A heat pump with the COP of 3.0 supplies heat at the rate of 240 kJ/min. Determine the electric power supply to the compressor. Provide the answers to 3 decimal places and insert the unit symbol in kilowatts Answer

Answers

Answer 1

A heat pump with the COP of 3.0 supplies heat at the rate of 240 kJ/min. the electric power supplied to the compressor is 80 kW.

Given data:COP = 3.0Heat rate = 240 kJ/minWe need to find out electric power supplied to compressor.The equation for COP is given by;COP = Output/ InputWhere,Output = Heat supplied to the roomInput = Work supplied to compressor to pump heat.

The electric power supplied to the compressor is given by;Electric power supplied to compressor = Work supplied / Time Work supplied = InputCOP = Output / InputCOP = Heat supplied to room / Work suppliedWork supplied = Heat supplied to room / COP = 240 kJ/min / 3.0= 80 kWSo,Electric power supplied to compressor = Work supplied / Time= 80 kW. Therefore, the electric power supplied to the compressor is 80 kW.

To know more about power supply visit :

https://brainly.com/question/29865421

#SPJ11


Related Questions

Find the root of the equation e⁻ˣ²−x³=0 using Newton-Raphson algorithm. Perform three iterations from the starting point x₀=1. (3 grading points). Estimate the error. (1 grading point). Solution of all problems MUST contain general formula and all intermediate results. Perform numerical computations using 4 digits after decimal point.

Answers

We also have to estimate the error and perform three iterations from the starting point x₀ = 1 using 4 digits after decimal point.1.

The general formula for Newton-Raphson Algorithm is given by:x1= x0-f(x0)/f'(x0)2. The equation is e⁻ˣ²−x³ = 0. Let us find the derivative of the equation, f(x) = e⁻ˣ²−x³ with respect to x. Using the chain rule, we get :f'(x) = (-2xe⁻ˣ²) - 3x²The equation becomes: f(x) = e⁻ˣ²−x³f'(x) = (-2xe⁻ˣ²) - 3x²3.

From the given starting point x₀ = 1, let us find x1 using the above formula.x1= x0-f(x0)/f'(x0)= 1 - (e⁻¹²-1)/(2e⁻¹²-3)= 0.9615Let us estimate the error. Error, E = |x₁ - x₀| = |0.9615 - 1| = 0.03854. Now, we can find x2 using the formula: x2 = x1 - f(x1)/f'(x1)= 0.9615 - (e⁻⁰.⁹²⁶⁷⁹⁷⁸⁴⁵⁶⁴⁸⁰⁸ - 0.9615)/(-0.0693)= 0.9425 Estimating the error, E = |x₂ - x₁| = |0.9425 - 0.9615| = 0.01905.

To know more about estimate visit:-

https://brainly.com/question/32645675

#SPJ11

Course: Power Generation and Control
Please ASAP I will like and rate your work.
if we impose a transmission line limit of 500 MW on line 1-3, a new constraint should be added as 500 MW = (Base Power)*(01-03)/X13- Select one: O True O False

Answers

A new constraint should be added as 500 MW = (Base Power)*(01-03)/X13 when a transmission line limit of 500 MW is imposed on line 1-3.

A transmission line limit is the maximum amount of power that can be transmitted through a transmission line. The transmission line's capacity is determined by the line's physical attributes, such as length, voltage, and current carrying capacity.

Transmission lines are the backbone of the electrical grid, allowing electricity to be transported over long distances from power plants to where it is required. The transmission line limits must be properly managed to prevent overloading and blackouts.

To know more about constraint visit:

https://brainly.com/question/17156848

#SPJ11

A 40-mm thick AISI 1050 steel plate is sandwiched between two 2024-T3 aluminium plates with thickness of 20-mm and 30-mm. The plates are compressed with a bolt and nut with no washers. The bolt is M14 X 2, property class 4.8. (a) Determine a suitable length for the bolt, rounded up to the nearest 5 mm. (b) Determine the bolt stiffness. (e) Determine the stiffness of the members.

Answers

A. The suitable length of bolt is 240 mm (rounded up to nearest 5 mm).

B.  Stiffness of AISI 1050 steel plate (k1) = 1313.8 N/mm

Stiffness of 1st 2024-T3 aluminium plate (k2) = 287.5 N/mm

Stiffness of 2nd 2024-T3 aluminium plate (k3) = 664.1 N/mm

(a) Suitable length of bolt: For calculating the suitable length of bolt, the thickness of the 2024-T3 aluminium plates, thickness of AISI 1050 steel plate, thickness of nut and threaded length of bolt must be considered.

Based on the given dimensions:

Thickness of AISI 1050 steel plate (t1) = 40 mmThickness of 1st 2024-T3 aluminium plate (t2)

= 20 mm Thickness of 2nd 2024-T3 aluminium plate (t3)

= 30 mm Threaded length of bolt (l)

= l1 + l2Threaded length of bolt (l)

= 2 × (t1 + t2 + t3) + 6 mm (extra for nut)l

= 2(40 + 20 + 30) + 6

= 232 mm

The suitable length of bolt is 240 mm (rounded up to nearest 5 mm).

(b) Bolt stiffness: Bolt stiffness (kb) can be calculated by the following formula: kb=π × d × d × Eb /4 × l

where,d = bolt diameter

Eb = modulus of elasticity of the bolt material

l = length of the bolt

The diameter of the bolt

(d) is 14 mm. Modulus of elasticity of the bolt material (Eb) is given as 200 kN/mm².

Substituting the given values in the formula:

kb= 3.14 × 14 × 14 × 200 / 4 × 240 = 1908.08 N/mm(e)

Stiffness of members:

The stiffness (k) of a member can be calculated by the following formula :k = π × E × I / L³

where,E = modulus of elasticity of the material of the member

I = moment of inertia of the cross-sectional area of the member

L = length of the member

For AISI 1050 steel plate:

E = 200 kN/mm²t = 40 mm

Width of plate = b = 1 m

Moment of inertia of the plate can be calculated using the formula:

I = (b × t³) / 12I

= (1000 × 40³) / 12

= 6.67 × 10^7 mm^4

Stiffness of the AISI 1050 steel plate can be calculated as:

k1 = 3.14 × 200 × 6.67 × 10^7 / (1000 × 1000 × 1000 × 1000)

= 1313.8 N/mm

For 1st 2024-T3 aluminium plate:

E = 73.1 kN/mm²

t = 20 mm

Width of plate = b = 1 m

Moment of inertia of the plate can be calculated using the formula:

I = (b × t³) / 12I = (1000 × 20³) / 12

= 1.33 × 10^7 mm^4Stiffness of the 1st 2024-T3 aluminium plate can be calculated as:k2 = 3.14 × 73.1 × 1.33 × 10^7 / (1000 × 1000 × 1000 × 1000) = 287.5 N/mm

For 2nd 2024-T3 aluminium plate:

E = 73.1 kN/mm²

t = 30 mm

Width of plate = b = 1 m

Moment of inertia of the plate can be calculated using the formula:

I = (b × t³) / 12I = (1000 × 30³) / 12

= 2.25 × 10^7 mm^4

Stiffness of the 2nd 2024-T3 aluminium plate can be calculated as:

k3 = 3.14 × 73.1 × 2.25 × 10^7 / (1000 × 1000 × 1000 × 1000)

= 664.1 N/mm

Therefore, Stiffness of AISI 1050 steel plate (k1) = 1313.8 N/mm

Stiffness of 1st 2024-T3 aluminium plate (k2) = 287.5 N/mm

Stiffness of 2nd 2024-T3 aluminium plate (k3) = 664.1 N/mm

To know more about suitable length, Visit :

https://brainly.com/question/4059783

#SPJ11

The gas-turbine cycle of a combined gas-steam power plant has a pressure ratio of 8. Air 300k 1500 enters the compressor at 290 K and the turbine at 1400 K. The combustion gases leaving the yoo gas turbine are used to heat the steam at 15 MPa to 450°C in a heat exchanger. The combustion 120k gases leave the heat exchanger at 247°C. Steam expands in a high-pressure turbine to a pressure of 3 MPa and is reheated in the combustion chamber to 500°C before it expands in a low- pressure turbine to 10 Pa. The mass flow rate of steam is 30 kg/s. Assuming all the compression and expansion processes to be isentropic. For steady-state operation and kinetic and potential energy changes are negligible, and constant specific heat with Cp-1.023 kJ/kg.K. k=1.4 is used. Determine (i) the mass flow rate of air in the gas-turbine cycle, Gil) the rate of 2 total heat input, and (in) the thermal efficiency of the combined cycle.

