Answer: The final concentration is 0.16 M.
Explanation:
According to the dilution law:
[tex]M_1V_1=M_2V_2[/tex]
where,
[tex]M_1[/tex] = molarity of stock solution = 1.60 M
[tex]V_1[/tex] = volume of stock solution = 54.0 ml
[tex]M_2[/tex] = molarity of diluted solution = ?
[tex]V_2[/tex] = volume of diluted solution = 218 ml
Putting these values:
[tex]1.60\times 54.0=M_2\times 218[/tex]
[tex]M_2=0.40M[/tex]
Now 109 ml of this diluted solution is further diluted by adding 161 mL of water.
Again applying dilution law:
[tex]0.40\times 109=M_3\times (109+161)[/tex]
[tex]0.40\times 109=M_3\times 270[/tex]
[tex]M_3=0.16M[/tex]
Thus the final concentration is 0.16 M
The common constituent in all acid solutions is
Answer:
H+/H3O , H2O
Explanation:
The ability to be a proton donor is the Bronsted-Lowry definition of acids. The Lewis definition of an acid is an electron pair acceptor, which covers molecules liKE BF3
The ability to accept a pair of electrons is what is common to all acids, not the ability to be a proton donor.
All acid solutions contain hydronium ions (H3O+), hydroxide ions (OH-) and water molecules. Each different acid solution will then have an anion that is exclusive to that acid. For example, hydrochloric acid solution will contain all of the above and chloride ions (Cl-).
All acids contain the acidic substance dissolved in water. Water naturally dissociates to a small amount, creating hydronium and hydroxide ions. But most of the water remains as water molecules.
Then when we add an acid, like HCl, the oxygen on the water attracts the hydrogen from the HCl. The electrons in the covalent bond remain with the chlorine, giving it a negative charge and thus it becomes the chloride ion (Cl-). The hydrogen now has a positive charge and as said before, is attracted to the water (specifically the lone pair of electrons on the oxygen) to create hydronium ions.
This creates extra hydronium ions, making the solution acidic. But remember, there are still water molecules, hydroxide ions and the negative ion all in solution for all acids.
Calculate the missing variable. M1 = 4.0 M V1 = 450mL M2 = ? V2 = 800mL
Answer:7.1
Explanation:
m1=v1
m2=v2
let m2 be x
4.0=450
x=800
cross multiply
4.0 x 800=450x
3200=450x
x = 3200/450
x=m2=7.1
The complete ionic equation for the reaction of aqueous sodium hydroxide with aqueous nitric acid is
Answer and Explanation:
Sodium hydroxide (NaOH) is a strong base and nitric acid (HNO₃) is a strong acid. That means that they dissociates in water by giving the ions:
NaOH ⇒ Na⁺(ac) + OH⁻(ac)
HNO₃ ⇒ H⁺(ac) + NO₃⁻(ac)
The reaction between an acid and a base is called neutralization. In this case, HNO₃ loses its proton and it is converted in NO₃⁻ (nitrate anion). NaOH loses its hydroxyl anion (OH⁻) by giving Na⁺ cations.
Na⁺ cations with NO₃⁻ anions form the salt NaNO₃ (sodium nitrate); whereas H⁺ and OH⁻ form water molecules. The complete equation is the following:
HNO₃(ac) + NaOH(ac) ⇒ NaNO₃(ac) + H₂O(l)
The ionic equation is:
H⁺(ac) + NO₃⁻(ac) + Na⁺(ac) + OH⁻(ac) ⇄ Na⁺(ac) + NO₃⁻(ac) + H₂O(ac)
If we cancel the repeated ions at both sides of the equation, it gives the following ionic reaction:
H⁺(ac) + OH⁻(ac) ⇄ H₂O(ac)
how many grams of F2 are needed to react with 3.50 grams of Cl2 Equation needed for question- Cl2+3F2-->2ClF3 please explain how to get the answer.
