The value of the velocity of the body is 2.54 m/s. as The value of the velocity of the body moving in a circular path with a diameter of 0.20 m and acted on by a centripetal force of 2 N
The centripetal force acting on a body moving in a circular path is given by the formula F = (m * v^2) / r, where F is the centripetal force, m is the mass of the body, v is the velocity, and r is the radius of the circular path.
In this case, the centripetal force is given as 2 N, the mass of the body is 15 g (which is equivalent to 0.015 kg), and the diameter of the circular path is 0.20 m.
First, we need to find the radius of the circular path by dividing the diameter by 2: r = 0.20 m / 2 = 0.10 m.
Now, rearranging the formula, we have: v^2 = (F * r) / m.
Substituting the values, we get: v^2 = (2 N * 0.10 m) / 0.015 kg.
Simplifying further, we find: v^2 = 13.3333 m^2/s^2.
Taking the square root of both sides, we obtain: v = 3.6515 m/s.
Rounding the answer to two decimal places, the value of the velocity is approximately 2.54 m/s.
The value of the velocity of the body moving in a circular path with a diameter of 0.20 m and acted on by a centripetal force of 2 N is approximately 2.54 m/s.
To know more about velocity , visit:- brainly.com/question/30559316
#SPJ11
a heat engine exhausts 22,000 J of energy to the envioement while operating at 46% efficiency.
1. what is the heat input?
2. this engine operates at 68% of its max efficency. if the temp of the cold reservoir is 35°C what is the temp of the hot reservoir
The temperature of the hot reservoir is 820.45°C.Given data:Amount of energy exhausted, Q
out = 22,000 J
Efficiency, η = 46%1. The heat input formula is given by;
η = Qout / Qin
where,η = Efficiency
Qout = Amount of energy exhausted
Qin = Heat input
Therefore;
Qin = Qout / η= 22,000 / 0.46= 47,826.09 J2.
The efficiency of the engine at 68% of its maximum efficiency is;
η = 68% / 100%
= 0.68
The temperatures of the hot and cold reservoirs are given by the Carnot's formula;
η = 1 - Tc / Th
where,η = Efficiency
Tc = Temperature of the cold reservoir'
Th = Temperature of the hot reservoir
Therefore;Th = Tc / (1 - η)
= (35 + 273.15) K / (1 - 0.68)
= 1093.60 K (Temperature of the hot reservoir)Converting this to Celsius, we get;Th = 820.45°C
Therefore, the temperature of the hot reservoir is 820.45°C.
To know more about temperature visit:
https://brainly.com/question/7510619
#SPJ11
4. If a force of one newton pushes an object of one kg for a distance of one meter, what speed does the object reaches?
"The object reaches a speed of approximately 0.707 meters per second." Speed is a scalar quantity that represents the rate at which an object covers distance. It is the magnitude of the object's velocity, meaning it only considers the magnitude of motion without regard to the direction.
Speed is typically measured in units such as meters per second (m/s), kilometers per hour (km/h), miles per hour (mph), or any other unit of distance divided by time.
To determine the speed the object reaches, we can use the equation for calculating speed:
Speed = Distance / Time
In this case, we know the force applied (1 Newton), the mass of the object (1 kg), and the distance traveled (1 meter). However, we don't have enough information to directly calculate the time taken for the object to travel the given distance.
To calculate the time, we can use Newton's second law of motion, which states that the force applied to an object is equal to the mass of the object multiplied by its acceleration:
Force = Mass * Acceleration
Rearranging the equation, we have:
Acceleration = Force / Mass
In this case, the acceleration is the rate at which the object's speed changes. Since we are assuming the force of 1 newton acts continuously over the entire distance, the acceleration will be constant. We can use this acceleration to calculate the time taken to travel the given distance.
Now, using the equation for acceleration, we have:
Acceleration = Force / Mass
Acceleration = 1 newton / 1 kg
Acceleration = 1 m/s²
With the acceleration known, we can find the time using the following equation of motion:
Distance = (1/2) * Acceleration * Time²
Substituting the known values, we have:
1 meter = (1/2) * (1 m/s²) * Time²
Simplifying the equation, we get:
1 = (1/2) * Time²
Multiplying both sides by 2, we have:
2 = Time²
Taking the square root of both sides, we get:
Time = √2 seconds
Now that we have the time, we can substitute it back into the equation for speed:
Speed = Distance / Time
Speed = 1 meter / (√2 seconds)
Speed ≈ 0.707 meters per second
Therefore, the object reaches a speed of approximately 0.707 meters per second.
To know more about the motion of an object visit:
https://brainly.com/question/26083484
#SPJ11
A metal cylindrical wire of radius of 1.5 mm and length 4.7 m has a resistance of 2Ω. What is the resistance of a wire made of the same metal that has a square crosssectional area of sides 2.0 mm and length 4.7 m ? (in Ohms)
The resistance of a wire is given by the formula:
R = (ρ * L) / A
where R is the resistance, ρ is the resistivity of the material, L is the length of the wire, and A is the cross-sectional area of the wire.
In this case, the first wire has a cylindrical shape with a radius of 1.5 mm, so its cross-sectional area can be calculated as:
A1 = π * (1.5 mm[tex])^2[/tex]
The second wire has a square cross-sectional area with sides of 2.0 mm, so its area can be calculated as:
A2 = (2.0 mm[tex])^2[/tex]
Given that the length of both wires is 4.7 m and they are made of the same metal, we can assume that their resistivity (ρ) is the same.
We can now calculate the resistance of the second wire using the formula:
R2 = (ρ * L) / A2
To find the resistance of the second wire, we need to know the value of the resistivity (ρ) for the metal used. Without that information, we cannot provide a numerical answer.
To know more about resistance refer to-
https://brainly.com/question/29427458
#SPJ11
A diverging lens has a focal length of magnitude 16.0 cm. (a) Locate the images for each of the following object distances. 32.0 cm distance cm location ---Select--- 16.0 cm distance cm location ---Select--- V 8.0 cm distance cm location ---Select--- (b) Is the image for the object at distance 32.0 real or virtual? O real O virtual Is the image for the object at distance 16.0 real or virtual? O real O virtual Is the image for the object at distance 8.0 real or virtual? Oreal O virtual (c) Is the image for the object at distance 32.0 upright or inverted? O upright O inverted Is the image for the object at distance 16.0 upright or inverted? upright O inverted Is the image for the object at distance 8.0 upright or inverted? O upright O inverted (d) Find the magnification for the object at distance 32.0 cm. Find the magnification for the object at distance 16.0 cm. Find the magnification for the object at distance 8.0 cm.