Answers

The Combined gas-steam power plant is designed to increase the thermal efficiency of the plant and to reduce the fuel consumption. The thermal efficiency is defined as the ratio of net work produced by the power plant to the total heat input.

The heat transferred to the steam per kg of steam is given by: Q/m = h5 - h4 Q

= m(h5 - h4) The temperature of the steam T5 can be calculated using the steam tables. At a pressure of 15 MPa, the enthalpy of the steam h4 = 3127.1 kJ/kg The temperature of the steam T5

= 450 °C

= 723 K At state 5, the steam is expanded isentropically in a high-pressure turbine to a pressure of 3 MPa. The work done by the high-pressure turbine per kg of steam is given by: Wh/m = Cp(T5 - T6) Wh

= mCp(T5 - T6) The temperature T6 can be calculated as: T6/T5 = (3 MPa/15 MPa)k-1/k T6

= T5(3/15)0.4

= 533.16 K The temperature T5 can be calculated using the steam tables.

The rate of total heat input to the cycle is given by: Qh = mCp(T3 - T2) + Q + m(h5 - h4) + mCp(T7 - T6) Qh

= 35.046 × 1.023 × (977.956 - 698.54) + 35.046 × 728.064 + 30 × (3127.1 - 2935.2) + 30 × 1.023 × (746.624 - 533.16) Qh = 288,351.78 kJ/s Thermal efficiency: The thermal efficiency of the cycle is given by: ηth

= (Wh + Wl)/Qh ηth

= (18,449.14 + 22,838.74)/288,351.78 ηth

= 0.1426 or 14.26 % The mass flow rate of air in the gas-turbine cycle is 35.046 kg/s.The total heat input is 288,351.78 kJ/s.The thermal efficiency of the combined cycle is 14.26 %.

To know more about steam visit:
https://brainly.com/question/15447025

#SPJ11

Q5) Given the denominator of a closed loop transfer function as expressed by the following expression: S² + 8S-5Kₚ + 20 The symbol Kₚ denotes the proportional controller gain. You are required to work out the following: 5.1) Find the boundaries of Kₚ for the control system to be stable.
5.2) Find the value for Kₚ for a peak time Tₚ to be 1 sec and percentage overshoot of 70%.

Answers

5.1)The boundaries for Kₚ to ensure stability are Kₚ > 2.5.

5.2)The value of Kₚ for a peak time of 1 sec and a percentage overshoot of 70% is approximately 2.949.

5.1) To determine the stability boundaries for the control system, we need to analyze the denominator of the closed-loop transfer function:

S² + 8S - 5Kₚ + 20

For stability, all the roots of the denominator polynomial should have negative real parts. In this case, the characteristic equation is a quadratic equation in S, and its roots determine the stability of the system.

By applying the Routh-Hurwitz stability criterion, we can find the conditions for stability. The Routh array for the characteristic equation is:

1       -5Kₚ

8       20

To ensure stability, all the elements in the first column of the Routh array must be positive:

1 > 0 (condition 1)

8Kₚ - 20 > 0 (condition 2)

From condition 1, we have 1 > 0, which is always true.

From condition 2, we can solve for the boundaries of Kₚ:

8Kₚ - 20 > 0

8Kₚ > 20

Kₚ > 2.5

5.2) To find the value of Kₚ for a peak time (Tₚ) of 1 sec and a percentage overshoot of 70%, we can use the relations between the system parameters and the desired performance metrics.

The peak time Tₚ is related to the damping ratio (ζ) and natural frequency (ωn) as follows:

Tₚ = π / (ζ * ωn)

The percentage overshoot (PO) is related to the damping ratio (ζ) as follows:

PO = exp((-ζ * π) / sqrt(1 - ζ²)) * 100

Given Tₚ = 1 sec and PO = 70%, we can solve these equations simultaneously to find the values of ζ and ωn. Once we have ζ, we can determine the value of Kₚ using the following relation:

Kₚ = (ωn² - 8) / 5

By solving the equations, we find that ζ ≈ 0.456 and ωn ≈ 3.535.

Substituting these values into the expression for Kₚ, we get:

Kₚ = (3.535² - 8) / 5 ≈ 2.949

To know more about closed-loop transfer function, visit:

https://brainly.com/question/13002430

#SPJ11

(5) Please give out the strength conditions of tight tension joints under preload F' only. (4 scores) (6) What are called friction, wear and lubrication? And according to the lubrication states, how to classify the types of friction? (6 scores)

Answers

(5) Strength conditions of tight tension joints under preload F' onlyIn engineering, preload is defined as the process of applying a load or force before applying the actual load or force on a structure. Preloading is mostly used in the joining of mechanical structures and assemblies by nuts, bolts, and other similar components.

The tight tension joints that are preloaded by preload F' are the ideal and efficient type of joints used in engineering applications.  For tight tension joints, the following conditions must be met:1. The preloaded tension must exceed the external force applied to the joint.

2. The material used must be of the right quality and free from defects that could cause it to fail under preloaded tension.

3. The geometry of the joint must be correct, with the right clearances and tolerances for the bolt and nut.

4. The joint must be free from contaminants such as oil, grease, and other foreign particles that could cause the preload to reduce.

5. The preload force must be applied uniformly across the bolt's length, without any sudden or excessive fluctuations.

(6) Friction, wear and lubricationFriction, wear, and lubrication are the primary factors that affect the performance of mechanical components in engineering applications. Friction is the resistance that two surfaces experience when they come into contact with each other. Wear is the process of gradual erosion of the surfaces of components due to friction and other external factors.

Lubrication is the process of applying a lubricant such as oil, grease, or another fluid between the contacting surfaces to reduce friction and wear. The type of lubrication used depends on the degree of motion, surface conditions, and other factors that could affect the joint's performance.According to the lubrication states, the types of friction are classified as follows:

1. Dry friction - This type of friction occurs when the contacting surfaces are dry and without any lubrication. The friction force is usually high, and the surfaces experience significant wear.

2. Boundary friction - This type of friction occurs when a thin layer of lubricant is applied between the contacting surfaces. The friction force is lower than dry friction, and the wear is reduced.

3. Fluid friction - This type of friction occurs when a continuous layer of fluid separates the contacting surfaces. The friction force is the lowest, and the wear is almost negligible.

To know more about tension visit:

https://brainly.com/question/10169286

#SPJ11

Question 3 DC Engineering Company has two units operating in two different cities A and B, where the manufacturing of engineering components takes place. Both the units employ young graduates as well as mid-career engineers. The company pays attractive salary to recruit competent workforce. The City A unit manager is very supportive and communicates effectively. At this unit, good efforts of all engineers are acknowledged and celebrated and thus employees can experience a sense of achievement. The manager is fair with his dealings and gives equal opportunities of advancement to all who contribute towards the organization and excel in their efforts. Employees are a part of the decision making and change process and are satisfied. The unit seldom experiences absenteeism or employee turnover. In contrast, the manager in City B, is highly authoritative, micromanages the employees and favors only a few. Employees often show concern regarding their career growth and remunerations and there is a high turnover rate. Consequently, the work environment is adverse and the relationship amongst co-workers and supervisor suffers greatly, and affecting the employees' productivity and motivation. (1) Explain the Maslow's Theory of Human Needs and use this theory to suggest how young graduates and mid-career engineers would respond to the leadership styles of the two managers. (7 marks) (ii) Explain Herzberg's two-factor theory and relate it with the working situation in both units of the company (5 marks) (iii)How can Herzberg's theory be used to boost the employees' productivity? (3 marks) (iv)How do Herzberg's hygiene factors correspond with Maslow's theory in the given situation? (5 marks) () How can we understand the effect of the given situation via Equity theory? (5 marks)

Answers

(i) Maslow's hierarchy of needs is a theory of human needs that helps to understand the various factors that influence the motivation of individuals.

