Answer:
9225 kg m/s
Explanation:
momentum = mass * velocity
momentum = 2050 * 4.5
momentum = 9225
What type of bond is CO2?||
Answer:
Lol
Explanation:
The Great Sandini is a 60 kg circus performer who is shot from a cannon (actually a spring gun). You don't find many men of his caliber, so you help him design a new gun. This new gun has a very large spring with a very small mass and a force constant of 1300 N/m that he will compress with a force of 6500 N. The inside of the gun barrel is coated with Teflon, so the average friction force will be only 50 N during the 5.0 mm he moves in the barrel.
Required:
At what speed will he emerge from the end of the barrel, 2.5 mabove his initial rest position?
Answer:
22m/s
Explanation:
Mass, m=60 kg
Force constant, k=1300N/m
Restoring force, Fx=6500 N
Average friction force, f=50 N
Length of barrel, l=5m
y=2.5 m
Initial velocity, u=0
[tex]F_x=kx[/tex]
Substitute the values
[tex]6500=1300x[/tex]
[tex]x=\frac{6500}{1300}=5[/tex]m
Work done due to friction force
[tex]W_f=fscos\theta[/tex]
We have [tex]\theta=180^{\circ}[/tex]
Substitute the values
[tex]W_f=50\times 5cos180^{\circ}[/tex]
[tex]W_f=-250J[/tex]
Initial kinetic energy, Ki=0
Initial gravitational energy, [tex]U_{grav,1}=0[/tex]\
Initial elastic potential energy
[tex]U_{el,1}=\frac{1}{2}kx^2=\frac{1}{2}(1300)(5^2)[/tex]
[tex]U_{el,1}=16250J[/tex]
Final elastic energy,[tex]U_{el,2}=0[/tex]
Final kinetic energy, [tex]K_f=\frac{1}{2}(60)v^2=30v^2[/tex]
Final gravitational energy, [tex]U_{grav,2}=mgh=60\times 9.8\times 2.5[/tex]
Final gravitational energy, [tex]U_{grav,2}=1470J[/tex]
Using work-energy theorem
[tex]K_i+U_{grav,1}+U_{el,1}+W_f=K_f+U_{grav,2}+U_{el,2}[/tex]
Substitute the values
[tex]0+0+16250-250=30v^2+1470+0[/tex]
[tex]16000-1470=30v^2[/tex]
[tex]14530=30v^2[/tex]
[tex]v^2=\frac{14530}{30}[/tex]
[tex]v=\sqrt{\frac{14530}{30}}[/tex]
[tex]v=22m/s[/tex]
State four factors affecting thermal conductivity
Answer:
∙ Temperature
∙ Concentration of electrolyte
∙ Nature of the electrolyte added
∙ Nature of solvent and its viscosity
Explanation:
Which of the following is a disadvantage of using solar energy
Please provide options.
Answer:
It requires a high initial investment
Explanation:
Determine the resultant force exerted on an object if these three forces are exerted on it: F1=3.0N upwards,F2=6.0N at 45° to the horizontal and F3=5.0 at 120° from the positive x-axis
I couldn't upload the complete pic because I'm browsing from phone
pls give me brainliest
⚠️I need help with the last question!⚠️
Answer:
I can't do your work for you but I can explain the last question;
The want you to tell them (In at least 3 sentences) Why you think your answers are correct or how your answer's match your hypothesis.
A hypothesis (for a little more help) is an idea or explanation that you then test through study and experimentation.
Outside science, a theory or guess can also be called a hypothesis. A hypothesis is something more than a wild guess but less than a well-established theory. Anyone who uses the word hypothesis is making a guess.
Explanation:
Sorry I didnt give you the exact answer but I hope this helps :)
Please help! quick and easy chart.
Answer:
sound and happiness are not matter
Explanation:
If an object has a mass of 210g and the net force acting upon it is 5.0N, what is the acceleration of that object?
Answer:
24ms^-2 (2 sig figs)
Explanation:
F = ma
This means that the sum of all forces (or the net force) acting upon an object is equal to its mass x accelleration.
Its important to convert all parts of this equations in to SI units such that Force (N), Mass (kg) and Accelleration (ms^-2) to make sure that your answer is in the correct units.