Answer:
5.62 g of F2
Explanation:
We have to start with the chemical reaction:
[tex]Cl_2~+~3F_2~-->~2ClF_3[/tex]
We have a balanced reaction, so we can continue with the mol calculation. For this, we need to know the molar mass of [tex]Cl_2[/tex] (70.906 g/mol), so:
[tex]3.5~ g~Cl_2 \frac{1~mol~Cl_2}{70.906~g~Cl_2}=0.049~mol~Cl_2[/tex]
Now, with the molar ratio between [tex]Cl_2[/tex] and [tex]F_2[/tex] we can convert from moles of [tex]Cl_2[/tex] and [tex]F_2[/tex] (1:3), so:
[tex]0.049~mol~Cl_2\frac{3~mol~F_2}{1~mol~Cl_2}=0.148~mol~F_2[/tex]
Finally, with the molar mass of [tex]F_2[/tex] we can calculate the gram of [tex]F_2[/tex] (37.99 g/mol), so:
[tex]0.148~mol~F_2\frac{37.99~g~F_2}{1~mol~F_2}=5.62~g~F_2[/tex]
I hope it helps!
Phosphorus pentachloride decomposes to phosphorus trichloride at high temperatures according to the equation: PCl5(g) ⇌ PCl3(g) + Cl2(g) At 250° 13.0 g of PCl5 is added to the flask with a final solution volume of 0.500 L. If the value of Kc at this temperature is 1.80, what are the equilibrium concentrations of each gas?
Answer:
[tex][PCl_3]_{eq}=0.117M[/tex]
[tex][Cl_2]_{eq}=0.117M[/tex]
[tex][PCl_5]_{eq}=8x10^{-3}M[/tex]
Explanation:
Hello,
In this case, for the given chemical reaction at equilibrium, we can write the law of mass action as shown below:
[tex]Kc=\frac{[PCl_3][Cl_2]}{[PCl_5]}[/tex]
That in terms of the ICE methodology is written by means of the change [tex]x[/tex] due to the reaction extent:
[tex]Kc=\frac{x*x}{[PCl_5]_0-x}[/tex]
Thus, we need to compute the initial concentration of phosphorous pentachloride:
[tex][PCl_5]_0=\frac{13.0g*\frac{1mol}{208.25g} }{0.500L} =0.125M[/tex]
So we write:
[tex]1.80=\frac{x^2}{0.125-x}[/tex]
That we solve via either solver or quadratic equation to obtain the solution:
[tex]x=0.117M[/tex]
Thereby, the equilibrium concentrations are:
[tex][PCl_3]_{eq}=x=0.117M[/tex]
[tex][Cl_2]_{eq}=x=0.117M[/tex]
[tex][PCl_5]_{eq}=0.125M-x=0.125M-0.117M=8x10^{-3}M[/tex]
Best regards.
Hands moving on a battery-operated clock is an example of what kind of
energy conversion?
A. Kinetic energy being converted to chemical potential energy
B. Gravitational potential energy being converted to heat energy
C. Heat energy being converted to gravitational potential energy
O
D. Chemical potential energy being converted to kinetic energy
Answer: D. Chemical potential energy being converted to kinetic energy
Explanation: Batteries are chemical and that energy is converted into kinetic to make the hands on the clock move :) hope this helped!
Classify the substances as atomic elements, molecular elements, molecular compounds, or ionic compounds. a. Agb. Cdc. MgCl2d. F2f. HIg. NO2h. NaCli. Cl2
Answer:
Explanation:
Hello,
We'll be doing some classification of some chemical substances based on molecules, elemental state or ionic or electrovalent properties.
A) Ag = atomic element : silver (Ag) in its elemental state is an atomic element.
B) Cd = atomic element : Cadmium (Cd) is an element of the periodic table and belongs to transition metal.
C) MgCl = ionic compounds: this is a compound formed between magnesium (Mg) and chlorine (Cl) to give MgCl. This compound has ionic or electrovalent properties since electron transfer occurred between the cation (Mg) and anion (Cl).
D) F₂ = moleculer element : Fluorine F₂ is moleculer element since two elements of fluorine combine together to form a molecule.
E) HI = molecular compound : this is a compound formed from the reaction between hydrogen and iodine. It's a molecular compound because they are two different elements combining together to form a compound.