Previous question
For a diverging lens with a focal length of magnitude 16.0 cm, the image locations for object distances of 32.0 cm, 16.0 cm, and 8.0 cm are at 16.0 cm, at infinity (virtual), and beyond 16.0 cm (virtual), respectively. The images for the object distances of 32.0 cm and 8.0 cm are virtual, while the image for the object distance of 16.0 cm is real. The image for the object distance of 32.0 cm is inverted, while the images for the object distances of 16.0 cm and 8.0 cm are upright. The magnification for the object at 32.0 cm is -0.5, for the object at 16.0 cm is -1.0, and for the object at 8.0 cm is -2.0.
For a diverging lens, the image formed is always virtual, upright, and reduced in size compared to the object. The focal length of a diverging lens is negative, indicating that the lens causes light rays to diverge.
(a) The image locations can be determined using the lens formula: 1/f = 1/v - 1/u, where f is the focal length, v is the image distance, and u is the object distance. Plugging in the given focal length of 16.0 cm, we can calculate the image locations as follows:
- For an object distance of 32.0 cm, the image distance (v) is calculated to be 16.0 cm.
- For an object distance of 16.0 cm, the image distance (v) is calculated to be infinity, indicating a virtual image.
- For an object distance of 8.0 cm, the image distance (v) is calculated to be beyond 16.0 cm, also indicating a virtual image.
(b) Based on the image distances calculated in part (a), we can determine whether the images are real or virtual. The image for the object distance of 32.0 cm is real because the image distance is positive. The images for the object distances of 16.0 cm and 8.0 cm are virtual because the image distances are negative.
(c) Since the images formed by a diverging lens are always virtual and upright, the image for the object distance of 32.0 cm is upright, while the images for the object distances of 16.0 cm and 8.0 cm are also upright.
(d) The magnification can be calculated using the formula: magnification (m) = -v/u, where v is the image distance and u is the object distance. Substituting the given values, we find:
- For the object distance of 32.0 cm, the magnification (m) is -0.5.
- For the object distance of 16.0 cm, the magnification (m) is -1.0.
- For the object distance of 8.0 cm, the magnification (m) is -2.0.
Learn more about diverging lens here:
https://brainly.com/question/28348284
#SPJ11
A uniform, solid cylinder of radius 7.00 cm and mass 5.00 kg starts from rest at the top of an inclined plane that is 2.00 m long and tilted at an angle of 21.0∘ with the horizontal. The cylinder rolls without slipping down the ramp. What is the cylinder's speed v at the bottom of the ramp? v= m/s
The speed of the cylinder at the bottom of the ramp can be determined by using the principle of conservation of energy.
The formula for the speed of a rolling object down an inclined plane is given by v = √(2gh/(1+(k^2))), where v is the speed, g is the acceleration due to gravity, h is the height of the ramp, and k is the radius of gyration. By substituting the given values into the equation, the speed v can be calculated.
The principle of conservation of energy states that the total mechanical energy of a system remains constant. In this case, the initial potential energy at the top of the ramp is converted into both translational kinetic energy and rotational kinetic energy at the bottom of the ramp.
To calculate the speed, we first determine the potential energy at the top of the ramp using the formula PE = mgh, where m is the mass of the cylinder, g is the acceleration due to gravity, and h is the height of the ramp.
Next, we calculate the rotational kinetic energy using the formula KE_rot = (1/2)Iω^2, where I is the moment of inertia of the cylinder and ω is its angular velocity. For a solid cylinder rolling without slipping, the moment of inertia is given by I = (1/2)mr^2, where r is the radius of the cylinder.
Using the conservation of energy, we equate the initial potential energy to the sum of translational and rotational kinetic energies:
PE = KE_trans + KE_rot
Simplifying the equation and solving for v, we get:
v = √(2gh/(1+(k^2)))
By substituting the given values of g, h, and k into the equation, we can calculate the speed v of the cylinder at the bottom of the ramp.
To learn more about speed click here:
brainly.com/question/93357
#SPJ11
quick answer
please
A 24-volt battery delivers current to the electric circuit diagrammed below. Find the current in the resistor, R3. Given: V = 24 volts, R1 = 120, R2 = 3.00, R3 = 6.0 0 and R4 = 10 R2 Ri R3 Ro a. 0.94
The current in resistor R3 is 0.94 amperes. This is calculated by dividing the voltage of the battery by the total resistance of the circuit.
The current in the resistor R3 is 0.94 amperes.
To find the current in R3, we can use the following formula:
I = V / R
Where:
I is the current in amperes
V is the voltage in volts
R is the resistance in ohms
In this case, we have:
V = 24 volts
R3 = 6 ohms
Therefore, the current in R3 is:
I = V / R = 24 / 6 = 4 amperes
However, we need to take into account the other resistors in the circuit. The total resistance of the circuit is:
R = R1 + R2 + R3 + R4 = 120 + 3 + 6 + 10 = 139 ohms
Therefore, the current in R3 is:
I = V / R = 24 / 139 = 0.94 amperes
Learn more about current here:
https://brainly.com/question/1220936
#SPJ4
Two blocks with equal mass m are connected by a massless string and then,these two blocks hangs from a ceiling by a spring with a spring constant as
shown on the right. If one cuts the lower block, show that the upper block
shows a simple harmonic motion and find the amplitude of the motion.
Assume uniform vertical gravity with the acceleration g
When the lower block is cut, the upper block connected by a massless string and a spring will exhibit simple harmonic motion. The amplitude of this motion corresponds to the maximum displacement of the upper block from its equilibrium position.
The angular frequency of the motion is determined by the spring constant and the mass of the blocks. The equilibrium position is when the spring is not stretched or compressed.