F = ma so 5 = 0.21a
a = 5/0.21
a = 23.810 ms^-2 (5 sig figs)
Steve is planning his annual Spring Break road trip. He pulls out his map and draws out his route to visit the five locations that he has planned for this year. They go in a counterclockwise loop and he ends up at home, where he started, just in time to start classes again. Whenever he is on the road he travels a constant 60 miles/hour. When Steve adds up the total distance traveled, as measured by his odometer, and divides it by the time that his trip took, he has measured what quantity?
a. His average velocity.
b. His average speed.
c. His instantaneous velocity.
d. His instantaneous speed.
Steve’s average velocity for the whole trip is:______
a. greater than 60 miles/hour.
b. equal to 60 miles/hour.
c. less than 60 mile/hour, but greater than zero.
d. exactly zero.
Answer:
Part 1
Steve is measuring his average speed
Part 2
Average velocity is equal to 60 miles per hour
Explanation:
Part 1
Average velocity is equal to total distance travelled divided by total time taken. It also takes into consideration the change of direction through out the journey.
Hence, Steve is measuring his average speed
Option A is correct
Part 2
Average velocity is equal to 60 miles per hour only because velocity is a vector quantity
Option B is correct
one car travels due east at 40 km/hr and a second car travels north at 40km/hr. Are their velocities equal?
Answer:
No.
Explanation:
Velocity is a vector quantity which means that it has a certain direction so things that move in different directions DO NOT have the same velocity.
The resolution of a telescope is ultimately limited by the diameter of its objective lens or mirror. A typical amateur astronomer's telescope may have a 6.09 in diameter mirror. What is the minimum angular separation (in arc seconds) of two stars that can be resolved with a 6.09 in scope
Answer:
θ = 3.19 arc second
Explanation:
The resolution of a telescope is given by the rayleigh criterion, which establishes that two objects are separated if the principal maximum of diffraction of one of them coincides with the first minimum of diffraction of the second object, based on this the solution is given by the first diffraction minimum, the a slit is
a sin θ = m λ
with m = 1
in the case of circular apertures the equation must be found in polar coordinates, therefore a numerical constant is introduced
a sin θ = 1.22 λ
Angles are measured in radians and in these experiments they are small
sin θ = θ
θ= 1.22 λ / a
in this case a = 6.09 in, the wavelength is wrong = 550 10⁻⁹ m which is the maximum resolution of the human eye
l
et's reduce the magnitudes to the SI system
d = 6.09‘ 2.54 10⁻-2 m / 1 inch = 15.4686 10-2 m
let's calculate
θ = 1.22 550 10-9 / 15.468 10-2
θ = 15.5 10⁻⁶ rad
rad = 2.06 105 s
θ = 15.5 10⁻⁶ rad 2.06 105s/ 1 rad
θ = 3.19 s
A Gaussian surface consists of a bottom surface made of a flat disk of radius R, in the horizontal plane centered on the origin and a top surface consisting of a hemisphere of the same radius R. A dipole is arranged as show where the charges are q both plus and minus and the separation is a. a)(5 points) What is the signof the electric flux FEthrough the entire Gaussian surface
Answer:
electric flux through the entire Gaussian surface will be positive ( + )
Explanation:
The dipole is surrounded by Gaussian surface of charge q
The electric flux will be positive
i.e. Ф = E. ds since the surface is a close one the direction of the area outwardly will be positive . therefore the angle between E and A < 90°
Hence the electric flux through the entire Gaussian surface will be positive
What is the ratio of the intensities of an earthquake P wave passing through the Earth and detected at two points 14 km and 44 km from the source?
Answer:
Explanation:
Intensity of a wave is inversely proportional to distance from source
I ∝ 1 / r
I is intensity , r is distance
I₁ / I₂ = r₂² / r₁²
ratio of intensity = 44² / 14²
= 9.87
intensity of earthquake of first place will be 9.87 times that of second place .
The work is calculated by replacing pressure with nRT/V then pulling nRT outside the integral. We are only allowed to pull T outside the integral in that example because:
a. we are always allowed to pull T outside a volume integral
b. T is constant for an isothermal process
c. it's an expansion not a compression
d. T has a positive value in that problem
Answer: b. T is constant for an isothermal process
Explanation:
In a general case for an ideal gas, we have the relation:
dW = -pdV.
