_{2,o}[/tex] - Initial speed of the second stone, measured in meters per second.

[tex]t[/tex] - Time, measured in seconds.

[tex]t_{o}[/tex] - Initial absolute time, measured in seconds.

[tex]g[/tex] - Gravity constant, measured in meters per square second.

Given that [tex]y_{2,o} = 47\,m[/tex], [tex]y_{2} = 0\,m[/tex], [tex]t_{o} = 1\,s[/tex], [tex]t = 2.866\,s[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], the following expression is constructed and the initial speed of the second stone is:

[tex]1.866\cdot v_{2,o}+29.926 = 0[/tex]

[tex]v_{2,o} = -16.038\,\frac{m}{s}[/tex]

The initial velocity of the second stone is -16.038 meters per second.

c) The final speed of each stone is determined by the following expressions:

First stone

[tex]v_{1} = v_{1,o} + g \cdot t[/tex]

Second stone

[tex]v_{2} = v_{2,o} + g\cdot (t-t_{o})[/tex]

Where:

[tex]v_{1,o}, v_{1}[/tex] - Initial and final velocities of the first stone, measured in meters per second.

[tex]v_{2,o}, v_{2}[/tex] - Initial and final velocities of the second stone, measured in meters per second.

If [tex]v_{1,o} = -2.12\,\frac{m}{s}[/tex] and [tex]v_{2,o} = -16.038\,\frac{m}{s}[/tex], the final speeds of both stones are:

First stone

[tex]v_{1} = -2.12\,\frac{m}{s} + \left(-9.807\,\frac{m}{s^{2}} \right)\cdot (2.866\,s)[/tex]

[tex]v_{1} = -30.227\,\frac{m}{s}[/tex]

Second stone

[tex]v_{2} = -16.038\,\frac{m}{s} + \left(-9.807\,\frac{m}{s^{2}} \right) \cdot (2.866\,s-1\,s)[/tex]

[tex]v_{2} = -34.338\,\frac{m}{s}[/tex]

The speed of the first stone is 30.227 meters per second and the speed of the second stone is 34.338 meters per second.

A ranger needs to capture a monkey hanging on a tree branch. The ranger aims his dart gun directly at the monkey and fires the tranquilizer dart. However, the monkey lets go of the branch at exactly the same time as the ranger fires the dart. Will the monkey get hit or will it avoid the dart?

Answers

Answer:

Yes the monkey will get hit and it will not avoid the dart.

Explanation:

Yes, the monkey will be hit anyway because the dart will follow a hyperbolic path and and will thus fall below the branches, so if the monkey jumps it will be hit.

No, the monkey will not avoid the dart because dart velocity doesn't matter. The speed of the bullet doesn’t even matter in this case because a faster bullet will hit the monkey at a higher height and while a slower bullet will simply hit the monkey closer to the ground.

a certain volume of dry air at NTP is allowed to expand five times of it original volume under adiabatic condition.calculate the final pressure.(air=1.4)​

Answers

Answer:

Final pressure 0.105atm

Explanation:

Let V1 represent the initial volume of dry air at NTP.

under adiabatic condition: no heat is lost or  gained by the system. This does not implies that the constant temperature throughout the system , but rather that no heat gained or loss by the system.

Adiabatic expansion:

[tex]\frac{T_1}{T_2} =(\frac{V_1}{V_2} )^{\gamma -1}[/tex]

273/T2=(5V1/V1)^(1.4−1)

273/T2=5^0.4

Final temperature  T2=143.41 K

Also

P1/P2=(V2/V1)^γ

1/P2=(5V1/V1)^1.4

Final pressure P2=0.105atm

A particle with charge q is to be brought from far away to a point near an electric dipole. Net nonzero work is done if the final position of the particle is on:__________

A) any point on the line through the charges of the dipole, excluding the midpoint between the two charges.

B) any point on a line that is a perpendicular bisector to the line that separates the two charges.

C) a line that makes an angle of 30 ∘ with the dipole moment.

D) a line that makes an angle of 45 ∘with the dipole moment.

Answers

Answer:

Net nonzero work is done if the final position of the particle is on options A, C and D

Explanation:

non zero work is done if following will be the final position of the charges :

A) Any point on the line through the charges of the dipole , excluding the midpoint between the two charges.

C) A line that makes an angle 30° with the dipole moment.

D) A line that makes an angle 45°  with the dipole moment.