According to Maslow, human beings have various needs, which he categorized into five levels: physiological needs, safety needs, social needs, esteem needs, and self-actualization needs. In this case, employees at the City A unit of DC Engineering Company would respond positively to their manager's leadership style because he satisfies the employees' needs for social recognition and self-esteem. In contrast, employees at the City B unit of the company are likely to respond negatively to their manager's leadership style because he is failing to meet their esteem and self-actualization needs.

(ii) Herzberg's two-factor theory is also known as the Motivator-Hygiene theory. Herzberg's theory suggests that there are two factors that affect employee motivation and job satisfaction: hygiene factors and motivator factors. Hygiene factors include working conditions, salary, job security, and company policies. Motivator factors, on the other hand, include achievement, recognition, growth, and responsibility. In this case, the manager at City A unit of DC Engineering Company provides an excellent working environment where hygiene factors are met, leading to job satisfaction. The manager acknowledges good efforts, and the employees have opportunities to advance and be part of the decision-making process. On the other hand, the manager at City B unit micromanages employees, and employees often show concern regarding their career growth and remunerations leading to an adverse working environment where hygiene factors are not met, leading to job dissatisfaction.

(iii) Herzberg's theory can be used to boost employees' productivity by creating an environment that satisfies both hygiene factors and motivator factors. Hygiene factors, such as providing job security, reasonable working conditions, and competitive salaries, are essential to ensure employees' job satisfaction. Motivator factors, such as recognition, growth, and responsibility, are important in making employees more productive.

(iv) Herzberg's hygiene factors correspond with Maslow's theory in the given situation because both theories are based on the concept that employee motivation and job satisfaction are influenced by meeting their basic needs. Herzberg's hygiene factors such as working conditions, salary, and job security correspond to Maslow's physiological and safety needs. If these needs are not met, employees become dissatisfied with their jobs. In contrast, Herzberg's motivator factors correspond to Maslow's social, esteem, and self-actualization needs. If these needs are met, employees become motivated and productive.

(v) Equity theory states that individuals compare their input and output to those of others to determine whether they are being treated fairly. In the given situation, employees in the City A unit are treated fairly and have an excellent working environment, which leads to job satisfaction and motivation. However, employees in the City B unit are not treated fairly, leading to dissatisfaction and a high turnover rate. Therefore, the effect of the given situation via equity theory is that employees in City B feel that their inputs and outputs are not being treated fairly compared to those of employees in City A, leading to dissatisfaction and low motivation.

To know more about Maslow's theory, visit:

https://brainly.com/question/33539726

#SPJ11

our practical report must have an introduction where you will introduce your experiments topics and it need to be divided into 3 paragraphs,
1. Paragraph one, give a brieve definition of your topics 2. Paragraph two, give a brieve history on motor failure analyses and link it to todays applications and methods used in this day and age. 3. Paragraph three, introduce your work, (Name the paragraph the: AIM) by stating what is required from you on this assignment. [THIS IS A VERY IMPORTANT PARAGRAPH] [This paragraph and your conclusion must relate to each other]

Answers

When writing a practical report, you will need to have an introduction where you introduce your experimental topics and it should be divided into 3 paragraphs.

The following is an outline of how the introduction should be structured:

This paragraph should give a brief definition of your topics. Here, you should explain what your experimental topics are and why they are important. It is important to be clear and concise in this paragraph.  This paragraph should provide a brief history of motor failure analyses and link it to today's applications and methods used in this day and age.

Here, you should explain how motor failure analyses have evolved over time and how they are used today. You should also discuss the methods used in this day and age and how they are different from the methods used in the past. This paragraph should introduce your work and state what is required from you on this assignment. You should name the paragraph the AIM.

To know more about practical visit:

https://brainly.com/question/32439310

#SPJ11

An amplifier with 20dB gain is connected to another with 10dB gain by means of a transmission line with a loss of 4dB. If a signal with a power level of -14dBm were applied to the system, calculate the power output.

Answers

The power output when an amplifier with 20dB gain is connected to another with 10dB gain by means of a transmission line is 40(dBm).

How to calculate the value

From the information, an amplifier with 20dB gain is connected to another with 10dB gain by means of a transmission line with a loss of 4dB. If a signal with a power level of -14dBm were applied to the system.

According to question if input signal power is Pin(dBm) =14(dBm)

Pout(dBm) =Pin(dBm) +G1(dB) –L(dB) +G2(dB)

=14(dBm) +20(dB)–4(db) +10(dB)

=40(dBm)

Learn more about power on

https://brainly.com/question/1634438

#SPJ4

Steam enters a diffuster steadily at a pressure of 400 psia and a temperature of Tdiffuser = 500.0 °F. The velocity of the steam at the inlet is Veldiffuser 80.0 ft s =  and the mass flow rate is 5 lbm/s. What is the inlet area of the diffuser? ANS: 11.57in^2

Answers

The inlet area of the diffuser is 11.57 in^2.

To determine the inlet area of the diffuser, we can use the mass flow rate and the velocity of the steam at the inlet. The mass flow rate is given as 5 lbm/s, and the velocity is given as 80.0 ft/s.

The mass flow rate, denoted by m_dot, is equal to the product of density (ρ) and velocity (V) times the cross-sectional area (A) of the flow. Mathematically, this can be expressed as:

m_dot = ρ * V * A

Rearranging the equation, we can solve for the cross-sectional area:

A = m_dot / (ρ * V)

Given the values for mass flow rate, velocity, and the properties of steam at the inlet (pressure and temperature), we can calculate the density of the steam using steam tables or thermodynamic properties of the fluid. Once we have the density, we can substitute the values into the equation to find the inlet area of the diffuser.

To learn more about  diffuser.

brainly.com/question/14852229

#SPJ11

Question 1: Answer all questions Write any two important difference between friction wheel and gear. [1 mark] Question 2: Write a short note on gear drives giving their merits and demerits. 11.5 marks

Answers

Wheel and Gear Friction Wheel and Gear both are used to transmit power. Friction wheel is a simple device that is commonly used in low power applications. It is also known as a belt drive and can be found in home appliances such as washing machines, mixers, etc.

Friction wheels work by using the friction between the wheel and the belt to transmit power. On the other hand, gear drives are more commonly used in high power applications. Gears can be found in cars, trains, wind turbines, and many other machines. They transmit power by meshing together and transferring torque. Two important differences between Friction Wheel and Gear are: Friction wheels are easy to maintain while gears require more maintenance. Friction wheels are less expensive than gears.

Merits of Gear Drives:High efficiency: Gear drives have high efficiency as compared to other drives like belt drives.No slippage: Gear drives have no slippage, making them suitable for high power transmission and critical applications.Long life: Gear drives have a longer life than belt drives as they are made of metal. Hence they are more reliable and can be used for a longer duration of time. Smooth operation: Gear drives provide smooth operation as they don't slip and produce less noise.

To know more about transmit visit:

https://brainly.com/question/32340264

#SPJ11

Find the production cost per 1000 kg steam in a steam plant when the evaporation rate is
7.2 kg steam per kg coal; initial cost of plant, $150,000; annual operational cost exclusive
of coal, $15,000. Assume life of 20 years; no final value; interest on borrowed capital, 4%;
on sinking fund, 3%. Average steam production is 14,500 kg per hr; cost of coal, $8.00 per
ton.