If we integrate in both sides, we get:
W = ∫-pdV
Now, as the problem says, we can replace p by n*R*T/V
This is because of the equation for ideal gases.
p = n*R*T/V
replacing that in the equation we get
W = -∫pdV = -∫(n*R*T/V)dV
Now we want to take the n*R*T part outside of the integral.
But we only could do this if T does not depend on V.
If T is cosntant, then T does not depend on V, and we know that T is constant when we are in an isothermal process.
Where an isothermal process is a process where the temperature does not change, then T = constant.
Then n*R*T = constant = k
Because this is a constant, we could take it out of the integral so we get:
W = -∫(n*R*T/V)dV ) = -(n*R*T)∫(1/V)*dV
Then the correct option is option b.
b. T is constant for an isothermal process
Which of the following would MOST likely slow Earth's tectonic activity?
O A. Earth's crust becomes cooler.
O B. Earth's mantle becomes warmer.
O C. Earth's mantle becomes cooler.
O D. Earth's outer core becomes warmer.
The Answer to your question is:
A.
The Earth's tectonic activity occurs by the movement of the fourteen main tectonic plates of the planet, which move over the mantle continuously, and result in the formation of mountains, earthquakes, tsunamis, volcanic activities, etc.
The decrease in the Earth's tectonic activity would therefore occur if the Earth's mantle became cooler, as the tectonic plates move over the magma, which is a paste formed by silicate of iron and magnesium and whose temperature reaches 600° and 1,200° Celsius , driven by forces from inside the planet.
Therefore the letter C is correct, as with the Earth's mantle cooler, the magma would become more solid which would decrease the Earth's tectonic activity.
Learn more here:
https://brainly.com/question/17220703
A child and a sled with a combined mass of 50.0 kg slide down a frictionless slope. If the sled starts from rest and has a speed of 3.00 m/s at the bottom, what is the height of the hill?
Answer:
The height of the hill is 0.46 m.
Explanation:
Given;
mass of the child and sled, m = 50 kg
initial velocity of the sled, u = 0
final velocity of the sled, v = 3 m/s
The height of the high is calculated from the law of conservation of energy;
P.E at top = K.E at bottom
mgh = ¹/₂mv²
gh = ¹/₂v²
[tex]h = \frac{v^2}{2g} \\\\h = \frac{3^2}{2\times 9.8} \\\\h = 0.46 \ m[/tex]
Therefore, the height of the hill is 0.46 m.
Ocean waves crash on the beach at a velocity of 3.5 m/s. If the distance between the crests of each wave is 4 m, find the frequency of the waves.
a. 0.0088 Hz
b. 14.0 Hz
c. 1.14 Hz
d. 0.88 Hz
Answer:
d
Explanation:
velocity=frequency × wavelength
frequency=speed/wavelength
frequency=3.5÷4
=0.875~0.88
The frequency of the waves is (d) 0.88 Hz. So, correct answer is option (d).
What is frequency of wave?The frequency of a sinusoidal wave is the number of full oscillations performed by any wave constituent in a unit of time. According to the definition of frequency, if a body is moving periodically, it has completed one cycle after going through a number of situations or postures and then returning to its initial position. Therefore, frequency is a quantity that describes the rate of oscillation and vibration.
Given parameter,
Velocity of the waves = 3.5 m/s.
distance between the crests of each wave, that is, wavelength of the waves = 4 m.
We know that, for a wave transmission,
velocity of wave =frequency of wave × wavelength of wave
⇒ frequency of wave=speed of wave/wavelength of wave
⇒ frequency of wave =3.5 m/s ÷4m
=0.875 Hz
≈ 0.88 Hz
Hence, the frequency of the waves is 0.88 Hz.
Learn more about frequency here:
https://brainly.com/question/5102661
#SPJ2
A 5.0-kg object is suspended by a string from the ceiling of an elevator that is accelerating downward at a rate of 2.6 m/s2. What is the tension in the string (in N)?
Answer:
36N
Explanation:
First draw a diagram so you can see which forces act in which direction.
Then define which is your positive direction. I chose the direction of accelleration (downward) to be positive. This means that the weight of the object is also acting in the positive direction but Tension is acting in the negative direction.
If the elevator which contains the object within is accellerating at 2.6 ms^-2 then the object and string system is also accellerating at the same rate.
F = ma where F is the resultant force.