F) NO₂ = molecular compound
G) NaCl = ionic compound
H) Cl₂ = molecular element
Rank the following transitions in a hydrogen atom in order of increasing wavelength of electromagnetic radiation that could produce them. Answer this question without doing any calculations. Explain the order.
n=2 to n=4
n=6 to n=8
n=10 to n=12
n=14 to n=16
Answer:
n=2 to n=4 < n=6 to n=8 < n=10 to n=12 < n=14 to n=16
Explanation:
According to Neils Bohr, electrons in an atom are found in specified energy levels. Transitions are possible from one energy level to another when the electron receives sufficient energy usually in the form of a photon of electromagnetic radiation of appropriate frequency and wavelength. The energy of this photon corresponds to the energy difference between the two energy levels. Thus the higher the energy difference between energy levels, the greater the energy of the photon required to cause the transition and the shorter the wavelength of the photon.
High energy photons have a very short wavelength. It should be noted that as n increases, the energy of successive energy levels decreases and transitions between them now occurs at longer wavelengths. Hence, the highest energy and shortest wavelength of photons are required for transition involving lower values of n because such electrons are closer to the nucleus and are more tightly bound to it than electrons found at a greater distance from the nucleus.
Hence transition involving electrons at higher energy levels occur at a longer wavelength compared to transition involving electrons closer to the nucleus. This is the basis for the arrangement of wavelengths required to effect the various electronic transitions shown in the answer.
a man a man weighing 800 and climbs up a flight of stairs to a height of 15 m in 12 seconds what is the man's average power output
Answer:
1 kW
Explanation:
We assume the man's weight is measured in newtons. Then the power expended is ...
(800 N)(15 m)/(12 s) = (12000 N·m)/(12 s) = 1000 N·m/s = 1000 W
The man's average power output is 1 kilowatt.
An experiment calls for 10.0 mL of bromine (d = 3.12 g/mL). Since an accurate balance is available, it is decided to measure the bromine by mass. How many grams should be measured out? Multiple Choice 3.21 32.1 3.12 31.2 0.312
Answer:
31.2g
Explanation:
The following data were obtained from the question:
Volume of bromine = 10mL
Density of bromine = 3.12 g/mL
Mass of bromine =...?
The Density of the substance is related to it's mass and volume by the following equation:
Density = Mass /volume
With the above equation, we can calculate the mass of bromine as follow:
Density = Mass /volume
Volume of bromine = 10mL
Density of bromine = 3.12 g/mL
Mass of bromine =...?
Density = Mass /volume
3.12 = Mass /10
Cross multiply
Mass of bromine = 3.12 x 10
Mass of bromine = 31.2g
Therefore, the mass of bromine is 31.2g
Electrophilic substitution on 3-phenylpropenenitrile occurs at the meta position. Draw resonance structures to show how the ring is electron-poor at the ortho and para positions.
Answer:
See figure 1
Explanation:
In this question, we have to remember that a poor electron carbon is a carbon in which we have a positive charge, a carbocation. Therefore we have to start with the production of the carbocation. First, a double bond from the benzene is moved to the carbon in the top to produce a new double bond generating a positive charge in a carbon with ortho position (electron-poor). Then we can move another double bond inside the ring to produce a positive charge in the para carbon. Finally, we can move the last double bond to produce again another positive charge in the second ortho carbon.
See figure 1.
I hope it helps!
How will the volume of a gas be affected if the pressure is tripled, but the temperature remains the same?
Answer:
Volume of the gass will decrease by three times of the original volume
Explanation:
Volume is inversly propotional to the pressure applied on it.
Answer:
it is decreased to one third of its original volume
Explanation:
Ga3+ and Br1- is what formula?
[tex]\text{GaBr}_3[/tex]
the options are: ( it can’t be repeated )
1-synthetic polymer
2-natural polymer
3-gamma radiation
4-condensation polymerization
5-addition polymerization
Answer:
3- gamma radiation
Explanation:
Hello,
In the above question, 4 of the options are related to polymerization which are
1. Synthetic polymer
2. Natural polymer
3. Condensation polymerization
4. Addition polymerization.
The first two options are types of polymer that exists while the last two are polymerization techniques.
The odd option here which is "gamma radiation" is a particle which is emitted from radioactive substances during decay. It has no mass and no charge but it is highly penetrating and dangerous to human health.
However,
Synthetic polymers are also known as man made polymers and they exist around us because they're present in materials which we use everyday. An example is polyethylene, nylon-6,6 etc
Natural polymers are compounds which are polymeric in nature (compounds catenating to form a complex molecule). Natrual occurring polymers can be found in proteins and some lipids.