A cowboy fires a silver bullet with a muzzle speed of 200 m/s into the pine wall of a saloon. Assume all the internal energy generated by the impact remains with the bullet. What is the temperature change of the bullet?

Answers

Explanation:

KE = q

½ mv² = mCΔT

ΔT = v² / (2C)

ΔT = (200 m/s)² / (2 × 236 J/kg/°C)

ΔT = 84.7°C

This question involves the concepts of the law of conservation of energy.

The temperature change of the bullet is "84.38°C".

What is the Law of Conservation of Energy?

According to the law of conservation of energy, total energy of the system must remain constant. Therefore, in this situation.

[tex]Kinetic\ energy\ of\ bullet\ before\ impact=heat\ absorbed\ in\ bullet\\\\\frac{1}{2}mv^2=mC\Delta T\\\\\Delta T = \frac{v^2}{2C}[/tex]

where,

ΔT = change in temperature of the bullet = ?C = specific heat capacity of silver = 237 J/kg°Cv = speed of bullet = 200 m/s

Therefore,

[tex]\Delta T = \frac{(200\ m/s)^2}{2(237\ J/kg.^oC)}[/tex]

ΔT = 84.38°C

Learn more about the law of conservation of energy here:

https://brainly.com/question/20971995

#SPJ2

Two 60.o-g arrows are fired in quick succession with an initial speed of 82.0 m/s. The first arrow makes an initial angle of 24.0° above the horizontal, and the second arrow is fired straight upward. Assume an isolated system and choose the reference configuration at the initial position of the arrows.
(a) what is the maximum height of each of the arrows?
(b) What is the total mechanical energy of the arrow-Earth system for each of the arrows at their maximum height?

Answers

Answer:

a) The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters, b) Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

Explanation:

a) The first arrow is launch in a parabolic way, that is, horizontal speed remains constant and vertical speed changes due to the effects of gravity. On the other hand, the second is launched vertically, which means that velocity is totally influenced by gravity. Let choose the ground as the reference height for each arrow. Each arrow can be modelled as particles and by means of the Principle of Energy Conservation:

First arrow

[tex]U_{g,1} + K_{x,1} + K_{y,1} = U_{g,2} + K_{x,2} + K_{y,2}[/tex]

Where:

[tex]U_{g,1}[/tex], [tex]U_{g,2}[/tex] - Initial and final gravitational potential energy, measured in joules.

[tex]K_{x,1}[/tex], [tex]K_{x,2}[/tex] - Initial and final horizontal translational kinetic energy, measured in joules.

[tex]K_{y,1}[/tex], [tex]K_{y,2}[/tex] - Initial and final vertical translational kinetic energy, measured in joules.

Now, the system is expanded and simplified:

[tex]m \cdot g \cdot (y_{2} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 2}^{2} -v_{y, 1}^{2}) = 0[/tex]

[tex]g \cdot (y_{2}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,2}^{2})[/tex]

[tex]y_{2}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,2}^{2}}{g}[/tex]

Where:

[tex]y_{1}[/tex]. [tex]y_{2}[/tex] - Initial and final height of the arrow, measured in meters.

[tex]v_{y,1}[/tex], [tex]v_{y,2}[/tex] - Initial and final vertical speed of the arrow, measured in meters.

[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.

The initial vertical speed of the arrow is:

[tex]v_{y,1} = v_{1}\cdot \sin \theta[/tex]

Where:

[tex]v_{1}[/tex] - Magnitude of the initial velocity, measured in meters per second.

[tex]\theta[/tex] - Initial angle, measured in sexagesimal degrees.

If [tex]v_{1} = 82\,\frac{m}{s}[/tex] and [tex]\theta = 24^{\circ}[/tex], the initial vertical speed is:

[tex]v_{y,1} = \left(82\,\frac{m}{s} \right)\cdot \sin 24^{\circ}[/tex]

[tex]v_{y,1} \approx 33.352\,\frac{m}{s}[/tex]

If [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{y,1} \approx 33.352\,\frac{m}{s}[/tex] and [tex]v_{y,2} = 0\,\frac{m}{s}[/tex], the maximum height of the first arrow is:

[tex]y_{2} - y_{1} = \frac{1}{2}\cdot \frac{\left(33.352\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }[/tex]

[tex]y_{2} - y_{1} = 56.712\,m[/tex]

Second arrow

[tex]U_{g,1} + K_{y,1} = U_{g,3} + K_{y,3}[/tex]

Where:

[tex]U_{g,1}[/tex], [tex]U_{g,3}[/tex] - Initial and final gravitational potential energy, measured in joules.