Resultant for is Weight + Tension but tension is in the negative direction so
F = mg -T
F = 5g - T
F = ma so F = 5 x 2.6
13 = 5g-T
T = 5g - 13
T = 36N
(I've taken g = 9.8ms^-2 but if this is for a physics class I'd take it to be 9.81ms^-2)
We have that For a 5.0-kg object is suspended by a string from the ceiling of an elevator that is accelerating downward at a rate of 2.6 m/s2 he tension in the string (in N) is
T=62N
From the question we are told
A 5.0-kg object is suspended by a string from the ceiling of an elevator that is accelerating downward at a rate of 2.6 m/s2. What is the tension in the string (in N)
Generally the equation for the Tension is mathematically given as[tex]T=mg+ma\\\\T=5*(9.8+2.6)\\\\T=62N[/tex]
Therefore
For a 5.0-kg object is suspended by a string from the ceiling of an elevator that is accelerating downward at a rate of 2.6 m/s2 he tension in the string (in N) is
T=62N
For more information on this visit
https://brainly.com/question/23379286
What is cytoplasm in a animal cell?
Answer:
Cytoplasm is the jelly-like fluid that fills in all of the. space between the nucleus and the plasma membrane. All of the organelles within a cell are suspended in this fluid. The main function of the cytoplasm is to support the internal structures of the cell as well as maintaining shape and consistency of the cell.
write the formula of kinetic energy and explain the terms in that
Answer:
Formula of kinetic energy:
[tex]k.e = \frac{1}{2} m {v}^{2} [/tex]
Explanation:
k.e: kinetic energy (J)
m: mass (kg)
v: velocity (m/s)
kinetic energy equals one half of the multiplication between mass and velocity
help plz! what vibrates in following types of wave motion 1)light wave 2)sound waves 3)x-rays 4)water waves
Answer:
I believe it's 2) sound waves
Explanation:
With sound waves, the energy travels along in the same direction as the particles vibrate. This type of wave is known as a longitudinal wave, so named because the energy travels along the direction of vibration of the particles.
A ball is thrown vertically downward from the top of a 37.4-m-tall building. The ball passes the top of a window that is 15.4 m above the ground 2.00 s after being thrown. What is the speed of the ball as it passes the top of the window?
Answer:
v= 20.8 m/s
Explanation:
Assuming no other forces acting on the ball, from the instant that is thrown vertically downward, it's only accelerated by gravity, in this same direction, with a constant value of -9.8 m/s2 (assuming the ground level as the zero reference level and the upward direction as positive).In order to find the final speed 2.00 s after being thrown, we can apply the definition of acceleration, rearranging terms, as follows:[tex]v_{f} = v_{o} + a*t = v_{o} + g*t (1)[/tex]
We have the value of t, but since the ball was thrown, this means that it had an initial non-zero velocity v₀.Due to we know the value of the vertical displacement also, we can use the following kinematic equation in order to find the initial velocity v₀:[tex]\Delta y = v_{o} *t + \frac{1}{2} * a* t^{2} (2)[/tex]
where Δy = yf - y₀ = 15.4 m - 37.4 m = -22 m (3)Replacing by the values of Δy, a and t, we can solve for v₀ as follows:[tex]v_{o} = \frac{(\Delta y- \frac{1}{2} *a*t^{2})}{t} = \frac{-22m+19.6m}{2.00s} = -1.2 m/s (4)[/tex]
Replacing (4) , and the values of g and t in (1) we can find the value that we are looking for, vf:[tex]v_{f} = v_{o} + g*t = -1.2 m/s - (9.8m/s2*2.00s) = -20.8 m/s (5)[/tex]
Therefore, the speed of the ball (the magnitude of the velocity) as it passes the top of the window is 20.8 m/s.Explain two ways of magnetising an object
Answer:
There are two methods generally used to magnetize permanent magnets: static magnetization and pulse magnetization.
In the absence of friction, if a force acting on a moving object stops acting, the object will
Answer:
Keep on moving
Explanation:
Newton's first law states "that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force."
A potter’s wheel moves from rest to an angular speed of 0.10 rev/s in 36.5 s.
Assuming constant angular acceleration,
what is its angular acceleration in rad/s2?
Answer in units of rad/s2
.
Answer:
please find attached pdf
Explanation:
A dog finds a toy at rest on the floor. The dog pushes the toy horizontally on a frictionless floor with a net force of 2.0 Newtons for 3.0 meters. How much kinetic energy does the toy gain? Round your answer to the nearest whole number.