A 13.0-L helium tank is pressurized to 26.0 atm. When connected to this tank, a balloon will inflate because the pressure inside the tank is greater than the atmospheric pressure pushing on the outside of the balloon. Assuming the balloon could expand indefinitely and never burst, the pressure would eventually equalize causing the balloon to stop inflating. What would the volume of the balloon be when this happens? Assume atmospheric pressure is 1.00 atm. Also assume ideal behavior and constant temperature. i got 338L for he whole thing but that is the volume of the entire sample of helium. But you need to consider that 13.0 liters of that is still in the 13.0-L tank. A helium tank is able to inflate balloons if the inside pressure is greater than the atmospheric pressure. can you explain how to do this
Answer:
The volume of the ballon is 325L.
Explanation:
Boyle's law express that the pressure of a gas is inversely proportional to its volume. That means if the pressure increases, the volume decreases. The formula is:
P₁V₁ = P₂V₂
Where P represents pressure and V volume of 1, initial state and 2, final state of the gas.
In the problem, the volume of the tank is 13.0L and the final pressure of the ballon is 1atm -The atmospheric pressure-. As 1atm of gas is in the ballon, the pressure of the tank is 26.0atm - 1.0atm = 25.0atm.
Replacing in Boyle's law expression:
25.0atm*13.0L = 1atmV₂
325L = V₂
The volume of the ballon is 325L.
Write the complete balanced equation for the neutralization reaction that occurs when aqueous hydroiodic acid, HI, and sodium hydrogen carbonate, NaHCO3, are combined. Include physical states.
Answer:
[tex]HI_(_a_q_)~+~NaHCO_3_(_a_q_)~->~NaI_(_a_q_)~+~H_2O_(_l_)~+~CO_2_(_g_)[/tex]
Explanation:
In this case, we will have a neutralization reaction. We have a base ([tex]HI[/tex]) and a base ([tex]NaHCO_3[/tex]). Additionally, we have a strong acid and a strong base, therefore both will be soluble on water, so we will have an aqueous state for these compounds. If we will have a neutralization reaction, we will have as a salt as a product. With this in mind the reaction would be:
[tex]HI_(_a_q_)~+~NaHCO_3_(_a_q_)~->~NaI_(_a_q_)~+~H_2O_(_l_)~+~CO_2_(_g_)[/tex]
All the sodium salts are soluble in water, therefore we will have an aqueous state. Water is a liquid and carbon dioxide is a gas.
I hope it helps!
In the laboratory, a general chemistry student measured the pH of a 0.592 M aqueous solution of triethanolamine, C6H15O3N to be 10.781. Use the information she obtained to determine the Kb for this base.
Kb(experiment) =_______
Answer:
[tex]Kb=6.16x10^{-7}[/tex]
Explanation:
Hello,
In this case, given the pH of the base, we can compute the pOH as shown below:
[tex]pOH=14-pH=14-10.781=3.219[/tex]
Next, we compute the concentration of the hydroxyl ions when the triethanolamine is dissociated:
[tex]pOH=-log([OH^-])[/tex]
[tex][OH^-]=10^{-pOH}=10^{-3.219}=6.04x10^{-4}M[/tex]
Then, by writing the equilibrium expression for the dissociation of triethanolamine we have:
[tex]Kb=\frac{[OH^-][C6H14O2N^+]}{[C6H15O3N ]}[/tex]
That is suitable for the direct computation of Kb, knowing that based on the ICE procedure, [tex]x[/tex] equals the concentration of hydroxyl ions that was previously, computed, therefore, we have:
[tex]Kb=\frac{6.04x10^{-4}M*6.04x10^{-4}M}{0.592M-6.04x10^{-4}M}\\ \\Kb=6.16x10^{-7}[/tex]
Regards.
Enter an abbreviated electron configuration for magnesium: Express your answer in complete form, in order of increasing energy. For example, [He]2s22p2 would be entered as [He]2s^22p^2.
Answer:
[Ne]3s²
Explanation:
Mg
1s2 2s2 2p6 3s2 or [Ne]3s²
Abbreviated electronic configuration of magnesium is [Ne]3 s² and in complete form it is 1 s² 2 s² 2 p⁶ 3 s².