Answers

The production cost per 1000 kg steam in a steam plant when the evaporation rate is 7.2 kg steam per kg coal is $18.03. This is obtained as follows;

Step-by-step explanation:

The steam produced from the combustion of coal in a steam plant can be evaluated by first finding the amount of steam generated per kg of coal burned. This is called the evaporation rate.The evaporation rate is given as 7.2 kg steam per kg coal.The cost of coal is given as $8.00 per ton.The steam plant has an average steam production of 14,500 kg per hr.Annual operational cost exclusive of coal is $15,000.The initial cost of plant is $150,000.The life of the steam plant is 20 years.

The interest on borrowed capital is 4% while the interest on the sinking fund is 3%.To find the cost of steam production per 1000 kg, the following calculations are made;

Total amount of steam produced in one year = 14,500 * 24 * 365 = 126,540,000 kg

Annual coal consumption = 126,540,000 / 7.2 = 17,541,666.67 kg

Total cost of coal in one year = (17,541,666.67 / 1000) * $8.00 = $140,333.33

Total cost of operation per year = $140,333.33 + $15,000 = $155,333.33

Annual equivalent charge = AEC = 1 + i/n - 1/(1+i/n)^n*t

Where i = interest n = number of years for which the sum is invest

dt = total life of the investment AEC = 1 + 0.04/1 - 1/(1+0.04/1)^(1*20) = 1.7487

Annual equivalent disbursement = AED = S / a

Where S = initial cost of plant + sum of annual cost (AEC) for n y

earsa = annuity factor obtained from the tables

.AED = $150,000 / 3.8879 = $38,595.69

Annual sinking fund = AS = AED * i / (1 - 1/(1+i/n)^n*t)AS = $38,595.69 * 0.03 / (1 - 1/(1+0.03/1)^(1*20)) = $1,596.51

Total annual cost of the steam plant

= $155,333.33 + $1,596.51

= $156,929.84

Cost of steam production per 1000 kg = 1000 / (126,540,000 / 14,500) * $156,929.84 = $18.03Therefore, the cost of steam production per 1000 kg is $18.03.

To know more about evaporation visit :

https://brainly.com/question/28319650

#SPJ11

Air with mass of 12 kg expands polytropically (n=1.50) in a closed system from 720 °C to 20 °C. Calculate in MJ both the work and the heat exchanged with the surroundings

Answers

By applying these calculations with the given values, we can determine both the work and the heat exchanged in megajoules during the polytropic expansion of air.

To calculate the work and heat exchanged during the polytropic expansion of air, we can use the first law of thermodynamics. The first law states that the change in internal energy (ΔU) of a system is equal to the heat (Q) added to the system minus the work (W) done by the system:

ΔU = Q - W

In this case, we need to calculate the work done and the heat exchanged. The work done during the polytropic expansion can be expressed as:

W = ∫ P1V1 to P2V2 P dV / (1 - n)

Where P1 and P2 are the initial and final pressures, V1 and V2 are the initial and final volumes, n is the polytropic index (given as 1.50), and P is the pressure at any given point during the expansion.

To calculate the heat exchanged, we can use the relationship:

Q = ΔU + W

Given the initial and final temperatures, we can calculate the change in internal energy using the specific heat capacity of air at constant volume (Cv). The change in internal energy can be calculated as:

ΔU = m * Cv * (T2 - T1)

Where m is the mass of air.

Once we have ΔU, we can calculate the heat exchanged (Q) using the equation Q = ΔU + W.

Finally, we convert the work and heat from Joules to megajoules by dividing the results by 1,000,000.

To know more about polytropic visit

https://brainly.com/question/33284577

#SPJ11

2. Consider a silicon JFET having an n-channel region of donor concentration 1x10¹⁶ cm. (a) Determine the width of the n-channel region for a pinch-off voltage of 12 V. (b) What would the necessary drain voltage (VD) be if the gate voltage is -9 V? (c) Assume the width of the n-channel region to be 40 μm. If no gate voltage is applied, what is the minimum necessary drain voltage for pinch-off to occur? (d) Assume a rectangular n-channel of length 1 mm. What would be the magnitude of the electric field in the channel for case (c) above?

Answers

The electric field in the channel is 12,000 V/m.

a) Pinch off occurs when the VGS = Vp. for silicon JFETs, Vp = |2 |V for n-channel JFETs. The channel width can be determined with the equation W = Φ/Vp, where Φ is the donor concentration in the channel. W = 1x10¹⁶ cm³/V·s/12 V = 8.3×10¹⁴ cm.

b) To maintain pinch-off with VGS = -9 V, the drain voltage (VD) must be greater than or equal to -12 V.

c) For a given channel width, the minimum VD necessary for pinch-off to occur, is Vp or 12 V.

d) The electric field in the channel can be calculated with the equation E = VD/L, where L is the length of the channel. E = 12V/1mm = 12,000 V/m.

Therefore, the electric field in the channel is 12,000 V/m.

Learn more about the electric field here:

https://brainly.com/question/11482745.

#SPJ4

A 12 1/8 inch hole is drilled 2,652 feet into the earth. Casing that has a 9 3/4 inch outside diameter is run to the bottom of the hole. 62 barrels of a spacer fluid is pumped down the casing and up the space between the casing and the hole. If each joint of casing is 30 feet long. How far out of the drilled hole will the casing be when it is resting on the bottom of the hole? a 89 b 2634 c 30 d 18

Answers

To determine the distance out of the drilled hole the casing will be when it is resting on the bottom of the hole.

Let's begin by identifying the given values before making use of the casing movement calculation. Provided values are:Hole diameter: 12 1/8 inchDistance drilled: 2,652 feetCasing diameter: 9 3/4 inchNumber of barrels of a spacer fluid pumped down the casing: 62Length of each joint of casing: 30 feet Calculation of the casing movementThe first thing to do is to determine the total length of the casing to be run from the surface to the bottom of the drilled hole. The casing will be run in sections of 30 feet length, so the total length of the casing to be run is the quotient of the distance drilled and the length of each joint of casing.

So:Total length of casing = Distance drilled / Length of each joint of casing = 2,652 feet / 30 feet = 88.4 ≈ 89 joints of casingNext, to calculate the length of the space between the casing and the hole, we subtract the diameter of the casing from the diameter of the hole and divide by 2. Then multiply by the number of joints of casing run to the bottom of the hole, and multiply again by 12 to convert feet to inches.So: Length of space between casing and hole = [(12 1/8 inch - 9 3/4 inch) / 2] × 89 × 12= (2 3/8 inch / 2) × 89 × 12= 2.375 × 89 × 12= 2,652 ≈ 2634 inch

Finally, to calculate the distance out of the drilled hole the casing will be when it is resting on the bottom of the hole, we subtract the length of the space between the casing and the hole from the distance drilled. So: Distance out of the drilled hole = Distance drilled - Length of space between casing and hole= 2,652 feet - (2634 inch / 12)= 2,652 feet - 219.5 feet= 2,432.5 feetTherefore, the distance out of the drilled hole the casing will be when it is resting on the bottom of the hole is approximately 2,432.5 feet, which is option C.

To know more about drilled hole visit:

brainly.com/question/31140236

#SPJ11

An ideal Otto engine with an air compression ratio of 9 starts
with an air pressure of 90kpa and a temperature of 25 C. what is
the temperature after compression?