Answer:
the kinetic energy gained by the toy is 6J.
Explanation:
Given;
net applied to the toy by dog, F = 2 N
distance moved by the toy, d = 3 m
Apply the principle of work-energy theorem to determine the kinetic energy gained by the toy.
ΔK.E = W
= F x d
= 2 x 3
= 6 J
Therefore, the kinetic energy gained by the toy is 6J.
The time required for one complete cycle of a mass oscillating at the end of a spring is 0.40 s. What is the frequency of oscillation?
Answer:
the frequency of the oscillation is 2.5 Hz.
Explanation:
Given;
time to complete the oscillation, t = 0.4 s
number of oscillations, n = 1
The frequency of the oscillation is calculated as;
[tex]F = \frac{n}{t} \\\\F = \frac{1}{0.4} \\\\F = 2.5 \ Hz[/tex]
Therefore, the frequency of the oscillation is 2.5 Hz.
What are two benefits of scientists using a diagram to model the water cycle?
A. It can be used to show how the parts of the cycle relate to one
another.
B. It can be used to show as much detail ahis present in the actual
water cycle.
c. Only a few factors in the water cycle can be shown on the
diagram
D. It can show changes that occur in many different parts of Earth at
the same time.
Answer:
Options A. and D. are correct.
Explanation:
The water cycle shows the continuous movement of water within the Earth and atmosphere.
The two benefits of scientists using a diagram to model the water cycle are as follows:
It can be used to show how the parts of the cycle relate to one another.
It can show changes that occur in many different parts of Earth at the same time.
Options A. and D. are correct.
Two light bulbs are 2.0 m apart. From what distance can these light bulbs be marginally resolved by a small telescope with a 4.50 cm. Assume that the lens is limited only by diffraction and λ = 600 nm
Answer:
R = 1.2295 10⁵ m
Explanation:
After reading your problem they give us the diameter of the lens d = 4.50 cm = 0.0450 m, therefore if we use the Rayleigh criterion for the resolution in the diffraction phenomenon, we have that the minimum separation occurs in the first minimum of diffraction of one of the bodies m = 1 coincides with the central maximum of the other body
θ = 1.22 λ / D
where the constant 1.22 leaves the resolution in polar coordinates and D is the lens aperture
how angles are measured in radians
θ = y / R
where y is the separation of the two bodies (bulbs) y = 2 m and R the distance from the bulbs to the lens
[tex]\frac{y}{R} = 1.22 \frac{ \lambda}{D}[/tex]
R = [tex]\frac{ y \ D}{1.22 \lambda}[/tex]
let's calculate
R = [tex]\frac{ 2 \ 0.045}{ 1.22 \ 600 \ 10^{-9}}[/tex]
R = 1.2295 10⁵ m
A 30.0 uC charge is moved 5.00 m West in an electric field of 4000 V/m pointing 40.0° North of East. What potential difference did the charge move through?
Answer:
20000sin(40) V
Explanation:
Consider component to the east of electric field:
[tex]E_{x} =4000 sin(40)[/tex]
The charge move along this component for 5 meter
Potential difference:
[tex]5E_{x} =20000sin(40)[/tex] = 12900 V (corr, to 3 sig,fig.)
The potential difference through which the charge moved is approximately 20.0 V.
To calculate the potential difference (ΔV) through which the charge moved, we can use the formula:
ΔV = q * E * d * cos(θ)
where:
q = charge = 30.0 uC = 30.0 x 10⁻⁶ C (converted to coulombs)
E = electric field = 4000 V/m
d = displacement = 5.00 m
θ = angle between the electric field and the displacement = 40.0°
Now, substitute the values into the formula:
ΔV = (30.0 x 10⁻⁶ C) * (4000 V/m) * (5.00 m) * cos(40.0°)
First, convert the angle to radians:
θ_radians = 40.0° * (π/180) ≈ 0.6981 radians
Now, calculate ΔV:
ΔV = (30.0 x 10⁻⁶ C) * (4000 V/m) * (5.00 m) * cos(0.6981) ≈ 0.02 V
So, the potential difference through which the charge moved is approximately 20.0 V.
To learn more about potential difference, here
https://brainly.com/question/23716417
#SPJ2