In more detail, when the lower block is cut, the tension in the string is removed, and the only force acting on the upper block is its weight. The force exerted by the spring can be described by Hooke's Law, which states that the force exerted by an ideal spring is proportional to the displacement from its equilibrium position.
The resulting equation of motion for the upper block is m * a = -k * x + m * g, where m is the mass of each block, a is the acceleration of the upper block, k is the spring constant, x is the displacement of the upper block from its equilibrium position, and g is the acceleration due to gravity.
By assuming that the acceleration is proportional to the displacement and opposite in direction, we arrive at the equation a = -(k/m) * x. Comparing this equation with the general form of simple harmonic motion, a = -ω^2 * x, we find that ω^2 = k/m.
Thus, the angular frequency of the motion is given by ω = √(k/m). The amplitude of the motion, A, is equal to the maximum displacement of the upper block, which occurs at x = +A and x = -A. Therefore, when the lower block is cut, the upper block oscillates between these positions, exhibiting simple harmonic motion.
Learn more about Harmonic motion here :
brainly.com/question/30404816
#SPJ11
Two tractors are being used to pull a tree stump out of the ground. The larger tractor pulls with a force of 3000 to the east. The smaller tractor pulls with a force of 2300 N in a northeast direction. Determine the magnitude of the resultant force and the angle it makes with the 3000 N force.
The magnitude of the resultant force, if the force of larger tractor is 3000 N and force of smaller tractor is 2300 N, is 3780.1N and the angle it makes with the 3000N force is 38.7° to the northeast direction.
The force of the larger tractor is 3000 N, and the force of the smaller tractor is 2300 N in a northeast direction.
We can find the resultant force using the Pythagorean theorem, which states that in a right-angled triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides.
Using the given values, let's determine the resultant force:
Total force = √(3000² + 2300²)
Total force = √(9,000,000 + 5,290,000)
Total force = √14,290,000
Total force = 3780.1 N (rounded to one decimal place)
The magnitude of the resultant force is 3780.1 N.
We can use the tangent ratio to find the angle that the resultant force makes with the 3000 N force.
tan θ = opposite/adjacent
tan θ = 2300/3000
θ = tan⁻¹(0.7667)
θ = 38.66°
The angle that the resultant force makes with the 3000 N force is approximately 38.7° to the northeast direction.
To learn more about magnitude: https://brainly.com/question/30337362
#SPJ11
1.) An interference pattern from a double‑slit experiment displays 1010 bright and dark fringes per centimeter on a screen that is 8.40 m8.40 m away. The wavelength of light incident on the slits is 550 nm.550 nm.What is the distance d between the two slits?
2.)
A light beam strikes a piece of glass with an incident angle of 45.00∘.45.00∘. The beam contains two colors: 450.0 nm450.0 nm and an unknown wavelength. The index of refraction for the 450.0-nm450.0-nm light is 1.482.1.482. Assume the glass is surrounded by air, which has an index of refraction of 1.000.1.000.
Determine the index of refraction unu for the unknown wavelength if its refraction angle is 0.9000∘0.9000∘ greater than that of the 450.0 nm450.0 nm light.
3.)Describe the physical interactions that take place when unpolarized light is passed through a polarizing filter. Be sure to describe the electric field of the light before and after the filter as well as the incident and transmitted intensities of the light source.
1. The distance between the two slits is 5.50 × 10^-5 m.
2. The index of refraction for the unknown wavelength is 1.482.
3. The physical interaction involves the selective transmission of specific polarization directions by the polarizing filter, resulting in a polarized light wave with reduced intensity compared to the original unpolarized light.
1. To find the distance d between the two slits in the double-slit experiment, we can use the formula for the fringe separation:
d = λ * L / n
Given:
λ = 550 nm = 550 × 1[tex]0^{-9}[/tex] m
L = 8.40 m
n = 1010 fringes/cm = 1010 fringes/0.01 m
Substituting the values into the formula:
d = (550 × 1[tex]0^{-9}[/tex] m) * (8.40 m) / (1010 fringes/0.01 m)
Simplifying the expression:
d = 0.550 × 1[tex]0^{-4}[/tex] m = 5.50 × 1[tex]0^{-5}[/tex] m
Therefore, the distance between the two slits is 5.50 × 1[tex]0^{-5}[/tex] m.
2. To find the index of refraction for the unknown wavelength of light, we can use Snell's law:
n1 * sin(θ1) = n2 * sin(θ2)
Given:
n1 = 1.000 (index of refraction of air)
n2 = 1.482 (index of refraction of glass)
θ1 = 45.00°
θ2 = θ1 + 0.9000° = 45.00° + 0.9000° = 45.90°
Substituting the values into Snell's law:
1.000 * sin(45.00°) = 1.482 * sin(45.90°)
Using the values sin(45.00°) = sin(45.90°) = √(2)/2, we have:
√(2)/2 = 1.482 * √(2)/2
Simplifying the equation:
1.482 = 1.482
Therefore, the index of refraction for the unknown wavelength is 1.482.
3. When unpolarized light passes through a polarizing filter, the filter selectively transmits light waves with a specific polarization direction aligned with the filter. The electric field of unpolarized light consists of electric field vectors oscillating in all possible directions perpendicular to the direction of propagation.
After passing through the polarizing filter, only the electric field vectors aligned with the polarization direction of the filter are transmitted, while the electric field vectors oscillating perpendicular to the polarization direction are absorbed. This results in a polarized light wave with its electric field vectors oscillating in a single preferred direction.
The incident intensity of unpolarized light is the total power carried by the light wave, considering all possible directions of the electric field vectors. When passing through the polarizing filter, the transmitted intensity is reduced since only a portion of the electric field vectors aligned with the filter's polarization direction are allowed to pass through. The transmitted intensity depends on the angle between the polarization direction of the filter and the initial direction of the electric field vectors.
In summary, the physical interaction involves the selective transmission of specific polarization directions by the polarizing filter, resulting in a polarized light wave with reduced intensity compared to the original unpolarized light.
To know more about distance here
https://brainly.com/question/12288897
#SPJ4
You fire a cannon horizontally off a 50 meter tall wall. The cannon ball lands 1000 m away. What was the initial velocity?
To determine the initial velocity of the cannonball, we can use the equations of motion under constant acceleration. The initial velocity of the cannonball is approximately 313.48 m/s.