[tex]K_{y,1}[/tex], [tex]K_{y,3}[/tex] - Initial and final vertical translational kinetic energy, measured in joules.

[tex]m \cdot g \cdot (y_{3} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 3}^{2} -v_{y, 1}^{2}) = 0[/tex]

[tex]g \cdot (y_{3}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,3}^{2})[/tex]

[tex]y_{3}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,3}^{2}}{g}[/tex]

If [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{y,1} = 82\,\frac{m}{s}[/tex] and [tex]v_{y,3} = 0\,\frac{m}{s}[/tex], the maximum height of the first arrow is:

[tex]y_{3} - y_{1} = \frac{1}{2}\cdot \frac{\left(82\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }[/tex]

[tex]y_{3} - y_{1} = 342.816\,m[/tex]

The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters.

b) The total energy of each system is determined hereafter:

First arrow

The total mechanical energy at maximum height is equal to the sum of the potential gravitational energy and horizontal translational kinetic energy. That is to say:

[tex]E = U + K_{x}[/tex]

The expression is now expanded:

[tex]E = m\cdot g \cdot y_{max} + \frac{1}{2}\cdot m \cdot v_{x}^{2}[/tex]

Where [tex]v_{x}[/tex] is the horizontal speed of the arrow, measured in meters per second.

[tex]v_{x} = v_{1}\cdot \cos \theta[/tex]

If [tex]v_{1} = 82\,\frac{m}{s}[/tex] and [tex]\theta = 24^{\circ}[/tex], the horizontal speed is:

[tex]v_{x} = \left(82\,\frac{m}{s} \right)\cdot \cos 24^{\circ}[/tex]

[tex]v_{x} \approx 74.911\,\frac{m}{s}[/tex]

If [tex]m = 0.06\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]y_{max} = 56.712\,m[/tex] and [tex]v_{x} \approx 74.911\,\frac{m}{s}[/tex], the total mechanical energy is:

[tex]E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (56.712\,m)+\frac{1}{2}\cdot (0.06\,kg)\cdot \left(74.911\,\frac{m}{s} \right)^{2}[/tex]

[tex]E = 201.720\,J[/tex]

Second arrow:

The total mechanical energy is equal to the potential gravitational energy. That is:

[tex]E = m\cdot g \cdot y_{max}[/tex]

[tex]m = 0.06\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] and [tex]y_{max} = 342.816\,m[/tex]

[tex]E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (342.816\,m)[/tex]

[tex]E = 201.720\,J[/tex]

Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

The first Leyden jar was probably discovered by a German clerk named E. Georg von Kleist. Because von Kleist was not a scientist and did not keep good records, the credit for the discovery of the Leyden jar usually goes to physicist Pieter Musschenbroek from Leyden, Holland. Musschenbroek accidentally discovered the Leyden jar when he tried to charge a jar of water and shocked himself by touching the wire on the inside of the jar while holding the jar on the outside. He said that the shock was no ordinary shock and his body shook violently as though he had been hit by lightning. The energy from the jar that passed through his body was probably around 1 J, and his jar probably had a capacitance of about 1 nF.A) Estimate the charge that passed through Musschenbroek's body.
B) What was the potential difference between the inside and outside of the Leyden jar before Musschenbroek discharged it?

Answers

Answer:

a) q = 4.47 10⁻⁵ C

b)     ΔV = 4.47 10⁴ V

Explanation:

A Leyden bottle works as a condenser that accumulates electrical charge, so we can use the formula of the energy stored in a capacitor

           U = Q² / 2C

         Q = √ (2UC)

let's reduce the magnitudes to the SI system

   c = 1 nF = 1 10⁻⁹ F

let's calculate

         q = √ (2 1 10⁻⁹-9)

         q = 0.447 10⁻⁴ C

         q = 4.47 10⁻⁵ C

b) for the potential difference we use

             C = Q / ΔV

            ΔV = Q / C

            ΔV = 4.47 10⁻⁵ / 1 10⁻⁹

            ΔV = 4.47 10⁴ V

at the temperature at which we live, earth's core is solid or liquid?

Answers

Explanation:

The Earth has a solid inner core

According to the model in which active galactic nuclei are powered by supermassive black holes, the high luminosity of an active galactic nucleus primarily consists of

Answers

Answer:

the high luminosity of an active galactic nucleus primarily consists of light emitted by hot gas in an accretion disk that swirls around the black hole

Consider the Earth and the Moon as a two-particle system.