What is electronic configuration?Electronic configuration is defined as the distribution of electrons which are present in an atom or molecule in atomic or molecular orbitals.It describes how each electron moves independently in an orbital.
Knowledge of electronic configuration is necessary for understanding the structure of periodic table.It helps in understanding the chemical properties of elements.
Elements undergo chemical reactions in order to achieve stability. Main group elements obey the octet rule in their electronic configuration while the transition elements follow the 18 electron rule. Noble elements have valence shell complete in ground state and hence are said to be stable.
Learn more about electronic configuration,here:
https://brainly.com/question/13497372
#SPJ5
2. A reaction vessel is charged with hydrogen iodide, which partially decomposes to molecular hydrogen and iodine:2HI (g) H2(g) + I2(g)When the system comes to equilibrium at 425 °C, PHI = 0.794 atm, and PH2 = PI2 = 0.0685 atm. The value of Kp at this temperature is ________.
Answer:
The value of Kp at this temperature is 7.44*10⁻³
Explanation:
Chemical equilibrium is established when there are two opposite reactions that take place simultaneously at the same speed.
For the general chemical equation for a homogeneous gas phase system:
aA + bB ⇔ cC + dD
where a, b, c and d are the stoichiometric coefficients of compounds A, B, C and D, the equilibrium constant Kp is determined by the following expression:
[tex]Kp=\frac{P_{C} ^{c} *P_{D} ^{d} }{P_{A} ^{a} *P_{B} ^{b} }[/tex]
Where Px is the partial pressure of each of the components once equilibrium has been reached and they are expressed in atmospheres. The equilibrium constant Kp depends solely on temperature and is dimensionless.
In the case of the reaction:
2 HI (g) ⇔ H₂ (g) + I₂ (g)
the equilibrium constant Kp is determined by the following expression:
[tex]Kp=\frac{P_{H_{2} } *P_{I_{2} } }{P_{HI} ^{2} }[/tex]
The system comes to equilibrium at 425 °C, and
PHI = 0.794 atmPH2 = 0.0685 atmPI2 = 0.0685 atmReplacing:
[tex]Kp=\frac{0.0685*0.0685}{0.794^{2} }[/tex]
Kp=7.44*10⁻³
The value of Kp at this temperature is 7.44*10⁻³
A solution of nitrous acid and potassium nitrite acts as a buffer due to reactions that occur within the solution when a strong acid or a strong base is added.
(a) Write the net ionic equation for the reaction that occurs in this buffer to react away any added HCl (aq).
(b) Write the net ionic equation for the reaction that occurs in this buffer to react away any added NaOH (aq).
Answer:
a. NO₂⁻ + H⁺ → HNO₂
b. HNO₂ + OH⁻ → NO₂⁻ + H₂O
Explanation:
A buffer is defined as an aqueous mixture of a weak acid and its conjugate base or vice versa.
The buffer of the problem is HNO₂/NO₂⁻ where nitrous acid is the weak acid and NO₂⁻ is its conjugate base.
a. When a acid is added to a buffer as the buffer of the problem, the conjugate base will react with the acid, to produce the weak acid, thus:
NO₂⁻ + HCl → HNO₂ + Cl⁻
Ionic equation is:
NO₂⁻ + H⁺ + Cl⁻ → HNO₂ + Cl⁻
In the net ionic equation, you avoid the ions that don't react, that is:
NO₂⁻ + H⁺ → HNO₂b. In the same way, the weak acid will react with the strong acid producing water and the conjugate base, thus:
HNO₂ + NaOH → NO₂⁻ + H₂O + Na⁺
The ionic equation is:
HNO₂ + Na⁺ + OH⁻ → NO₂⁻ + H₂O + Na⁺
And the net ionic equation is:
HNO₂ + OH⁻ → NO₂⁻ + H₂OHow does each of the following affect the solubility of an ionic compound: (a) Lattice energy Increasing solubility with increasing lattice energy. Lattice energy does not affect solubility. Decreasing solubility with increasing lattice energy. (b) Solvent (polar vs nonpolar) Ionic compounds are more soluble in a polar solvent. Solvent polarity does not affect solubility. Ionic compounds are more soluble in a nonpolar solvent. (c) Enthalpies of hydration of cation and anion Increasing solubility with increasing enthalpy of hydration. Enthalpy of hydration does not affect solubility. Decreasing solubility with increasing enthalpy of hydration.