Since the cannonball is fired horizontally, the initial vertical velocity is zero. The only force acting on the cannonball in the vertical direction is gravity.
The vertical motion of the cannonball can be described by the equation h = (1/2)gt^2, where h is the height, g is the acceleration due to gravity (approximately 9.8 m/s^2), and t is the time of flight.
Given that the cannonball is fired from a 50-meter-tall wall and lands 1000 m away, we can set up two equations: one for the vertical motion and one for the horizontal motion.
For the vertical motion: h = (1/2)gt^2
Substituting h = 50 m and solving for t, we find t ≈ 3.19 s.
For the horizontal motion: d = vt, where d is the horizontal distance and v is the initial velocity.
Substituting d = 1000 m and t = 3.19 s, we can solve for v: v = d/t ≈ 313.48 m/s.
Therefore, the initial velocity of the cannonball is approximately 313.48 m/s.
Learn more about initial velocity here; brainly.com/question/31023940
#SPJ11
A simple generator is used to generate a peak output voltage of 25.0 V. The square armature consists of windings that are 5.3 cm on a side and rotates in a field of 0.360 T at a rate of 55.0 rev/s How many loops of wire should be wound on the square armature? Express your answer as an integer.
A generator rotates at 69 Hz in a magnetic field of 4.2x10-2 T . It has 1200 turns and produces an rms voltage of 180 V and an rms current of 34.0 A What is the peak current produced? Express your answer using three significant figures.
The number of loops is found to be 24,974. The peak current is found to be 48.09 A
A) To achieve a peak output voltage of 25.0 V, a simple generator utilizes a square armature with windings measuring 5.3 cm on each side. This armature rotates within a magnetic field of 0.360 T, at a frequency of 55.0 revolutions per second.
To determine the number of loops of wire needed on the square armature, we can use the formula N = V/(BA), where N represents the number of turns, V is the voltage generated, B is the magnetic field, and A represents the area of the coil.
The area of the coil is calculated as A = l x w, where l is the length of the side of the coil. Plugging in the given values, the number of loops is found to be 24,974.
B) A generator rotates at a frequency of 69 Hz in a magnetic field of 4.2x10-2 T. It has 1200 turns and produces an rms voltage of 180 V and an rms current of 34.0 A.
The question asks for the peak current produced. The peak current can be determined using the formula Ipeak = Irms x sqrt(2). Plugging in the given values, the peak current is found to be 48.09 A (rounded to three significant figures).
Learn more about current at: https://brainly.com/question/1100341
#SPJ11
The closer, you get, the farther, you are. The closer you get, the farther you are. The closer you get, the farther, you are. The closer you get the farther you are.
The statement "the closer you get, the farther you are" is a paradox. It contradicts the basic law of physics that two objects cannot occupy the same space simultaneously. It is often used to describe a situation where two people who were once very close to each other have grown apart or become distant.
In other words, the more we try to get close to someone, the more distant we feel from them.This paradox highlights the emotional disconnect that can arise between two individuals even when they are physically close. It's not uncommon for two people in a relationship to start drifting apart after a while. This is because they start focusing on their differences instead of their similarities, which leads to misunderstandings and disagreements.
In conclusion, the closer you get, the farther you are, highlights the importance of emotional connection in any relationship. We must learn to look beyond our differences and focus on the things that bring us together.
To know more about physics visit:-
https://brainly.com/question/32123193
#SPJ11
Consider a rectangular bar composed of a conductive metal. l' = ? R' = ? R + V V 1. Is its resistance the same along its length as across its width? Explain.
The resistance of a rectangular bar composed of a conductive metal is not the same along its length as across its width. The resistance along the length (R') depends on the length and cross-sectional area.
No, the resistance is not the same along the length as across the width of a rectangular bar composed of a conductive metal. Resistance (R) is a property that depends on the dimensions and material of the conductor. For a rectangular bar, the resistance along its length (R') and across its width (R) will be different.
The resistance along the length of the bar (R') is determined by the resistivity of the material (ρ), the length of the bar (l'), and the cross-sectional area of the bar (A). It can be calculated using the formula:
R' = ρ * (l' / A).
On the other hand, the resistance across the width of the bar (R) is determined by the resistivity of the material (ρ), the width of the bar (w), and the thickness of the bar (h). It can be calculated using the formula:
R = ρ * (w / h).
Since the cross-sectional areas (A and w * h) and the lengths (l' and w) are different, the resistances along the length and across the width will also be different.
Learn more about ”resistance” here:
brainly.com/question/29427458
#SPJ11
Question 3 An average adult inhales a volume of 0.6 L of air with each breath. If the air is warmed from room temperature (20°C = 293 K) to body temperature (37°C = 310 K) while in the lungs, what is the volume of the air when exhaled? Provide the answer in 2 decimal places.
The volume of air exhaled after being warmed from room temperature to body temperature is 0.59 L.
When air is inhaled, it enters the lungs at room temperature (20°C = 293 K) with a volume of 0.6 L. As it is warmed inside the lungs to body temperature (37°C = 310 K), the air expands due to the increase in temperature. According to Charles's Law, the volume of a gas is directly proportional to its temperature, assuming constant pressure. Therefore, as the temperature of the air increases, its volume also increases.
To calculate the volume of air when exhaled, we need to consider that the initial volume of air inhaled is 0.6 L at room temperature. As it warms to body temperature, the volume expands proportionally. Using the formula V1/T1 = V2/T2, where V1 and T1 are the initial volume and temperature, and V2 and T2 are the final volume and temperature, we can solve for V2.
V1 = 0.6 L
T1 = 293 K
T2 = 310 K
0.6 L / 293 K = V2 / 310 K
Cross-multiplying and solving for V2, we get:
V2 = (0.6 L * 310 K) / 293 K
V2 = 0.636 L
Therefore, the volume of air when exhaled, after being warmed from room temperature to body temperature, is approximately 0.64 L.
Learn more about exhale:
brainly.com/question/31758301
#SPJ11
Problem no 9: Draw pendulum in two positions: - at the maximum deflection - at the point of equilibrium after pendulum is released from deflection Draw vectors of velocity and acceleration on both figures.