Find an expression for the gravitational field g of this two-particle system as a function of the distance r from the center of the Earth. (Do not worry about points inside either the Earth or the Moon. Assume the Moon lies on the +r-axis. Give the scalar component of the gravitational field. Do not substitute numerical values; use variables only. Use the following as necessary: G, Mm, Me, r, and d for the distance from the center of Earth to the center of the Moon.)"

Answers

sorry but I don't understand

As an ice skater begins a spin, his angular speed is 3.14 rad/s. After pulling in his arms, his angular speed increases to 5.94 rad/s. Find the ratio of teh skater's final momentum of inertia to his initial momentum of inertia.

Answers

Answer:

I₂/I₁ = 0.53

Explanation:

During the motion the angular momentum of the skater remains conserved. Therefore:

Angular Momentum of Skater Before Pulling Arms = Angular Momentum of Skater After Pulling Arms

L₁ = L₂

but, the formula for angular momentum is:

L = Iω

Therefore,

I₁ω₁ = I₂ω₂

I₂/I₁ = ω₁/ω₂

where,

I₁ = Initial Moment of Inertia

I₂ = Final Moment of Inertia

ω₁ = Initial Angular Velocity = 3.14 rad/s

ω₂ = Final Angular velocity = 5.94 rad/s

Therefore,

I₂/I₁ = (3.14 rad/s)/(5.94 rad/s)

I₂/I₁ = 0.53

An archer shoots an arrow toward a 300-g target that is sliding in her direction at a speed of 2.10 m/s on a smooth, slippery surface. The 22.5-g arrow is shot with a speed of 37.5 m/s and passes through the target, which is stopped by the impact. What is the speed of the arrow after passing through the target

Answers

Answer:

The speed of the arrow after passing through the target is 30.1 meters per second.

Explanation:

The situation can be modelled by means of the Principle of Linear Momentum, let suppose that the arrow and the target are moving on the same axis, where the velocity of the first one is parallel to the velocity of the second one. The Linear Momentum model is presented below:

[tex]m_{a}\cdot v_{a,o} + m_{t}\cdot v_{t,o} = m_{a}\cdot v_{a,f} + m_{t}\cdot v_{t,f}[/tex]

Where:

[tex]m_{a}[/tex], [tex]m_{t}[/tex] - Masses of arrow and target, measured in kilograms.

[tex]v_{a,o}[/tex], [tex]v_{a,f}[/tex] - Initial and final speeds of the arrow, measured in meters per second.

[tex]v_{t,o}[/tex], [tex]v_{t,f}[/tex] - Initial and final speeds of the target, measured in meters per second.

The final speed of the arrow is now cleared:

[tex]m_{a} \cdot v_{a,f} = m_{a} \cdot v_{a,o} + m_{t}\cdot (v_{t,o}-v_{t,f})[/tex]

[tex]v_{a,f} = v_{a,o} + \frac{m_{t}}{m_{a}} \cdot (v_{t,o}-v_{t,f})[/tex]

If [tex]v_{a,o} = 2.1\,\frac{m}{s}[/tex], [tex]m_{t} = 0.3\,kg[/tex], [tex]m_{a} = 0.0225\,kg[/tex], [tex]v_{t,o} = 2.10\,\frac{m}{s}[/tex] and [tex]v_{t,f} = 0\,\frac{m}{s}[/tex], the speed of the arrow after passing through the target is:

[tex]v_{a,f} = 2.1\,\frac{m}{s} + \frac{0.3\,kg}{0.0225\,kg}\cdot (2.10\,\frac{m}{s} - 0\,\frac{m}{s} )[/tex]

[tex]v_{a,f} = 30.1\,\frac{m}{s}[/tex]

The speed of the arrow after passing through the target is 30.1 meters per second.