Answers

the temperature after compression is 2682 K. In an ideal Otto engine with an air compression ratio of 9 starts with an air pressure of 90kpa and a temperature of 25 C,

the temperature after compression can be determined using the ideal gas law. The ideal gas law is given as;PV=nRTWhere P is the pressure, V is the volume, n is the number of moles of the gas, R is the gas constant, and T is the temperature.In the problem above, we are interested in finding the final temperature (T2) after compression given initial conditions of pressure (P1)

temperature (T1) which are; P1 = 90 kPa and T1 = 25 °C = 298 K respectively. The air compression ratio is given as; r = 9. Therefore, the volume at the end of compression (V2) will be 1/9th of the initial volume (V1) that is;V2 = V1 / 9.From the ideal gas law, we have;P1V1 / T1 = P2V2 / T2Where;P2 = P1rV2 = V1/9Substituting the values gives;P1V1 / T1 = P1rV1 / 9T2 = T1r9T2 = 298 K x 9T2 = 2682 KT

To know more about temperature  visit :-

https://brainly.com/question/14532989

#SPJ11

You run a corrosion test and determine that after 48 hours a Cobalt block lost 45 grams of material due to oxidation. What was the current flow (in amps) during the corrosion process? a 0.243 amps b 0.853 amps c 0.426 amps d 3.069 amps

Answers

The rate of corrosion can be determined by using the formula; Rate of corrosion = (Weight loss due to corrosion/time taken for corrosion to occur) × (Specific gravity of material).

Where; Weight loss due to corrosion = 45 grams

Time taken for corrosion to occur = 48 hours

Specific gravity of material = Density of material/density of water

Density of cobalt (Co) = 8.9 g/cm³Density of water = 1 g/cm³

Density of Co/Density of water = 8.9/1 = 8.9

Rate of corrosion = (Weight loss due to corrosion/time taken for corrosion to occur) × (Specific gravity of material)=(45 g/48 hours) × (8.9)= 0.0526 g/hour

Current flow can be determined by the Faraday’s law of electrolysis formula;

Weight loss due to corrosion = (Current flow × Time taken for corrosion to occur × Atomic weight of metal)/ (96,485 Coulombs)

Where; Atomic weight of cobalt (Co) = 58.93 g/mole

Current flow = (Weight loss due to corrosion × 96,485 Coulombs)/(Time taken for corrosion to occur × Atomic weight of metal)= (45 g × 96,485 C)/(48 h × 60 × 60 s/h × 58.93 g/mole)= 0.243 amps

Given, Weight loss due to corrosion = 45 grams

Time taken for corrosion to occur = 48 hours

Specific gravity of cobalt = 8.9 g/cm³

We know that, the rate of corrosion can be determined by using the formula; Rate of corrosion = (Weight loss due to corrosion/time taken for corrosion to occur) × (Specific gravity of material).By substituting the given values, we get;Rate of corrosion = (45 g/48 hours) × (8.9)= 0.0526 g/hour

Faraday’s law of electrolysis formula is given by;

Weight loss due to corrosion = (Current flow × Time taken for corrosion to occur × Atomic weight of metal)/ (96,485 Coulombs)

Atomic weight of cobalt (Co) = 58.93 g/mole

By substituting the given values, we get;

Current flow = (Weight loss due to corrosion × 96,485 Coulombs)/(Time taken for corrosion to occur × Atomic weight of metal)

= (45 g × 96,485 C)/(48 h × 60 × 60 s/h × 58.93 g/mole)= 0.243 amps

Hence, the current flow (in amps) during the corrosion process is 0.243 amps.

Therefore, the correct option is a 0.243 amps as calculated above.

Learn more about corrosion here:

brainly.com/question/12950321

#SPJ11

A 0.02 m³ tank contains 1.6 kg of argon gas at a temperature of 110 K. Using the van de Waal's equation, what is the pressure inside the tank? Express your answer in kPa.

Answers

The pressure inside the tank is approximately 28.63 kPa by using van der Waal's equation.

The van der Waals equation for a real gas is given by:

(P + a(n/V)²)(V - nb) = nRT

Where:

P is the pressure

V is the volume

n is the number of moles of gas

R is the ideal gas constant

T is the temperature

a and b are the van der Waals constants specific to the gas

First, we need to determine the number of moles (n) of argon gas. We can use the ideal gas equation to do this:

PV = nRT

Rearranging the equation, we have:

n = PV / RT

Given:

V = 0.02 m³

T = 110 K

m (mass of argon) = 1.6 kg

molar mass of argon = 39.95 g/mol

First, we convert the mass of argon to moles:

n = (1.6 kg / 39.95 g/mol)

Now, we can substitute the values into the van der Waals equation to calculate the pressure (P):

(P + a(n/V)²)(V - nb) = nRT

To solve for P, we rearrange the equation:

P = (nRT / (V - nb)) - (a(n/V)²)

Substituting the values, we get:

P = [(1.6 kg / 39.95 g/mol) * (8.314 J/(molK)) * (110 K)] / (0.02 m³ - 0.0266 m³/mol * (1.6 kg / 39.95 g/mol)) - (1.355 Jm³/(mol²))

Calculating this expression gives us:

P ≈ 28627.89 Pa

Converting Pa to kPa:

P ≈ 28.63 kPa

To know more about pressure visit

https://brainly.com/question/30638002

#SPJ11

QUESTION 1 Which of the followings is true? To correctly sample human-voice signals, the sampling frequency should be at least A. 8kHz. B. 12kHz. C. 4kHz. D. 16kHz. QUESTION 2 Which of the followings is true? A. The unit step can be given as a unit rectangular pulse. B. The unit rectangular pulse can be expressed using two step functions. C. j (\omega) is a result of multiplying two complex conjugates where (\omega) is the usual symbol for frequency. D. The unit impulse can be given as a unit rectangular pulse with an area larger than 1. QUESTION 3 Which of the followings is true? A. The phase response typically includes atan and tan functions. B. The phase response typically includes tan function. C. The phase response typically includes square root of angles. D. The phase response typically includes atan function.

Answers

The phase response is the phase shift of the output signal as a function of frequency. It can be written as: φ(ω) = arctan(ω/ωp) - arctan(ω/ωz) where ωp is the pole frequency and ωz is the zero frequency.

QUESTION 1: The correct answer is option D) 16kHz.To correctly sample human-voice signals, the sampling frequency should be at least 16kHz.

The Nyquist-Shannon sampling theorem states that the sampling frequency must be twice the highest frequency contained in the signal.

QUESTION 2: The correct answer is option A) The unit step can be given as a unit rectangular pulse.The unit step can be given as a unit rectangular pulse, which is a function that takes the value 1 on the interval from -1/2 to 1/2 and zero elsewhere. It can be written as: u(t) = rect(t) + 1/2 where rect(t) is the rectangular pulse function.

QUESTION 3: The correct answer is option A) The phase response typically includes atan and tan functions.The phase response typically includes atan and tan functions.

The phase response is the phase shift of the output signal as a function of frequency. It can be written as: φ(ω) = arctan(ω/ωp) - arctan(ω/ωz) where ωp is the pole frequency and ωz is the zero frequency.

To know more about frequency visit:

brainly.com/question/33223954

#SPJ11

A velocity compounded impulse turbine has two rows of moving blades with a row of fixed blades between them. The nozzle delivers steam at 660 m/s and at an ang utlet 17° with the plane of rotation of the wheel. The first row of moving blades has an outlet angle of 18° and the second row has an outlet angle of 36°. The row of fixed blades has an outlet angle of 22°. The mean radius of the blade wheel is 155 mm and it rotates at 4 000 r/min. The steam flow rate is 80 kg/min and its velocity is reduced by 10% over all the blades.
Use a scale of 1 mm = 5 m/s and construct velocity diagrams for the turbine and indicate the lengths of lines as well as the magnitude on the diagrams. Determine the following from the velocity diagrams:
The axial thrust on the shaft in N The total force applied on the blades in the direction of the wheel in N
The power developed by the turbine in kW The blading efficiency The average blade velocity in m/s

Answers

The axial thrust on the shaft is 286.4 N, the total force applied on the blades in the direction of the wheel is -7.874 N, the power developed by the turbine is 541.23 kW, the blading efficiency is 84.5%, and the average blade velocity is 673.08 m/s.