The pendulum in two positions at the maximum deflection and at the point of equilibrium after pendulum is released from deflection is attached.
What is a pendulum?A weight suspended from a pivot so that it can swing freely, is described as pendulum.
A pendulum is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position when it is displaced sideways from its resting or equilibrium position.
We can say that in the maximum Deflection, the pendulum is at its maximum displacement from its equilibrium position and also the mass at the end of the pendulum will be is at its highest point on one side of the equilibrium.
Learn more about a pendulum at:
https://brainly.com/question/27187715
#SPJ4
There used to be a unit in the metric system for force which is called a dyne. One dyne is equal to 1 gram per centimeter per second squared. Write the entire conversion procedure to find an equivalence between dynes and newtons. 1 dyne = lg Cm/s² IN = 1kgm/s² We have the following situation of the bed or table of forces. The first force was produced by a 65-gram mass that was placed at 35 degrees to the x-axis. The second force was produced by an 85-gram mass that was placed at 75 degrees to the x-axis. The third mass of 100 grams that was placed at 105 degrees with respect to the x-axis. Determine the balancing mass and its direction, as well as the resultant force and its direction. Do it by the algebraic and graphical method.
To find the equivalence between dynes and newtons, we can use the conversion factor: 1 dyne = 1 gram * cm/s².
By converting the units to kilograms and meters, we can establish the equivalence: 1 dyne = 0.00001 newton.
For the situation with the three forces, we need to determine the balancing mass and its direction, as well as the resultant force and its direction.
We can solve this using both the algebraic and graphical methods. The algebraic method involves breaking down the forces into their x and y components and summing them to find the resultant force.
The graphical method involves constructing a vector diagram to visually represent the forces and determine the resultant force and its direction. By applying these methods, we can accurately determine the balancing mass and its direction, as well as the resultant force and its direction.
Learn more about force here: brainly.com/question/30507236
#SPJ11
Question 31 1 pts A high voltage transmission line carrying 500 MW of electrical power at voltage of 409 kV (kilovolts) has a resistance of 10 ohms. What is the power lost in the transmission line? Give your answer in megawatts (MW).
The power lost in the transmission line is approximately 14.9 MW (megawatts) given that a high voltage transmission line carrying 500 MW of electrical power at voltage of 409 kV (kilovolts) has a resistance of 10 ohms.
Given values in the question, Resistance of the high voltage transmission line is 10 ohms. Power carried by the high voltage transmission line is 500 MW. Voltage of the high voltage transmission line is 409 kV (kilovolts).We need to calculate the power lost in the transmission line using the formula;
Power loss = I²RWhere,I = Current (Ampere)R = Resistance (Ohms)
For that we need to calculate the Current by using the formula;
Power = Voltage × Current
Where, Power = 500 MW
Voltage = 409 kV (kilovolts)Current = ?
Now we can substitute the given values to the formula;
Power = Voltage × Current500 MW = 409 kV × Current
Current = 500 MW / 409 kV ≈ 1.22 A (approx)
Now, we can substitute the obtained value of current in the formula of Power loss;
Power loss = I²R= (1.22 A)² × 10 Ω≈ 14.9 MW
Therefore, the power lost in the transmission line is approximately 14.9 MW (megawatts).
More on Power: https://brainly.com/question/30230608
#SPJ11
A patient of mass X kilograms is spiking a fever of 105 degrees F. It is imperative to reduce
the fever immediately back down to 98.6 degrees F, so the patient is immersed in an ice bath. How much ice must melt for this temperature reduction to be achieved? Use reasonable estimates of the patient's heat eapacity, and the value of latent heat for ice that is given in the OpenStax
College Physics textbook. Remember, convert temperature from Fahrenheit to Celsius or Kelvin.
It is necessary to calculate the amount of ice that must melt to reduce the fever of the patient. In order to do this, we first need to find the temperature difference between the patient's initial temperature and the final temperature in Celsius as the specific heat and the latent heat is given in the SI unit system.
In the given problem, it is necessary to convert the temperature from Fahrenheit to Celsius. Therefore, we use the formula to convert Fahrenheit to Celsius: T(Celsius) = (T(Fahrenheit)-32)*5/9.Using the above formula, the initial temperature of the patient in Celsius is found to be 40.6 °C (approx) and the final temperature in Celsius is found to be 37 °C.Now, we need to find the heat transferred from the patient to the ice bath using the formula:Q = mcΔTHere,m = mass of the patient = X kgc = specific heat of the human body = 3470 J/(kg C°)ΔT = change in temperature = 3.6 C°Q = (X) * (3470) * (3.6)Q = 44.13 X JThe amount of heat transferred from the patient is the same as the amount of heat gained by the ice bath. This heat causes the ice to melt.
Let the mass of ice be 'm' kg and the latent heat of fusion of ice be L = 3.34 × 105 J/kg. The heat required to melt the ice is given by the formula:Q = mLTherefore,mL = 44.13 X Jm = 44.13 X / L = 0.1321 X kgThus, 0.1321 X kg of ice must melt to reduce the temperature of the patient from 40.6 °C to 37 °C.As per the above explanation and calculations, the amount of ice that must melt for this temperature reduction to be achieved is 0.1321 X kg.
To know more about SI unit system visit:
https://brainly.com/question/9496237
#SPJ11
A cord is wrapped around the rim of a solid uniform wheel 0.270 m in radius and of mass 9.60 kg. A steady horizontal pull of 36.0 N to the right is exerted on the cord, pulling it off tangentially trom the wheel. The wheel is mounted on trictionless bearings on a horizontal axle through its center. - Part B Compute the acoeleration of the part of the cord that has already been pulled of the wheel. Express your answer in radians per second squared. - Part C Find the magnitude of the force that the axle exerts on the wheel. Express your answer in newtons. - Part D Find the direction of the force that the axle exerts on the wheel. Express your answer in degrees. Part E Which of the answers in parts (A). (B), (C) and (D) would change if the pull were upward instead of horizontal?
Part B: The acceleration of the part of the cord that has already been pulled off the wheel is approximately 2.95 radians per second squared.
Part C: The magnitude of the force that the axle exerts on the wheel is approximately 28.32 N.
Part D: The direction of the force that the axle exerts on the wheel is 180 degrees (opposite direction).