Two people play tug of war. The 100-kg person on the left pulls with 1,000 N, and the 70-kg person on the right pulls with 830 N. Assume that neither person releases their grip on the rope with either hand at any time, assume that the rope is always taut, and assume that the rope does not stretch. What is the magnitude of the tension in the rope in Newtons

Answers

Answer:

The  tension on the rope  is  T  =  900 N

Explanation:

From the question we are told that  

     The mass of the person on the left is  [tex]m_l = 100 \ kg[/tex]

      The force of the person on the left is  [tex]F_l = 1000 \ N[/tex]

       The mass of the person on the right  is  [tex]m_r = 70 \ kg[/tex]

       The force of the person on the right is  [tex]F_r = 830 \ N[/tex]

     

Generally the net force is  mathematically represented as

         [tex]F_{Net} = F_l - F_r[/tex]

substituting  values

        [tex]F_{Net} = 1000-830[/tex]

       [tex]F_{Net} = 170 \ N[/tex]

Now the acceleration net acceleration of the rope is mathematically evaluated as

        [tex]a = \frac{F_{net}}{m_I + m_r }[/tex]

substituting  values

     [tex]a = \frac{170}{100 + 70 }[/tex]

     [tex]a = 1 \ m/s ^2[/tex]

The  force [tex]m_i * a[/tex]) of the person on the left that caused the rope to accelerate by  a  is  mathematically represented as

        [tex]m_l * a = F_r -T[/tex]

Where T  is  the tension on the rope  

      substituting values

        [tex]100 * 1 = 1000 - T[/tex]

=>      T  =  900 N

         

A car moving at a speed of 25 m/s enters a curve that traces a circular quarter turn of radius 129 m. The driver gently applies the brakes, slowing the car with a constant tangential acceleration of magnitude 1.2 m/s2.a) Just before emerging from the turn, what is the magnitudeof the car's acceleration?
b) At that same moment, what is the angle q between the velocity vector and theacceleration vector?
I am having trouble because this problem seems to have bothradial and tangential accleration. I tried finding the velocityusing V^2/R, but then that didnt take into account thedeceleration. Any help would be great.

Answers

Answer:

8.7 m/s^2

82.15°

Explanation:

Given:-

- The initial speed of the car, vi = 25 m/s

- The radius of track, r = 129 m

- Car makes a circular " quarter turn "

- The constant tangential acceleration, at = 1.2 m/s^2

Solution:-

- We will solve the problem using rotational kinematics. Determine the initial angular velocity of car ( wi ) as follows:

                          [tex]w_i = \frac{v_i}{r} \\\\w_i = \frac{25}{129}\\\\w_i = 0.19379 \frac{rad}{s}[/tex]

- Now use the constant tangential acceleration ( at ) and determine the constant angular acceleration ( α ) for the rotational motion as follows:

                           at = r*α

                           α = ( 1.2 / 129 )

                           α = 0.00930 rad/s^2

- We know that the angular displacement from the initial entry to the exit of the turn is quarter of a turn. The angular displacement would be ( θ = π/2 ).

- Now we will use the third rotational kinematic equation of motion to determine the angular velocity at the exit of the turn (wf) as follows:

                            [tex]w_f^2 = w_i^2 + 2\alpha*theta\\\\w_f = \sqrt{0.19379^2 + 0.00930\pi } \\\\w_f = 0.25840 \frac{rad}{s}[/tex]

- We will use the evaluated final velocity ( wf ) and determine the corresponding velocity ( vf ) as follows:

                            [tex]v_f = r*w_f\\\\v_f = 129*0.2584\\\\v_f = 33.33380 \frac{x}{y}[/tex]

- Now use the formulation to determine the centripetal acceleration ( ac ) at this point as follows:

                            [tex]a_c = \frac{v_f^2}{r} \\\\a_c = \frac{33.3338^2}{129} \\\\a_c = 8.6135 \frac{m}{s^2}[/tex]

- To determine the magnitude of acceleration we will use find the resultant of the constant tangential acceleration ( at ) and the calculated centripetal acceleration at the exit of turn ( ac ) as follows:

                             [tex]|a| = \sqrt{a^2_t + a_c^2} \\\\|a| = \sqrt{1.2^2 + 8.6135^2} \\\\|a| = 8.7 \frac{m}{s^2}[/tex]

- To determine the angle between the velocity vector and the acceleration vector. We need to recall that the velocity vector only has one component and always tangential to the curved path. Hence, the velocity vector is parallel to the tangential acceleration vector ( at ). We can use the tangential acceleration ( at ) component of acceleration ( a ) and the centripetal acceleration ( ac ) component of the acceleration and apply trigonometric ratio as follows:

                          [tex]q = arctan \frac{a_c}{a_t} = arctan \frac{8.7}{1.2} \\\\q = 82.15 ^.[/tex] 

Answer: The angle ( q ) between acceleration vector ( a ) and the velocity vector ( v ) at the exit of the turn is 82.15° .

