Answer:
Acceleration of the asteroid relative to the spacecraft = 2ε[tex]E^{2}[/tex]A/m
Explanation:
The maximum electric field in the beam = 2E
cross-sectional area of beam = A
The intensity of an electromagnetic wave with electric field is
I = cε[tex]E_{0} ^{2}[/tex]/2
for [tex]E_{0}[/tex] = 2E
I = 2cε[tex]E^{2}[/tex] ....equ 1
where
I is the intensity
c is the speed of light
ε is the permeability of free space
[tex]E_{0}[/tex] is electric field
Radiation pressure of an electromagnetic wave on an absorbing surface is given as
P = I/c
substituting for I from above equ 1. we have
P = 2cε[tex]E^{2}[/tex]/c = 2ε[tex]E^{2}[/tex] ....equ 2
Also, pressure P = F/A
therefore,
F = PA ....equ 3
where
F is the force
P is pressure
A is cross-sectional area
substitute equ 2 into equ 3, we have
F = 2ε[tex]E^{2}[/tex]A
force on a body = mass x acceleration.
that is
F = ma
therefore,
a = F/m
acceleration of the asteroid will then be
a = 2ε[tex]E^{2}[/tex]A/m
where m is the mass of the asteroid.
A skater on ice with arms extended and one leg out spins at 3 rev/s. After he draws his arms and the leg in, his moment of inertia is reduced to 1/2. What is his new angular speed
Answer:
The new angular speed is [tex]w = 6 \ rev/s[/tex]
Explanation:
From the question we are told that
The angular velocity of the spin is [tex]w_o = 3 \ rev/s[/tex]
The original moment of inertia is [tex]I_o[/tex]
The new moment of inertia is [tex]I =\frac{I_o}{2}[/tex]
Generally angular momentum is mathematically represented as
[tex]L = I * w[/tex]
Now according to the law of conservation of momentum, the initial momentum is equal to the final momentum hence the angular momentum is constant so
[tex]I * w = constant[/tex]
=> [tex]I_o * w _o = I * w[/tex]
where w is the new angular speed
So
[tex]I_o * 3 = \frac{I_o}{2} * w[/tex]
=> [tex]w = \frac{3 * I_o}{\frac{I_o}{2} }[/tex]
=> [tex]w = 6 \ rev/s[/tex]
An ice skater spinning with outstretched arms has an angular speed of 5.0 rad/s . She tucks in her arms, decreasing her moment of inertia by 11 % . By what factor does the skater's kinetic energy change? (Neglect any frictional effects.)
Answer:
K_{f} / K₀ =1.12
Explanation:
This problem must work using the conservation of angular momentum (L), so that the moment is conserved in the system all the forces must be internal and therefore the torque is internal and the moment is conserved.
Initial moment. With arms outstretched
L₀ = I₀ w₀
the wo value is 5.0 rad / s
final moment. After he shrugs his arms
[tex]L_{f}[/tex] = I_{f} w_{f}
indicate that the moment of inertia decreases by 11%
I_{f} = I₀ - 0.11 I₀ = 0.89 I₀
L_{f} = L₀
I_{f} w_{f} = I₀ w₀
w_{f} = I₀ /I_{f} w₀
let's calculate
w_{f} = I₀ / 0.89 I₀ 5.0
w_{f} = 5.62 rad / s
Having these values we can calculate the change in kinetic energy
[tex]K_{f}[/tex] / K₀ = ½ I_{f} w_{f}² (½ I₀ w₀²)
K_{f} / K₀ = 0.89 I₀ / I₀ (5.62 / 5)²
K_{f} / K₀ =1.12
can I get help please?