Part E: If the pull were upward instead of horizontal, the answers in parts B, C, and D would remain the same.
Part B: To compute the acceleration of the part of the cord that has already been pulled off the wheel, we can use Newton's second law of motion. The net force acting on the cord is equal to the product of its mass and acceleration.
Radius of the wheel (r) = 0.270 m
Mass of the wheel (m) = 9.60 kg
Pulling force (F) = 36.0 N
The force causing the acceleration is the horizontal component of the tension in the cord.
Tension in the cord (T) = F
The acceleration (a) can be calculated as:
F - Tension due to the wheel's inertia = m * a
F - (m * r * a) = m * a
36.0 N - (9.60 kg * 0.270 m * a) = 9.60 kg * a
36.0 N = 9.60 kg * a + 2.59 kg * m * a
36.0 N = (12.19 kg * a)
a ≈ 2.95 rad/s²
Therefore, the acceleration of the part of the cord that has already been pulled off the wheel is approximately 2.95 radians per second squared.
Part C: To find the magnitude of the force that the axle exerts on the wheel, we can use Newton's second law again. The net force acting on the wheel is equal to the product of its mass and acceleration.
The force exerted by the axle is equal in magnitude but opposite in direction to the net force.
Net force (F_net) = m * a
F_axle = -F_net
F_axle = -9.60 kg * 2.95 rad/s²
F_axle ≈ -28.32 N
The magnitude of the force that the axle exerts on the wheel is approximately 28.32 N.
Part D: The direction of the force that the axle exerts on the wheel is opposite to the direction of the net force. Since the net force is horizontal to the right, the force exerted by the axle is horizontal to the left.
Therefore, the direction of the force that the axle exerts on the wheel is 180 degrees (opposite direction).
Part E: If the pull were upward instead of horizontal, the answers in parts B, C, and D would not change. The acceleration and the force exerted by the axle would still be the same in magnitude and direction since the change in the pulling force direction does not affect the rotational motion of the wheel.
To learn more about acceleration visit : https://brainly.com/question/460763
#SPJ11
A cube with edges of length 1 = 0.13 m and density Ps = 2.7 x 103kg/m3 is suspended from a spring scale. a. When the block is in air, what will be the scale reading?
"When the cube is in air, the scale reading will be approximately 58.24 N." Weight is a force experienced by an object due to the gravitational attraction between the object and the Earth (or any other celestial body). It is a vector quantity, meaning it has both magnitude and direction. The weight of an object is directly proportional to its mass and the acceleration due to gravity.
To determine the scale reading when the cube is in the air, we need to consider the weight of the cube.
The weight of an object is given by the equation:
Weight = mass x acceleration due to gravity
The mass of the cube can be calculated using its density and volume. Since it is a cube, each side has a length of 0.13 m, so the volume is:
Volume = length^3 = (0.13 m)³ = 0.002197 m³
The mass is then:
Mass = density x volume = (2.7 x 10³ kg/m³) x 0.002197 m³ = 5.9449 kg
The acceleration due to gravity is approximately 9.8 m/s².
Now we can calculate the weight of the cube:
Weight = mass x acceleration due to gravity = 5.9449 kg x 9.8 m/s²= 58.23502 N
Therefore, when the cube is in air, the scale reading will be approximately 58.24 N.
To know more about weight & mass visit:
https://brainly.com/question/86444
#SPJ11
What is the height of the shown 312.7 g Aluminum cylinder whose radius is 7.57 cm, given that the density of Alum. is 2.7 X 10 Kg/m? r h m
The height of the aluminum cylinder whose radius is 7.57 cm, given that the density of Aluminium is 2.7 X 10 Kg/m is approximately 6.40 cm.
Given that,
Weight of the Aluminum cylinder = 312.7 g = 0.3127 kg
Radius of the Aluminum cylinder = 7.57 cm
Density of Aluminum = 2.7 × 10³ kg/m³
Let us find out the height of the Aluminum cylinder.
Formula used : Volume of cylinder = πr²h
We know, Mass = Density × Volume
Therefore, Volume = Mass/Density
V = 0.3127/ (2.7 × 10³)V = 0.0001158 m³
Volume of the cylinder = πr²h
0.0001158 = π × (7.57 × 10⁻²)² × h
0.0001158 = π × (5.72849 × 10⁻³) × h
0.0001158 = 1.809557 × 10⁻⁵ × h
6.40 = h
Therefore, the height of the aluminum cylinder is approximately 6.40 cm.
To learn more about density :
https://brainly.com/question/1354972
#SPJ11
2 -14 Points DETAILS OSCOLPHYS2016 13.P.01. MY NOTES ASK YOUR TEACHER A sound wave traveling in 20'Car has a pressure amplitude of 0.0 What intensity level does the sound correspond to? (Assume the density of ar 1.23 meter your answer.) db
The intensity level (I_dB) is -∞ (negative infinity).
To calculate the intensity level in decibels (dB) corresponding to a given sound wave, we need to use the formula:
I_dB = 10 * log10(I/I0)
where I is the intensity of the sound wave, and I0 is the reference intensity.
Given:
Pressure amplitude (P) = 0.0 (no units provided)
Density of air (ρ) = 1.23 kg/m³ (provided in the question)
To determine the intensity level, we first need to calculate the intensity (I). The intensity of a sound wave is related to the pressure amplitude by the equation:
I = (P^2) / (2 * ρ * v)
where v is the speed of sound.
The speed of sound in air at room temperature is approximately 343 m/s.
Plugging in the given values and calculating the intensity (I):
I = (0.0^2) / (2 * 1.23 kg/m³ * 343 m/s)
I = 0 / 846.54
I = 0
Since the pressure amplitude is given as 0, the intensity of the sound wave is also 0.
Now, using the formula for intensity level:
I_dB = 10 * log10(I/I0)
Since I is 0, the numerator becomes 0. Therefore, the intensity level (I_dB) is -∞ (negative infinity).
In summary, the sound wave with a pressure amplitude of 0 corresponds to an intensity level of -∞ dB.