A student is conducting an experiment that involves adding hydrochloric acid to various minerals to detect if they have carbonates in them. The student holds a mineral up and adds hydrochloric acid to it. The acid runs down the side and onto the student’s hand causing irritation and a minor burn. If they had done a risk assessment first, how would this situation be different? A. It would be the same, there is no way to predict the random chance of acid dripping off the mineral in a risk assessment. B. The student would have no injuries because he would know hydrochloric acid is dangerous and would be wearing gloves when using it. C. The student would be safer because he would have been wearing goggles, but his hand still would not have been protected. D. The student would not have picked up the mineral because he would know that some of the minerals have dangerous chemicals in them.

Answers

The answer would be D because it could have been prevented

By  the experiment "The student would have no injuries because he would know hydrochloric acid is dangerous and would be wearing gloves when using it. "

What is experiment ?

An experiment would be a technique used to confirm or deny a hypothesis, as well as assess the likelihood or effectiveness of something that has never been tried before.

What is hydrochloric acid?

Hydrochloric acid is a kind of compound in which hydrogen and chlorine element is present.

Maintain a safe distance between your hands and your body, mouth, eyes, as well as a face when utilizing lab supplies and chemicals.

By  the experiment "By  the experiment "The student would have no injuries because he would know hydrochloric acid is dangerous and would be wearing gloves when using it. "

To know more about experiment and hydrochloric acid

https://brainly.com/question/13770820

#SPJ3

An interference pattern is produced by light with a wavelength 550 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.500 mm .
a. If the slits are very narrow, what would be the angular position of the second- order, two-slit interference maxima?
b. Let the slits have a width 0.300 mm. In terms of the intensity lo at the center of the central maximum, what is the intensity at the angular position in part "a"?

Answers

Answer:

a

 [tex]\theta = 0.0022 rad[/tex]

b

 [tex]I = 0.000304 I_o[/tex]

Explanation:

From the question we are told that  

   The  wavelength of the light is [tex]\lambda = 550 \ nm = 550 *10^{-9} \ m[/tex]

    The  distance of the slit separation is  [tex]d = 0.500 \ mm = 5.0 *10^{-4} \ m[/tex]

 

Generally the condition for two slit interference  is  

     [tex]dsin \theta = m \lambda[/tex]

Where m is the order which is given from the question as  m = 2

=>    [tex]\theta = sin ^{-1} [\frac{m \lambda}{d} ][/tex]

 substituting values  

      [tex]\theta = 0.0022 rad[/tex]

Now on the second question  

   The distance of separation of the slit is  

       [tex]d = 0.300 \ mm = 3.0 *10^{-4} \ m[/tex]

The  intensity at the  the angular position in part "a" is mathematically evaluated as

      [tex]I = I_o [\frac{sin \beta}{\beta} ]^2[/tex]

Where  [tex]\beta[/tex] is mathematically evaluated as

       [tex]\beta = \frac{\pi * d * sin(\theta )}{\lambda }[/tex]

  substituting values

     [tex]\beta = \frac{3.142 * 3*10^{-4} * sin(0.0022 )}{550 *10^{-9} }[/tex]

    [tex]\beta = 0.06581[/tex]

So the intensity is  

    [tex]I = I_o [\frac{sin (0.06581)}{0.06581} ]^2[/tex]

   [tex]I = 0.000304 I_o[/tex]

If the current flowing through a circuit of constant resistance is doubled, the power dissipated by that circuit will Group of answer choices

Answers

Answer:

P' = 4 P

Therefore, the power dissipated by the circuit will becomes four times of its initial value.

Explanation:

The power dissipation by an electrical circuit is given by the following formula:

Power Dissipation = (Voltage)(Current)

P = VI

but, from Ohm's Law, we know that:

Voltage = (Current)(Resistance)

V = IR

Substituting this in formula of power:

P = (IR)(I)

P = I²R   ---------------- equation 1

Now, if we double the current , then the power dissipated by that circuit will be:

P' = I'²R

where,

I' = 2 I

Therefore,

P' = (2 I)²R

P' = 4 I²R

using equation 1

P' = 4 P

Therefore, the power dissipated by the circuit will becomes four times of its initial value.

A parallel-plate capacitor is charged by connecting it to a battery. If the battery is disconnected and then the separation between the plates is increased, what will happen to the charge on the capacitor and the electric potential across it

Answers

Answer:

The charge stored in the capacitor will stay the same. However, the electric potential across the two plates will increase. (Assuming that the permittivity of the space between the two plates stays the same.)