Velocity of steam at nozzle outlet, V1 = 660 m/s

Angle of outlet of steam from the nozzle, α1 = 17°

Blades outlet angle of first moving row of turbine, β2 = 18°

Blades outlet angle of second moving row of turbine, β2 = 36°

Blades outlet angle of the row of fixed blades, βf = 22°

Mean radius of the blade wheel, r = 155 mm = 0.155 m

Rotational speed of the blade wheel, N = 4000 rpm

Steam flow rate, m = 80 kg/min

Reduction in steam velocity over all the blades, i.e., (V1 − V2)/V1 = 10% = 0.1

Scale used, 1 mm = 5 m/s (for drawing velocity diagrams)

The length of the blade in the first and second rows of the turbine blades can be determined using the velocity diagram.

Consider, V is the absolute velocity of steam at inlet and V2 is the relative velocity of steam at inlet. Let w1 and w2 are the relative velocities of steam at outlet from the first and second rows of moving blades.

Hence, using the law of cosines, we get

V2² = w1² + V1² – 2w1V1 cos (α1 – β1)

For the first row of blades, β1 = 18°V2² = w1² + 660² – 2 × 660w1 cos (17° – 18°)

w1 = 680.62 m/s

The length of the velocity diagram is proportional to w1, i.e., 680.62/5 = 136.124 mm

Similarly, for the second row of moving blades, β1 = 36°V2² = w2² + 660² – 2 × 660w2 cos (17° – 36°)

w2 = 690.99 m/s

The length of the velocity diagram is proportional to w2, i.e., 690.99/5 = 138.198 mm

Let w1′ and w2′ be the relative velocities of steam at outlet from the first and second rows of blades, respectively.Using the law of cosines, we get

V2² = w1′² + V1² – 2w1′V1 cos (α1 – βf)

For the row of fixed blades, β1 = 22°

V2² = w1′² + 660² – 2 × 660w1′ cos (17° – 22°)

w1′ = 695.32 m/s

The length of the velocity diagram is proportional to w1′, i.e., 695.32/5 = 139.064 mm

The axial thrust on the shaft is given by difference between axial forces acting on the first and second moving row of blades.

Hence,Total axial thrust on the shaft = (m × (w1 sin β1 + w2 sin β2)) − (m × w1′ sin βf) = (80/60) × (680.62 sin 18° + 690.99 sin 36°) – (80/60) × 695.32 sin 22° = 286.4 N

The tangential force acting on each blade can be given by,f = (m (w1 − w1′)) / N

Length of the blade wheel = 2πr = 2 × 3.14 × 0.155 = 0.973 m

Total tangential force on the blade = f × length of blade wheel = ((80/60) × (680.62 − 695.32)) / 4000 × 0.973 = −7.874 N (negative sign implies the direction of force is opposite to the direction of wheel rotation)

Power developed by the turbine can be given by,P = m(w1V1 − w2V2) / 1000 = 80 × (680.62 × 660 − 690.99 × 656.05) / 1000 = 541.23 kW

The blade efficiency can be given by,ηb = (actual work done / work done if steam is entirely used in nozzle) = ((w1V1 − w2V2) / (w1V1 − V2)) = 84.5%

The average blade velocity can be determined by,πDN = 2πNr

Average blade velocity = Vavg = (2w1 + V1)/3 = (2 × 680.62 + 660)/3 = 673.08 m/s

Learn more about velocity at

https://brainly.com/question/33293748

#SPJ11

Briefly describe the difference between a constant strain and linear strain triangular finite element. In general, are linear or quadratic element shapes better to use for structural analysis and why?

Answers

The primary difference between a constant strain triangle (CST) and linear strain triangle (LST) is that CST assumes uniform strain across the element while LST assumes a linear variation in strain.

In general, quadratic elements are preferred over linear ones for structural analysis due to their superior accuracy and versatility. Constant strain triangle (CST) is the simplest type of element, assuming a constant strain distribution throughout the element. This leads to less accurate results in complex problems. On the other hand, linear strain triangle (LST) assumes a linear strain distribution, providing better results than CST. Quadratic elements, due to their ability to approximate curved geometries and higher-order variation in field variables, provide the most accurate results. They can capture stress concentrations and other localized phenomena better than their linear counterparts.

Learn more about finite element analysis here:

https://brainly.com/question/13088387

#SPJ11

Question 1: Design a linkage system such that as a float for liquid level measurement moves from 0 to 1 m, an LVDT core moves over its linear range of 3 cm. Question 2: A pressure transducer outputs a voltage to a readout device that converts the signal back to pressure: The device specifications are: Resolution: 0.1 psi Sensitivity error: 0.1 psi Linearity error: within 0.1% of reading Drift: less than 0.1 psi/6 months (32-90F) The transducer has a claimed accuracy of within 0.5% of reading. For a nominal pressure of 100 psi at 70F, estimate the design-stage uncertainty in a measured pressure.

Answers

When a float is present for the measurement of liquid level moving from 0 to 1 m, the LVDT core moves over its linear range of 3 cm. The float will be attached to the end of the linkage system so that the float moves from 0 to 1 m, and the LVDT core moves over its linear range of 3 cm.

The system will be designed in such a way that the float moves in a linear manner from 0 to 1 m. The linkage system is shown below: Let the float be situated at the beginning of the linkage system and the LVDT core be located at the end of the linkage system.

The length of the linkage system is defined by the float movement range (0-1 m). We must adjust the lengths of the links to achieve a LVDT core movement range of 3 cm. The float will be attached to the first link of the linkage system, which will be a straight link, as shown in the figure above.

To know more about measurement visit:

https://brainly.com/question/28913275

#SPJ11

Consider an FSM that has a 1-bit input A and a 1-bit
output F (found). Design a Moore FSM that repeatedly detects the serial input: 10110.
When that input is detected, the output F should assert for one clock cycle. So, A changes
over time – it is a serial input, because a new bit appears on that signal each clock cycle.
(a) Sketch the state transition diagram.
(b) Implement the FSM in SystemVerilog. Name the module: seqdetector.

Answers

Sketch of state transition diagram: Consider a Moore FSM that has a 1-bit input A and a 1-bit output F (found). Design a Moore FSM that repeatedly detects the serial input: 10110. When that input is detected, the output F should assert for one clock cycle.

The module has two ports, an input port a and an output port f. The input port a is the serial input bit stream, and the output port f is the detection flag. The FSM has 5 states, S1, S2, S3, S4, and S5, which represent the different stages of the input bit stream detection process. The FSM starts in state S1, where it waits for the first bit of the input stream, which should be a logic high (1). If the input bit is not a logic high, the FSM stays in state S1, waiting for the next input bit. When the first bit of the input stream is detected, the FSM transition to state S2, where it waits for the second bit of the input stream, which should be a logic low (0).

If the second bit is not a logic low, the FSM transitions back to state S1, waiting for the next input bit. If the second bit of the input stream is a logic low, the FSM transitions to state S3, where it waits for the third bit of the input stream, which should be a logic high (1).

To know more about state transition diagram visit:

https://brainly.com/question/13263832

#SPJ11

Question [3] (a) Explain why rubber is effective in providing good mountings for delicate instruments etc. (6) (b) A delicate instrument with a mass of 1.2kg is mounted onto a vibrating plate using rubber mounts with a total stiffness of 3kN/m and a damping coefficient of 200Ns/m. (1) If the plate begins vibrating and the frequency is increased from zero to 650Hz. Sketch a graph of the amplitude of vibrations of the instrument versus the plate frequency highlighting any significant features. (5) (ii) Indicate on the graph what the effect of changing the rubber mounts with equivalent steel springs of similar stiffness would have on the response. (2) (c) Determine the maximum amplitude of vibrations of the instrument when the plate is vibrated with an amplitude of 10mm. (4) (d) Determine the maximum velocity and acceleration of the instrument (3) (e) Describe in detail 3 ways of reducing the amplitude of vibrations of the instrument (5)

Answers

Rubber is effective in providing good mountings for delicate instruments due to its unique properties, such as high elasticity, flexibility, and damping capabilities. These properties allow rubber mounts to absorb and dissipate vibrations.