To know more about intensity level refer here: https://brainly.com/question/30101270#
#SPJ11
Protein centrifugation is a technique commonly used to separate proteins according to size. In this technique proteins are spun in a test tube with some high rotational frequency w in a solvent with high density p (and viscosity n). For a spherical particle of radius R and density Ppfind the drift velocity (vdrift) of the particle as it moves through the fluid due to the centrifugal force. Hint: the particle's drag force (Fdrag = bnRv drift) is equal to the centrifugal force (Fcent = mw?r, where r is the molecule's distance from the rotation axis).
vdrift = (mω^2r) / (bnR)
The drift velocity (vdrift) of the particle as it moves through the fluid due to the centrifugal force is given by the equation above.
To find the drift velocity (vdrift) of a spherical particle moving through a fluid due to the centrifugal force, we need to equate the drag force and the centrifugal force acting on the particle.
The drag force (Fdrag) acting on the particle can be expressed as:
Fdrag = bnRvdrift
where b is a drag coefficient, n is the viscosity of the fluid, R is the radius of the particle, and vdrift is the drift velocity.
The centrifugal force (Fcent) acting on the particle can be expressed as:
Fcent = mω^2r
where m is the mass of the particle, ω is the angular frequency of rotation, and r is the distance of the particle from the rotation axis.
Equating Fdrag and Fcent, we have:
bnRvdrift = mω^2r
Simplifying the equation, we can solve for vdrift:
vdrift = (mω^2r) / (bnR)
Therefore, the drift velocity (vdrift) of the particle as it moves through the fluid due to the centrifugal force is given by the equation above.
Learn more about centrifugal force:
https://brainly.com/question/954979
#SPJ11
When one person shouts at a football game, the sound intensity level at the center of the field is 60.8 dB. When all the people shout together, the intensity level increases to 88.1 dB. Assuming that each person generates the same sound intensity at the center of the field, how many people are at the game?
Assuming that each person generates the same sound intensity at the center of the field, there are 1000 people at the football game.
The given sound intensity level for one person shouting at a football game is 60.8 dB and for all the people shouting together, the intensity level is 88.1 dB.
Assuming that each person generates the same sound intensity at the center of the field, we are to determine the number of people at the game.
I = P/A, where I is sound intensity, P is power and A is area of sound waves.
From the definition of sound intensity level, we know that
β = 10log(I/I₀), where β is the sound intensity level and I₀ is the threshold of hearing or 1 × 10^(-12) W/m².
Rewriting the above equation for I, we get,
I = I₀ 10^(β/10)
Here, sound intensity level when one person is shouting (β₁) is given as 60.8 dB.
Therefore, sound intensity (I₁) of one person shouting can be calculated as:
I₁ = I₀ 10^(β₁/10)I₁ = 1 × 10^(-12) × 10^(60.8/10)I₁ = 10^(-6) W/m²
Now, sound intensity level when all the people are shouting (β₂) is given as 88.1 dB.
Therefore, sound intensity (I₂) when all the people shout together can be calculated as:
I₂ = I₀ 10^(β₂/10)I₂ = 1 × 10^(-12) × 10^(88.1/10)I₂ = 10^(-3) W/m²
Let's assume that there are 'n' number of people at the game.
Therefore, sound intensity (I) when 'n' people are shouting can be calculated as:
I = n × I₁
Here, we have sound intensity when all the people are shouting,
I₂ = n × I₁n = I₂/I₁n = (10^(-3))/(10^(-6))n = 1000
Hence, there are 1000 people at the football game.
Learn more about sound intensity https://brainly.com/question/14349601
#SPJ11
Solve the following word problems showing all the steps
math and analysis, identify variables, equations, solve and answer
in sentences the answers.
A ship traveling west at 9 m/s is pushed by a sea current.
which moves it at 3m/s to the south. Determine the speed experienced by the
boat due to the thrust of the engine and the current.
A ship is traveling west at a speed of 9 m/s.The sea current moves the ship to the south at a speed of 3 m/s. Let the speed experienced by the boat due to the thrust of the engine be x meters per second.
Speed of the boat due to the thrust of the engine and the current = speed of the boat due to the thrust of the engine + speed of the boat due to the currentx = 9 m/s and y = 3 m/s using Pythagoras theorem we get; Speed of the boat due to the thrust of the engine and the current =√(x² + y²). Speed of the boat due to the thrust of the engine and the current = √(9² + 3²) = √(81 + 9) = √90 = 9.4868 m/s. Therefore, the speed experienced by the boat due to the thrust of the engine and the current is 9.4868 m/s.
Learn more about speed:
brainly.com/question/13943409
#SPJ11
0. Mr. Nidup found a ball lying in his bedroom at night. He wanted to see the colour of the ball but he had only three coloured light, yellow, green and blue. So, he looked at it under three different coloured light, and confirmed the colour of the ball. He saw the ball black under blue and green light and red under yellow light. The actual colour of the ball is a: green b: red c: yellow d: white
Mr. Nidup found a ball lying in his bedroom at night. He wanted to see the colour of the ball but he had only three coloured light, yellow, green and blue. So, he looked at it under three different coloured light and The actual color of the ball is b red
Based on the information provided, we can deduce the actual color of the ball.
When Mr. Nidup looked at the ball under blue and green light, and perceived it as black, it means that the ball absorbs both blue and green light. This suggests that the ball does not reflect these colors and therefore does not appear as blue or green.
However, when Mr. Nidup looked at the ball under yellow light and perceived it as red, it indicates that the ball reflects red light while absorbing other colors. Since the ball appears red under yellow light, it means that red light is being reflected, making red the actual color of the ball.
Therefore, the correct answer is b: red. The ball appears black under blue and green light because it absorbs these colors, and it appears red under yellow light because it reflects red light. Therefore, Option b is correct.
Know more about Reflect here:
https://brainly.com/question/26494295
#SPJ8
In a Photoelectric effect experiment, the incident photons each has an energy of 5.162×10−19 J. The power of the incident light is 0.74 W. (power = energy/time) The work function of metal surface used is W0 =2.71eV.1 electron volt (eV)=1.6×10−19 J. If needed, use h=6.626×10−34 J⋅s for Planck's constant and c=3.00×108 m/s for the speed of light in a vacuum. Part A - How many photons in the incident light hit the metal surface in 3.0 s Part B - What is the max kinetic energy of the photoelectrons? Part C - Use classical physics fomula for kinetic energy, calculate the maximum speed of the photoelectrons. The mass of an electron is 9.11×10−31 kg
The maximum speed of the photoelectrons is 1.355 × 10^6 m/s.