Explanation:

The two plates of this capacitor are no longer connected to each other. As a result, there's no way for the charge on one plate to move to the other. [tex]Q[/tex], the amount of charge stored in this capacitor, will stay the same.

The formula [tex]\displaystyle Q = C\, V[/tex] relates the electric potential across a capacitor to:

[tex]Q[/tex], the charge stored in the capacitor, and[tex]C[/tex], the capacitance of this capacitor.

While [tex]Q[/tex] stays the same, moving the two plates apart could affect the potential [tex]V[/tex] by changing the capacitance [tex]C[/tex] of this capacitor. The formula for the capacitance of a parallel-plate capacitor is:

[tex]\displaystyle C = \frac{\epsilon\, A}{d}[/tex],

where

[tex]\epsilon[/tex] is the permittivity of the material between the two plates.[tex]A[/tex] is the area of each of the two plates.[tex]d[/tex] is the distance between the two plates.

Assume that the two plates are separated with vacuum. Moving the two plates apart will not affect the value of [tex]\epsilon[/tex]. Neither will that change the area of the two plates.

However, as [tex]d[/tex] (the distance between the two plates) increases, the value of [tex]\displaystyle C = \frac{\epsilon\, A}{d}[/tex] will become smaller. In other words, moving the two plates of a parallel-plate capacitor apart would reduce its capacitance.

On the other hand, the formula [tex]\displaystyle Q = C\, V[/tex] can be rewritten as:

[tex]V = \displaystyle \frac{Q}{C}[/tex].

The value of [tex]Q[/tex] (charge stored in this capacitor) stays the same. As the value of [tex]C[/tex] becomes smaller, the value of the fraction will become larger. Hence, the electric potential across this capacitor will become larger as the two plates are moved away from one another.  

When a nucleus at rest spontaneously splits into fragments of mass m1 and m2, the ratio of the momentum of m1 to the momentum of m2 is

Answers

Answer:

  p₁ = - p₂

the moment value of the two particles is the same, but its direction is opposite

Explanation:

When a nucleus divides spontaneously, the moment of the nucleic must be conserved, for this we form a system formed by the initial nucleus and the two fragments of the fission, in this case the forces during the division are internal and the moment is conserved

initial instant. Before fission

               p₀ = 0

since they indicate that the nucleus is at rest

final moment. After fission

             [tex]p_{f}[/tex] = m₁ v₁ + m₂ v₂

             p₀ = p_{f}

             0 = m₁ v₁ + m₂v₂

             m₁ v₁ = -m₂ v₂

           

              p₁ = - p₂

this indicates that the moment value of the two particles is the same, but its direction is opposite

Four point charges have the same magnitude of 2.4×10^−12C and are fixed to the corners of a square that is 4.0 cm on a side. Three of the charges are positive and one is negative. Determine the magnitude of the net electric field that exists at the center of the square.

Answers

Answer:

7.2N/C

Explanation:

Pls see attached file

Charge of uniform surface density (0.20 nC/m2) is distributed over the entire xy plane. Determine the magnitude of the electric field at any point having z

Answers

The question is not complete, the value of z is not given.

Assuming the value of z = 4.0m

Answer:

the magnitude of the electric field at any point having z(4.0 m)  =

E = 5.65 N/C

Explanation:

given

σ(surface density) = 0.20 nC/m² = 0.20 × 10⁻⁹C/m²

z = 4.0 m

Recall

E =F/q (coulumb's law)

E = kQ/r²

σ = Q/A

A = 4πr²

∴ The electric field at point z =

E = σ/zε₀

E = 0.20 × 10⁻⁹C/m²/(4 × 8.85 × 10⁻¹²C²/N.m²)

E = 5.65 N/C

Which jovian planet should have the most extreme seasonal changes? a. Saturn b. Neptune c. Jupiter d. Uranus

Answers

Answer:

D). Uranus.

Explanation:

Jovian planets are described as the planets which are giant balls of gases and located farthest from the sun which primarily include Jupiter, Saturn, Uranus, and Neptune.

As per the question, 'Uranus' is the jovian planet that would have the most extreme seasonal changes as its tilted axis leads each season to last for about 1/4 part of its 84 years orbit. The strong tilted axis encourages extreme changes in the season on Uranus. Thus, option D is the correct answer.