(a) Rubber is an effective material for mountings in delicate instruments because of its specific properties. Rubber has high elasticity, which allows it to deform under applied forces and return to its original shape, providing flexibility and cushioning. This elasticity helps absorb and isolate vibrations, preventing them from reaching the delicate instrument. Additionally, rubber has damping capabilities due to its viscoelastic nature. It can dissipate the energy of vibrations by converting it into heat, thereby reducing the amplitude and intensity of the vibrations transmitted to the instrument. (b) When the plate begins vibrating and the frequency increases.

Learn more about dissipate vibrations here:

https://brainly.com/question/29148671

#SPJ11

A single screw extruder has a screw with a diameter of 48 mm and the screw angle is 17.7'. The screw length is 0.8 m and the flight depth is 3 mm. If the screw speed is 50 rpm and the viscosity of the plastic is 250 Ns/m2calculate the output when the extruder is producing a medical tube through a die with an outside diameter of 12 mm an inside diameter of 10.4 mm and a length of 13 mm. You may assume that leakage losses from the extruder are negligible.

Answers

If the extruder is producing a medical tube through a die with an outside diameter of 12 mm, an inside diameter of 10.4 mm, and a length of 13 mm, the output would be 0.048 kg/s, since Output = 0.043 / 0.9.

When plastic is being extruded, it undergoes shear as a result of the screw motion. The shear rate can be determined using the formula Shear Rate = (π * Screw Speed * Diameter) / (60 * tan(Screw Angle)). For instance, Shear Rate = (π * 50 * 48) / (60 * tan(17.7)) equals 217.5 s^-1.

Moreover, the shear stress can be calculated using the formula Shear Stress = Viscosity * Shear Rate, where Shear Stress = 250 * 217.5, giving 54375 N/m2. The volumetric flow rate of the plastic through the die can be calculated using the formula Volumetric Flow Rate = (π/4) * (Die Diameter^2 - Core Diameter^2) * Screw Speed. For example, Volumetric Flow Rate = (π/4) * (0.012^2 - 0.0104^2) * 50, which is 3.584 x 10^-5 m3/s.

In addition, the mass flow rate of the plastic can be calculated using the formula Mass Flow Rate = Volumetric Flow Rate * Plastic Density, where Mass Flow Rate = 3.584 x 10^-5 * 1200 equals 0.043 kg/s. Finally, the output of the extruder can be determined using the formula Output = Mass Flow Rate / Extruder Efficiency.

Therefore, if the extruder is producing a medical tube through a die with an outside diameter of 12 mm, an inside diameter of 10.4 mm, and a length of 13 mm, the output would be 0.048 kg/s, since Output = 0.043 / 0.9.

Know more about Shear Rate here:

https://brainly.com/question/31629428

#SPJ11

A tank with an inlet and an outlet initially contains 200 gal of water in which 40 lb of salt are dissolved. Then five gal of brine, each containing 10 lb of dissolved salt, run into the tank per minute through the inlet, and the mixture, kept uniform by stirring, runs out of the tank through the outlet at the same rate. (a) Find the amount of salt y(t) in the tank at any time t. (b) Find the limit of the salt in the tank.

Answers

The amount of salt in the tank at any time t is y(t) = 2000 - 50 e^(-t/40), the limit of the salt in the tank is 2000 pounds.

(a) The amount of salt y(t) in the tank at any time t:Initially, the tank contains 200 gallons of water with 40 pounds of salt. As brine is entering at a rate of 5 gallons per minute, then the amount of salt in this brine is 10 pounds per gallon. Let x(t) denote the number of gallons of brine that has entered the tank. Then, at any time t, the amount of salt in the tank is y(t).Thus, the differential equation of the amount of salt in the tank over time can be derived as:dy/dt = (10 lb/gal)(5 gal/min) - y/200 (5 gal/min)dy/dt = 50 - y/40

Rearranging the differential equation: dy/dt + y/40 = 50. The integrating factor is: e^(∫1/40dt) = e^(t/40)Multiplying both sides by the integrating factor: e^(t/40) dy/dt + (1/40) e^(t/40) y = (50/1) e^(t/40)Simplifying the left-hand side: (e^(t/40) y)' = (50/1) e^(t/40)Integrating both sides: e^(t/40) y = (50/1) ∫e^(t/40)dt + C, where C is the constant of integration.Rewriting the equation: y = 2000 - 50 e^(-t/40)

(b) The limit of the salt in the tank:The limit of y(t) as t approaches infinity can be found by taking the limit as t approaches infinity of the expression 2000 - 50 e^(-t/40).As e^(-t/40) approaches 0 as t approaches infinity, the limit of y(t) is 2000.

To know more about stirring visit :

https://brainly.com/question/31406450

#SPJ11

Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10MPa and 5008C and is cooled in the condenser at a pressure of 10kPa. Sketch the cycle on a T-s diagram with respect to saturation lines, and determine: (a) the quality of the steam at the turbine exit, (b) the thermal efficiency of the cycle, (c) the mass flow rate of the steam. (d) Repeat Prob. (a)-(c) assuming an isentropic efficiency of 85 percent for both the turbine and the pump.

Answers

Given data:Pressure of steam entering turbine (P1) = 10 MPaTemperature of steam entering turbine (T1) = 500 degree CPressure of steam at the condenser (P2) = 10 kPaPower generated (W) = 210 MWNow, let's draw the T-s diagram with respect to saturation lines below:

1. The quality of steam at the turbine exit:From the T-s diagram, we can see that at the turbine exit, the state point lies somewhere between the two saturation lines.Using the steam tables, we can find the saturation temperature and pressure at the exit state:Pressure at the exit (P3) = 10 kPaSaturated temperature corresponding to P3 = 46.9 degree CEnthalpy of saturated liquid corresponding to P3 (h_f) = 191.81 kJ/kgEnthalpy of saturated vapor corresponding to P3 (h_g) = 2676.5 kJ/kgThe quality of steam (x) at the exit state is given by:x = (h - h_f)/(h_g - h_f)Where, h is the specific enthalpy at the exit state.

h = 191.81 + x(2676.5 - 191.81)h = 191.81 + 2421.69x= (h - h_f)/(h_g - h_f)x = (191.81 + 2421.69 - 191.81)/(2676.5 - 191.81)x = 0.91The quality of steam at the turbine exit is 0.91.2. Thermal efficiency of the cycle:For an ideal Rankine cycle, thermal efficiency is given by:eta_th = 1 - (T2/T1)Where, T2 and T1 are the temperatures of the steam at the condenser and the turbine inlet respectively.

To know more about Pressure  visit:

https://brainly.com/question/24719118

#SPJ11

A 0.02 m³ tank contains 1.6 kg of argon gas at a temperature of 120 K. Using the van de Waal's equation, what is the pressure inside the tank? Express your answer in kPa.

Answers

The pressure inside the tank is approximately 909.12 kPa using the van der Waals equation.

To determine the pressure inside the tank using the van der Waals equation, we need to consider the van der Waals constants for argon:

a = 1.3553 N²/m⁴

b = 0.0320 m³/kg

The van der Waals equation is given by:

P = (R * T) / (V - b) - (a * n²) / (V²)

where:

P is the pressure

R is the gas constant (8.314 J/(mol·K))

T is the temperature

V is the volume

n is the number of moles of the gas

First, we need to determine the number of moles of argon gas in the tank. We can use the ideal gas law:

PV = nRT

Rearranging the equation, we have:

n = PV / RT

Given:

V = 0.02 m³

m (mass) = 1.6 kg

M (molar mass of argon) = 39.95 g/mol

T = 120 K

Converting the mass of argon to moles:

n = (m / M) = (1.6 kg / 0.03995 kg/mol) = 40.10 mol

Now we can substitute the values into the van der Waals equation:

P = (R * T) / (V - b) - (a * n²) / (V²)

P = (8.314 J/(mol·K) * 120 K) / (0.02 m³ - 0.0320 m³/kg * 1.6 kg) - (1.3553 N²/m⁴ * (40.10 mol)²) / (0.02 m³)²

Calculating the pressure:

P ≈ 909.12 kPa

Therefore, the pressure inside the tank is approximately 909.12 kPa.

To know more about pressure, visit

https://brainly.com/question/30902944

#SPJ11

Square loop with sides a and wire radius b: LA = 2μo a/π=[In (a/b) - 0.774]

Answers

A square loop with sides a and wire radius b: LA = 2μo a/π=[In (a/b) - 0.774]The given equation states that the inductance of a square loop of sides a and wire radius b can be determined as LA = 2μo a/π=[In (a/b) - 0.774].

Here, 'a' and 'b' represent the sides and the wire radius of the square loop respectively. LA represents the inductance of the square loop.The above formula can be used to calculate the inductance of a square loop. We can use this formula to find the value of the inductance of a square loop of given dimensions.Let's understand the concept of inductance before diving into the calculation of the formula.What is Inductance?Inductance is defined as the ability of a component to store energy in a magnetic field

.Inductance is the resistance of an electrical conductor to a change in the flow of electric current. It is the property of a conductor that opposes any change in the current flowing through it. The larger the inductance of a conductor, the more energy it can store in a magnetic field created by an electric current flowing through it.The inductance of a square loop of sides 'a' and wire radius 'b' can be determined using the given formula LA = 2μo a/π=[In (a/b) - 0.774].

To know more about radius visit:

https://brainly.com/question/13449316

#SPJ11

The speed of a particle traveling along a straight line within a liquid is measured as a function of its position as v = (130 s) mm/s, where s is in millimeters. Part A Determine the particle's deceleration when it is located at point A, where SA = 90 mm. Express your answer to three significant figures and include the appropriate units. a = -40.0 mm/s²

Answers

To determine the particle's deceleration when it is located at point A, we need to differentiate the velocity function with respect to time. Given that the velocity function is v = (130 s) mm/s, where s is in millimeters:

v = 130s

To find the deceleration, we differentiate the velocity function with respect to time (s):

a = dv/dt = d(130s)/dt

Since the particle is traveling along a straight line within a liquid, we can assume that its velocity is a function of time only.

Differentiating the velocity function, we get:

a = 130 ds/dt

To find the deceleration at point A, where SA = 90 mm, we substitute the position value into the equation:

a = 130 d(90)/dt

Since the position is not given as a function of time, we assume that it is constant at SA = 90 mm.

Therefore, the deceleration at point A is:

a = 130 * 0 = 0 mm/s²

The deceleration at point A is 0 mm/s².

Learn more about velocity here

https://brainly.com/question/30505958

#SPJ11

Other Questions
what makes it possible to view Catholic social teachingas "a distinctive type of political theology"? Several models of ecological succession have been proposed.Which model has the following characteristics: early species modifythe environment enabling survival of intermediate species whichalso modify the environment making it less suitable for early species and more suitable for late-stage species, and then the late-stage Climax species do not change the environment in ways that favor other species?a. Tolerance Modelb. Nutrient Depletion Modelc. Inhibition Modeld. Facilitation Model there are two important properties of probabilities. 1) individual probabilities will always have values between and . 2) the sum of the probabilities of all individual outcomes must equal to . True / False (write "True" of "False" in the bank) 41) Storm events are usually short-lived so they are not considered an important cause of coastal erosion. 42) The CPRA claims there has been no success in coastal restoration efforts in the last 15 years due to a lack of funding. 43) Invasive species can only negatively affect coastal wetlands if they are large mammals. 44) Minerals are solid, natural, inorganic substances with a crystalline structure and definite chemical composition. 45) Magma with a high gas content will lead to a more explosive volcanic eruption. 46) Tidal flats are more easily viewable at high tide. 47) Removing trees and other vegetation from a hillside can help keep the soils and bedrock in place during large rainfalls. "4. Mainly, stress effect (2 Points) a.Circadian rhythm b.Emotion c,All d.Heart Rate5. Which of the following is does not considered to be design principles in ergonomic (2 Points) a.Make it adjustable b.Custom fit each individual c.None d.Have several fixed sizes Factors of nonspecific protection of the organism against microorganisms? 3&4 please2 K/U Explain the difference between a stable isotope and a radioisotope. Provide an example other than oxygen to support your answer. 3 K/U Examine the information represented by the following pairs: Which of the following statements about base stacking interactions is true? A. They are a form of van der Waals interactions. B. They are an example of hydrogen bonding. C. They are a form of ionic in explain the meaning of the spontaneously symmetry brokenphase An investment offers $9,212 per year for 11 years, with the first payment occurring 5 years from now. If the required return is 7 percent, what is the value of the investment? (HINT: Remember that when you calculate the PV of the annuity, the claculator gives you the present value of the annuity 1 period before the annuity starts. So if the annuity starts in year 7, that calculator will to give you the present value of annuity in year 6. Now you have to bring this number to period 0 by inputting: N=6 (1 period before the annuity starts, in your case it would be a different number depending when your annuity starts) R=7 FV=Present value of annuity you found in step 1. And you solve for PV) What is meant by Smith Watson topper parameter and what are thebenefits of it ? The detectives assigned to the case were swift in retrieving the 0.25 caliber pistol that was used in the shooting. At the crime scene, they also collected DNA samples and fingerprints on the gun. As part of the team assigned to this case, explain why your team collected these pieces of evidence from the crime scene? Now we're going to design another "equalizer". Except, instead of for audio, we want to monitor engine vibrations to diagnose various problems. Suppose we have a four-cylinder engine with a single camshaft. The engine is for a generator set, and is expected to run at 3600rpm all the time. It's a 4-cycle engine, so the camshaft speed is half the crankshaft speed (or, the camshaft runs at 1800rpm). We want to measure the following things... Vibrations caused by crankshaft imbalance. Vibrations caused by camshaft imbalance. Vibrations caused by the exhaust wave. The exhaust wave pulses whenever an exhaust valve opens. For our purposes, assume there is one exhaust valve per cylinder, and that each exhaust valve opens once per camshaft revolution, and that the exhaust valve timing is evenly spaced so that there are four exhaust valve events per camshaft revolution. 1. Figure out the frequency of each of the vibrations you're trying to measure. 2. Set the cutoff frequencies for each of your bandpass filters. Language of Anatomy 3) Identify the prefix, suffix and root word for the term achondroplasia and then give what each term means. Prefix: Root: Suffix: What does this entire term translate to? A.)How much heat is required to raise thetemperature of 88.0 gg of water from its melting point to itsboiling point?Express your answer numerically in kilojoulesB.) Calculate the mass percent (m/m Psychographics: Why is Psychographics more valuable to marketersthan demographics in developing marketing strategies? ...[3] Hall effect measurement can be applied to the semiconductors for determination of the sheet conductivity and extraction of the carrier types, concentrations, and mobility. (a) Do an extensive veri a) if you took a larger amoumts of cananbis drugs for longer times, how would that it is going to affect your life and your health? what will be the symptoms?b) why the people are using the cannabis drug, again and again even when its puts them in danger? a) At what time point would a muscle begin to fatigue? Commenton the percentage decrease in contraction force by the end of astimulus.b) Provide a possible mechanism for why would a muscle won't be of a (28) Why do the pole and zero first order all pass filter's transfer function representation on the s-plane have to be at locations symmetrical. with respect to the jw axis (that is the vertical axis of s-plane)? Explain.