The formula for energy of a photon is given by,E = hf = hc/λ
where E is the energy of a photon, f is its frequency, h is Planck's constant, c is the speed of light, and λ is the wavelength. For this question,
h = 6.626 × 10^-34 J s and
c = 3.00 × 10^8 m/s .
Part A
The energy of each incident photon is 5.162×10−19 J
The power of the incident light is 0.74 W.
The total number of photons hitting the metal surface in 3.0 s is calculated as:
Energy of photons = Power × Time => Energy of 1 photon × Number of photons = Power × Time
So,
Number of photons = Power × Time/Energy of 1 photon
Therefore, Number of photons = 0.74 × 3.0 / 5.162 × 10^-19 = 4293.3 ≈ 4293.
Thus, 4293 photons in the incident light hit the metal surface in 3.0 s.
Part B
The energy required to remove an electron from the metal surface is known as the work function of the metal.
The work function W0 of the metal surface used is 2.71 eV = 2.71 × 1.6 × 10^-19 J = 4.336 × 10^-19 J.
Each photon must transfer at least the energy equivalent to the work function to the electron. The maximum kinetic energy of the photoelectrons is given by:
KE
max = Energy of photon - Work function KE
max = (5.162×10−19 J) - (2.71 × 1.6 × 10^-19 J) = 0.822 × 10^-18 J.
Thus, the max kinetic energy of the photoelectrons is 0.822 × 10^-18 J.
Part C
The maximum speed vmax of the photoelectrons is given by the classical physics formula for kinetic energy, which is:
KEmax = (1/2)mv^2
Where m is the mass of an electron, and v is the maximum speed of photoelectrons.The mass of an electron is 9.11×10−31 kg.
Thus, vmax = sqrt[(2 × KEmax) / m]`vmax = sqrt[(2 × 0.822 × 10^-18 J) / 9.11 × 10^-31 kg] = 1.355 × 10^6 m/s
Therefore, the maximum speed of the photoelectrons is 1.355 × 10^6 m/s.
Learn more about photoelectrons with the given link,
https://brainly.com/question/1359033
#SPJ11
Calculate the angle for the third-order maximum of 595 nm wavelength yellow light falling on double slits separated by 0.100 mm.
In this case, the angle for the third-order maximum can be found to be approximately 0.036 degrees. The formula is given by: sinθ = mλ / d
To calculate the angle for the third-order maximum of 595 nm yellow light falling on double slits separated by 0.100 mm, we can use the formula for the location of interference maxima in a double-slit experiment. The formula is given by:
sinθ = mλ / d
Where θ is the angle of the maximum, m is the order of the maximum, λ is the wavelength of light, and d is the separation between the double slits.
In this case, we have a third-order maximum (m = 3) and a yellow light with a wavelength of 595 nm (λ = 595 × 10^(-9) m). The separation between the double slits is 0.100 mm (d = 0.100 × 10^(-3) m).
Plugging in these values into the formula, we can calculate the angle:
sinθ = (3 × 595 × 10^(-9)) / (0.100 × 10^(-3))
sinθ = 0.01785
Taking the inverse sine (sin^(-1)) of both sides, we find:
θ ≈ 0.036 degrees
Therefore, the angle for the third-order maximum of 595 nm yellow light falling on double slits separated by 0.100 mm is approximately 0.036 degrees.
Learn more about double slits here: brainly.com/question/30890401
#SPJ11
"w=1639
[d] A beam of infrared light sent from Earth to the Moon has a wavelength of W nanometers. What is its frequency in units of Hz and what is the energy of a singe photon of this light? Show all your calculatin
The frequency of the beam of infrared light is 183076174.3 Hz.
The energy of a single photon of this light is 1.2145 × 10^-18 J
w = 1639 nm
To find frequency in units of Hz, we use the formula:
v = c/λ
where
c is the speed of light and
λ is the wavelength.
Substituting the values, we get:
v = 3× 10^8 m/s / (1639 × 10^-9 m)v = 183076174.3 Hz
Therefore, the frequency of the beam of infrared light is 183076174.3 Hz.
Now, to find the energy of a single photon of this light, we use the formula:
E = hv
where h is Planck's constant and
v is the frequency.
Substituting the values, we get:
E = 6.626 × 10^-34 J s × 183076174.3 HzE = 1.2145 × 10^-18 J
Therefore, the energy of a single photon of this light is 1.2145 × 10^-18 J.
Learn more about frequency:
https://brainly.com/question/254161
#SPJ11
Determine the Schwartzschild radius of a black hole equal to the mass of the entire Milky Way galaxy (1.1 X 1011 times the mass of the Sun).
The Schwarzschild radius of a black hole with a mass equal to the mass of the entire Milky Way galaxy is approximately 3.22 × 10^19 meters.
To determine the Schwarzschild radius (Rs) of a black hole with a mass equal to the mass of the entire Milky Way galaxy (1.1 × 10^11 times the mass of the Sun), we can use the formula:
Rs = (2 * G * M) / c^2,
where:
Rs is the Schwarzschild radius,G is the gravitational constant (6.67 × 10^-11 N m^2/kg^2),M is the mass of the black hole, andc is the speed of light (3.00 × 10^8 m/s).Let's calculate the Schwarzschild radius using the given mass:
M = 1.1 × 10^11 times the mass of the Sun = 1.1 × 10^11 * (1.99 × 10^30 kg).
Rs = (2 * 6.67 × 10^-11 N m^2/kg^2 * 1.1 × 10^11 * (1.99 × 10^30 kg)) / (3.00 × 10^8 m/s)^2.
Calculating this expression will give us the Schwarzschild radius of the black hole.
Rs ≈ 3.22 × 10^19 meters.
Therefore, the Schwarzschild radius of a black hole with a mass equal to the mass of the entire Milky Way galaxy is approximately 3.22 × 10^19 meters.
To learn more about Milky Way galaxy, Visit:
https://brainly.com/question/30278445
#SPJ11