5) What is the weight of a body in earth. if its weight is 5Newton
in moon?​

Answers

Answer:

8.167

Explanation:

Now moving horizontally, the skier crosses a patch of soft snow, where the coefficient of friction is μk = 0.160. If the patch is of width 62.0 m and the average force of air resistance on the skier is 160 N , how fast is she going after crossing the patch?

Answers

Answer:

14.1 m/s

Explanation:

From the question,

μk = a/g...................... Equation 1

Where μk = coefficient of kinetic friction, a= acceleration of the skier, g = acceleration due to gravity.

make a the subject of the equation

a = μk(g).................. Equation 2

Given: μk = 0.160, g = 9.8 m/s²

Substitute into equation 2

a = 0.16(9.8)

a = 1.568 m/s²

Using,

F = ma

Where F = force, m = mass.

Make m the subject of the equation

m = F/a................... Equation 3

m = 160/1.568

m = 102.04 kg.

Note: The work done against air resistance by the skier+ work done against friction is equal to the kinetic energy after cross the patch.

Assuming the initial velocity of the skier to be zero

Fd+mgμ = 1/2mv²........................Equation 4

Where v = speed of the skier after crossing the patch, d = distance/width of the patch.

v = √2(Fd+mgμ)/m)................ Equation 5

Given: F = 160 N, m = 102.04 kg, d = 62 m, g = 9.8 m/s, μk = 0.16

Substitute these values into equation 5

v = √[2[(160×62)+(102.04×9.8×0.16)]/102.04]

v = √197.57

v = 14.1 m/s

v = 9.86 m/s

Other Questions
Describe the Atlantic Trade route. Which three locations did the trade route meet? What was traded along the route? What was the Middle Passage? Write your response in a complete paragraph. Determine the uniform annual value for the cash flow below at an interest rate of 11% per year. Year 0 1 2 3 4 5 6 7 8 9 Cash Flow, 0 $ 30,000 30,000 30,000 30,000 45,000 45,000 45,000 45,000 45,000 a. $38,474 b. $37,744 c. $36,595 d. $39,595 prove the following identity: sec x csc x(tan x + cot x) = 2+tan^2 x + cot^2 x please provide a proof in some shape form or fashion :/ The researchers participating in the experiments described above were assigned to conduct new experimentation, also on Leigh syndrome-positive mouse specimens. As a precursor step, it was decided to create a new population of Leigh syndrome-positive mice. What would be the option most likely to be successful in creating this population 1. Light from a laser shines through two narrow slits 0.300 mm apart and produces an interference pattern on a screen 4.35 m away consisting of 9 bright fringes over a distance of 6.4 cm. a) Draw a labeled diagram of this scenario and briefly explain how the interference pattern is created b) Calculate the wavelength of the laser. What color is it? Although the term podcasting has caught on, a more accurate term when it applies to video content is ________. a. tubecasting b. webcasting c. vcasting d. viewcasting Do class limits and class marks make sense for qualitative data classes? Explainyour answer.NEED QUICKLY Having been introduced to the Victorian Era, what characterized the era? What elements of the changes during this period do you predict Help pls I will give BRAINLY The g-factor is Multiple Choice the factor that helps us reason abstractly. a general intelligence factor that was thought to underlie performance in every aspect of intelligence. a score derived from one of several standardized tests that are designed to assess the overall intelligence. the same thing as crystallized intelligence. While watching a football game, Jeevan decided to list yardage gained as positive integers and yardage lost as negative integers. After these plays, Jeevan recorded 14, 7, and 9. What was the net gain or loss? I need help with this problem, if anyone could help ASAP, that would be much appreciated. In the figure below, mROP = 125 Find the measure of each arc. For each arc, write two or more complete sentences explaining which theorem or postulate you used to find your answer. Include your equations and calculations in your final answer. find mRP, MQS, MPQR, and MRPQ A. calculate the payoff and profit at expiration for the february 190 calls, if you purchase the option at the stated price and at expiration the stock price is $195.b. calculate the payoff and profit at expiration for the february 195 puts, if you purchase the option at the stated price and at expiration the stock price is $195. Help with this plz! Please Hiiii someone please help me I'm confused please helppp If the length of the bases of right triangle GHI are 9 units and 15 units respectively, what is the length of the hypotenuse of GHI? Your friend has written to you to ask for advice on how to be a successful student. Write a letter to your friend advising him/her what he/she should do to be a successful student. What major effect did the Fifteenth Amendment have on American society? What happens to the molecules of a substance when heat is added to it ? Which of these actions is an example of chemical weathering? Find the value of x in each case: