A manufacturer of yeast finds that the culture grows exponentially at the rate of 13% per hour . a) if the initial mass is 3.7 , what mass will be present after: 7 hours and then 2 days

Answers

Answer 1

After 7 hours, the mass of yeast will be approximately 9.718 grams. After 2 days (48 hours), the mass of yeast will be approximately 128.041 grams.

To calculate the mass of yeast after a certain time using exponential growth, we can use the formula:

[tex]M = M_0 * e^{(rt)}[/tex]

Where:

M is the final mass

M0 is the initial mass

e is the base of the natural logarithm (approximately 2.71828)

r is the growth rate (expressed as a decimal)

t is the time in hours

Let's calculate the mass of yeast after 7 hours:

M = 3.7 (initial mass)

r = 13% per hour

= 0.13

t = 7 hours

[tex]M = 3.7 * e^{(0.13 * 7)}[/tex]

Using a calculator, we can find that [tex]e^{(0.13 * 7)[/tex] is approximately 2.628.

M ≈ 3.7 * 2.628

≈ 9.718 grams

Now, let's calculate the mass of yeast after 2 days (48 hours):

M = 3.7 (initial mass)

r = 13% per hour

= 0.13

t = 48 hours

[tex]M = 3.7 * e^{(0.13 * 48)][/tex]

Using a calculator, we can find that [tex]e^{(0.13 * 48)}[/tex] is approximately 34.630.

M ≈ 3.7 * 34.630

≈ 128.041 grams

To know more about mass,

https://brainly.com/question/28053578

#SPJ11

Answer 2

a) After 7 hours, the mass will be approximately 7.8272.

b) After 2 days, the mass will be approximately 69.1614.

The growth of the yeast culture is exponential at a rate of 13% per hour.

To find the mass present after a certain time, we can use the formula for exponential growth:

Final mass = Initial mass × [tex](1 + growth ~rate)^{(number~ of~ hours)}[/tex]

a) After 7 hours:

Final mass = 3.7 ×[tex](1 + 0.13)^7[/tex]

To calculate this, we can plug in the values into a calculator or use the exponent rules:

Final mass = 3.7 × [tex](1.13)^{7}[/tex] ≈ 7.8272

Therefore, the mass present after 7 hours will be approximately 7.8272.

b) After 2 days:

Since there are 24 hours in a day, 2 days will be equivalent to 2 × 24 = 48 hours.

Final mass = 3.7 × [tex](1 + 0.13)^{48}[/tex]

Again, we can use a calculator or simplify using the exponent rules:

Final mass = 3.7 ×[tex](1.13)^{48}[/tex] ≈ 69.1614

Therefore, the mass present after 2 days will be approximately 69.1614.

Learn more about growth of the yeast

https://brainly.com/question/12000335

#SPJ11


Related Questions

Find the general solution to the following differential equations:
16y''-8y'+y=0
y"+y'-2y=0
y"+y'-2y = x^2

Answers

The general solution of the given differential equations are:

y = c₁e^(x/4) + c₂xe^(x/4) (for 16y''-8y'+y=0)

y = c₁e^x + c₂e^(-2x) (for y"+y'-2y=0)

y = c₁e^x + c₂e^(-2x) + (1/2)x

(for y"+y'-2y=x²)

Given differential equations are:

16y''-8y'+y=0

y"+y'-2y=0

y"+y'-2y = x²

To find the general solution to the given differential equations, we will solve these equations one by one.

(i) 16y'' - 8y' + y = 0

The characteristic equation is:

16m² - 8m + 1 = 0

Solving this quadratic equation, we get m = 1/4, 1/4

Hence, the general solution of the given differential equation is:

y = c₁e^(x/4) + c₂xe^(x/4)..................................................(1)

(ii) y" + y' - 2y = 0

The characteristic equation is:

m² + m - 2 = 0

Solving this quadratic equation, we get m = 1, -2

Hence, the general solution of the given differential equation is:

y = c₁e^x + c₂e^(-2x)..................................................(2)

(iii) y" + y' - 2y = x²

The characteristic equation is:

m² + m - 2 = 0

Solving this quadratic equation, we get m = 1, -2.

The complementary function (CF) of this differential equation is:

y = c₁e^x + c₂e^(-2x)..................................................(3)

Now, we will find the particular integral (PI). Let's assume that the PI of the differential equation is of the form:

y = Ax² + Bx + C

Substituting the value of y in the given differential equation, we get:

2A - 4A + 2Ax² + 4Ax - 2Ax² = x²

Equating the coefficients of x², x, and the constant terms on both sides, we get:

2A - 2A = 1,

4A - 4A = 0, and

2A = 0

Solving these equations, we get

A = 1/2,

B = 0, and

C = 0

Hence, the particular integral of the given differential equation is:

y = (1/2)x²..................................................(4)

The general solution of the given differential equation is the sum of CF and PI.

Hence, the general solution is:

y = c₁e^x + c₂e^(-2x) + (1/2)x²..................................................(5)

Conclusion: Therefore, the general solution of the given differential equations are:

y = c₁e^(x/4) + c₂xe^(x/4) (for 16y''-8y'+y=0)

y = c₁e^x + c₂e^(-2x) (for y"+y'-2y=0)

y = c₁e^x + c₂e^(-2x) + (1/2)x

(for y"+y'-2y=x²)

To know more about differential visit

https://brainly.com/question/13958985

#SPJ11

The particular solution is: y = -1/2 x². The general solution is: y = c1 e^(-2x) + c2 e^(x) - 1/2 x²

The general solution of the given differential equations are:

Given differential equation: 16y'' - 8y' + y = 0

The auxiliary equation is: 16m² - 8m + 1 = 0

On solving the above quadratic equation, we get:

m = 1/4, 1/4

∴ General solution of the given differential equation is:

y = c1 e^(x/4) + c2 x e^(x/4)

Given differential equation: y" + y' - 2y = 0

The auxiliary equation is: m² + m - 2 = 0

On solving the above quadratic equation, we get:

m = -2, 1

∴ General solution of the given differential equation is:

y = c1 e^(-2x) + c2 e^(x)

Given differential equation: y" + y' - 2y = x²

The auxiliary equation is: m² + m - 2 = 0

On solving the above quadratic equation, we get:m = -2, 1

∴ The complementary solution is:y = c1 e^(-2x) + c2 e^(x)

Now we have to find the particular solution, let us assume the particular solution of the given differential equation:

y = ax² + bx + c

We will use the method of undetermined coefficients.

Substituting y in the differential equation:y" + y' - 2y = x²a(2) + 2a + b - 2ax² - 2bx - 2c = x²

Comparing the coefficients of x² on both sides, we get:-2a = 1

∴ a = -1/2

Comparing the coefficients of x on both sides, we get:-2b = 0 ∴ b = 0

Comparing the constant terms on both sides, we get:2c = 0 ∴ c = 0

Thus, the particular solution is: y = -1/2 x²

Now, the general solution is: y = c1 e^(-2x) + c2 e^(x) - 1/2 x²

To know more about differential equations, visit:

https://brainly.com/question/32645495

#SPJ11

How does the number 32.4 change when you multiply it by 10 to the power of 2 ? select all that apply.
a). the digit 2 increases in value from 2 ones to 2 hundreds.
b). each place is multiplied by 1,000
c). the digit 3 shifts 2 places to the left, from the tens place to the thousands place.

Answers

The Options (a) and (c) apply to the question, i.e. the digit 2 increases in value from 2 ones to 2 hundred, and, the digit 3 shifts 2 places to the left, from the tens place to the thousands place.

32.4×10²=32.4×100=3240

Hence, digit 2 moves from one's place to a hundred's. (a) satisfied

And similarly, digit 3 moves from ten's place to thousand's place. Now, 1000=10³=10²×10.

Hence, it shifts 2 places to the left.

Therefore, (c) is satisfied.

As for (b), where the statement: Each place is multiplied by 1,000; the statement does not hold true since each digit is shifted 2 places, which indicates multiplied by 10²=100, not 1000.

Hence (a) and (c) applies to our question.

Read more about simple arithmetic problems on

https://brainly.com/question/30194025

#SPJ4

The table displays the frequency of scores for one Calculus class on the Advanced Placement Calculus exam. The mean of the exam scores is 3.5 .


a. What is the value of f in the table?

Answers

By using the concept of frequency and the given mean of the exam scores, we can calculate the value of "f" in the table as 7.

To calculate the mean (or average) of a set of values, we sum up all the values and divide by the total number of values. In this problem, the mean of the exam scores is given as 3.5.

To find the sum of the scores in the table, we multiply each score by its corresponding frequency and add up these products. Let's denote the score as "x" and the frequency as "n". The sum of the scores can be calculated using the following formula:

Sum of scores = (1 x 1) + (2 x 3) + (3 x f) + (4 x 12) + (5 x 3)

We can simplify this expression to:

Sum of scores = 1 + 6 + 3f + 48 + 15 = 70 + 3f

Since the mean of the exam scores is given as 3.5, we can set up the following equation:

Mean = Sum of scores / Total frequency

The total frequency is the sum of all the frequencies in the table. In this case, it is the sum of the frequencies for each score, which is given as:

Total frequency = 1 + 3 + f + 12 + 3 = 19 + f

We can substitute the values into the equation to solve for "f":

3.5 = (70 + 3f) / (19 + f)

To eliminate the denominator, we can cross-multiply:

3.5 * (19 + f) = 70 + 3f

66.5 + 3.5f = 70 + 3f

Now, we can solve for "f" by isolating the variable on one side of the equation:

3.5f - 3f = 70 - 66.5

0.5f = 3.5

f = 3.5 / 0.5

f = 7

Therefore, the value of "f" in the table is 7.

To know more about mean here

https://brainly.com/question/30891252

#SPJ4

Complete Question:

The table displays the frequency of scores for one Calculus class on the Advanced Placement Calculus exam. The mean of the exam scores is 3.5.

Score:            1 2 3 4 5

Frequency:    1 3 f 12 3

a. What is the value of f in the table?

A group of 800 students wants to eat lunch in the cafeteria. if each table at in the cafeteria seats 8 students, how many tables will the students need?

Answers

The number of tables that will be required to seat all students present at the cafeteria is 100.

By applying simple logic, the answer to this question can be obtained.

First, let us state all the information given in the question.

No. of students in the whole group = 800

Amount of students that each table can accommodate is 8 students.

So, the number of tables required can be defined as:

No. of Tables = (Total no. of students)/(No. of students for each table)

This means,

N = 800/8

N = 100 tables.

So, with the availability of a minimum of 100 tables in the cafeteria, all the students can be comfortably seated.

For more in Division,

brainly.com/question/30640279

#SPJ4

Other Questions
Find the general solution to the following differential equations:16y''-8y'+y=0y"+y'-2y=0y"+y'-2y = x^2 Consider a radioactive sample. Determine the ratio of the number of nuclei decaying during the first half of its halflife to the number of nuclei decaying during the second half of its half-life. Pinto LC, Falcetta MR, Rados DV, Leitao CB, Gross JL. Glucagon-like peptide-1 receptor agonists and pancreatic cancer: a meta-analysis with trial sequential analysis. Scientific reports. 2019:9:1-6. originally developed for detecting air pollutants, a technique called proton-induced x-ray emission, which can quickly analyze the chemical elements in almost any substance without destroying it, is finding uses in medicine, archaeology, and criminology. How does the number 32.4 change when you multiply it by 10 to the power of 2 ? select all that apply. a). the digit 2 increases in value from 2 ones to 2 hundreds. b). each place is multiplied by 1,000 c). the digit 3 shifts 2 places to the left, from the tens place to the thousands place. Considers F ( x , Y ) = ( 3 + 4 x Y two ) i + 4 x two Y j , C is the arc of the hyperbola Y = one x from the point ( one , one ) until the point ( two , one two ) Determine the potential function using the potential function determine C F d r along curve C. To achieve maximum power transfer between a 44 source and a load ZL (ZL > ZG) using a transmission line with a characteristic impedance of 44 , an inductor with a reactance of 82 is connected in series with the source. Determine the distance from the load, ZL, in terms of wavelengths where the inductor should be connected. Length = Explain the advantages and disadvantages of the 2 ray ground reflection model in the analysis of path loss. (b) In the following cases, tell whether the 2-ray model could be applied, and explain why or why not: h t=35 mh r=3 m,d=250 mh t=30 m,h r=1.5 md=450 m A group of 800 students wants to eat lunch in the cafeteria. if each table at in the cafeteria seats 8 students, how many tables will the students need? Greta is the new HR Manager of a small company. The previous HR Manager kept every document he had access to in the past 10 years of his job at the firm, but Greta is determined to clear out the unnecessary documents. In the context of Equal Employment Opportunity Commission (EEOC) requirements, Greta should keep all applications and hiring-related documents and records for _____ before they can be discarded. The table displays the frequency of scores for one Calculus class on the Advanced Placement Calculus exam. The mean of the exam scores is 3.5 . a. What is the value of f in the table? Determine the radius of convergence for the series below. n=0[infinity]4(n9)(x+9) nProvide your answer below: R= A set of data with a mean of 39 and a standard deviation of 6.2 is normally distributed. Find each value, given its distance from the mean.+1 standard deviation The desirable level of output in a perfectly competitive market if there exists a detrimental externality is:________ Which action is associated with the relaxation of a circular muscle? The arm relaxes at the side The lips pucker for whistling The sphincter opening gets larger The leg bends at the knee