Answer:
A) Decreasing solubility with increasing lattice energy.
B) Ionic compounds are more soluble in a polar solvent.
C) Increasing solubility with increasing enthalpy of hydration.
Explanation:
A) Lattice energy is the energy contained in the crystal lattice of a compound (mostly ionic). It is also the energy that would be released if the component ions were brought together from infinity to form the compound.
For a compound to dissolve, the solvation energy that the fluid would use to work on its ions must exceed the compound's lattice energy. Hence, the higher the lattice energy, the less soluble the compound would be.
B) The 'like dissolves like' law in dissolution is very true and applicable. The law explains that polar compounds will dissolve in polar solvents and not dissolve in non-polar solvents. Only non-polar compounds will dissolve in non-polar solvents.
Ionic compounds contain positive and negative ions, making them one of the most polar sets of compounds. So, they will easily dissolve in polar solvents.
C) Enthalpies of hydration of the cations and anions represent the total enthalpy of dissolution. This is the energy released when a compound undergoes hydration. A form of salvation of the ions, the enthalpy of hydration need to match or exceed the lattice energybof the compound For the compound to be soluble. Hence, the larger the enthalpies of hydration, the more likely the compound will be soluble.
Hope this Helps!!!
x⁴-2x³-2x²-2x-1=0
i need the right answer
Answer:
X = -0.58377631 , 2.94771158Explanation:
The volume of a sample of water is 2.5 mL the volume of the sample in liters is
Answer:
0.0025Litters
Explanation:
2.5ml= 2.5x10^-3l
2.5ml= 0.0025l
Answer:
AAAAAAAA
Explanation:
Of Sr or Ba , the element with the higher first ionization energy is
Answer:
Sr
Explanation:
Sr has an ionization of 550 whereas Ba has an ionization of 503
Acetic acid and ethanol react to form ethyl acetate and water, like this:
HCH,CO2(aq) + C2H5OH(aq) right arrow C2H,CO2CH3(aq) + H2O
Imagine 246. mmol of C2HCO2CH3 Imagineofare removed from a flask containing a mixture of, andat equilibrium,
1. What is the rate of the reverse reaction before any C2HsCO2CH3 has been removed from the flask?
A. Zero.
B. Greater than zero, but less than the rate of the forward reaction.
C. Greater than zero, and equal to the rate of the forward reaction.
D. Greater than zero, and greater than the rate of the forward reaction.
2. What is the rate of the reverse reaction just after the CoHsCO CH has been removed from the flask?
A. Zero.
B. Greater than zero, but less than the rate of the forward reaction.
C. Greater than zero, and equal to the rate of the forward reaction.
D. Greater than zero, and greater than the rate of the forward reaction.
3. What is the rate of the reverse reaction when the system has again reached equilibrium?
A. Zero.
B. Greater than zero, but less than the rate of the forward reaction.
C. Greater than zero, and equal to the rate of the forward reaction.
D. Greater than zero, and greater than the rate of the forward reaction.
4. How much less C2H5CO2CH3 is in the flask when the system has again reached equilibrium?
A. Zero.
B. Greater than zero, but less than the rate of the forward reaction.
C. Greater than zero, and equal to the rate of the forward reaction.
D. Greater than zero, and greater than the rate of the forward reaction.
Answer:
1.) Option C is correct.
The rate of reverse reaction is greater than zero, but equal to the rate of the forward reaction.
2) Option B is correct.
The rate of reverse reaction is Greater than zero, but less than the rate of the forward reaction.
3) Option C is correct.
The rate of reverse reaction is Greater than zero, and equal to the rate of the forward reaction.
4) Option A is correct.
How much less C2H5CO2CH3 is in the flask when the system has again reached equilibrium? Zero.
Explanation:
HCH,CO2(aq) + C2H5OH(aq) ⇌ C2H,CO2CH3(aq) + H2O
1) Before the main product is removed from the reaction setup, the chemical reaction is at equilibrium.
Chemical equilibrium is a state of dynamic equilibrium such that the concentration of the reactants and the products do not always remain the same but the rate of forward reaction always matches the rate of backward reaction.
2) When 246. mmol of C2HCO2CH3 are removed from the reaction mixture....
And when one of the factors involved in chemical equilibrium changes, Le Chatellier's principle explains that the system then adjusts to remedy this change and takes time to go back to equilibrium again.
When one of the species involved in the chemical reaction at equilibrium, is removed from the reaction mixture, the rate of reaction begins to favour that side of the reaction until equilibrium is re-established.
So, when 246 mmol of one of the products is removed, the response is to cause the rate of forward reaction to be favoured to produce more of products as there are fewer, and the rate of reverse reaction at this moment becomes less than the rate of forward reaction.
3) The rate of the reverse reaction when the system has again reached equilibrium
Like I said in (2) above, the reaction remedies this change in concentration of one of the products until equilibrium is re-established and when chemical equilibrium is re-established the rate of forward reaction once again matches the rate of backward reaction.
4) How much less C2H5CO2CH3 is in the flask when the system has again reached equilibrium?
By the time equilibrium is re-established, the system goes back to how it all was and the concentration of C2H5CO2CH3 goes back to the same as it was at the start of the reaction.
Hope this Helps!!!
Q#1 Give a combination of four quantum numbers that could be assigned to an electron occupying a 5p orbital.
Express your answers using one significant figures. Enter your answers separated by commas.
The answer n, l, ml, ms = 5,1,-1,0,or1,-1/2or+1/2
mastring chemistry says
"Incorrect; Try Again; 6 attempts remaining; no points deducted
Your answer does not have the correct number of comma-separated terms."
the same for q#2
Do the same for an electron occupying a 6d orbital.
Express your answers using one significant figures. Enter your answers separated by commas.
the answer n, l, ml, ms =6,0,1,2,-2,-1,0,+1,+2,+1/2or-1/2
Answer:
For an electron in 5p orbital
5,1,-1,+1/2
For an electron in 6d orbital
6,2,-2,+1/2
Explanation:
The term quantum numbers refers to a set of values that can be used to determine the region in space where it is likely to find an electron. This region in space where there is a high probability of finding an electron is known as an atomic orbital. An atomic orbital is actually a wave function according to the Schrödinger wave equation.
There are four quantum numbers used in describing an atomic orbital: the principal quantum number (n), the orbital angular momentum quantum number also called azimuthal or subsidiary quantum number (l), the magnetic quantum number (ml), and the electron spin quantum number (ms).
For a 5p orbital;
n= 5, l= 1, ml= -1,0,1 ms= +1/2 or -1/2
For 6d orbital;
n= 6, l= 2, ml= -2,-1,0,1,2, ms= +1/2 or -1/2
Since we are requested to use a four quantum number description that can be assigned to an electron in these levels;
For an electron in 5p orbital
5,1,-1,+1/2
For an electron in 6d orbital
6,2,-2,+1/2
What is the standard cell notation of a galvanic cell made with zinc and gold
Answer: Zn (s) |Zn2+ || Au1+| Au(s)
Explanation:
Enter your answer in the provided box. Before arc welding was developed, a displacement reaction involving aluminum and iron(III) oxide was commonly used to produce molten iron (the thermite process). This reaction was used, for example, to connect sections of iron railroad track. Calculate the mass of molten iron produced when 2.88 kg of aluminum reacts with 24.4 mol of iron(III) oxide.
Answer:
2.7255 kg Fe
Explanation:
Based on the reaction of the thermite process:
2 Al(s) + Fe₂O₃(s) → Al₂O₃(s) + 2 Fe(l)
2.88kg of Al (Molar mass: 26.98g/mol) are:
2880g ₓ (1mol / 26.98g) = 106.7 moles Al
For a complete reaction of these moles of Al are necessaries:
106.7 moles Al ₓ ( 1 mol Fe₂O₃ / 2 moles Al) = 53.35 moles Fe₂O₃
As you have just 24.4 moles of Fe₂O₃, Fe₂O₃ is limiting reactant.
1 mole of Fe₂O₃ produce 2 moles of Fe.
Thus, moles of Fe produced are 24.4×2 = 48.8 moles of Fe.
As molar mass of Fe is 55.85g/mol, mass of Fe is:
48.8 moles Fe ×(55.85g / mol) = 2725.5g of Fe =
2.7255 kg FeA 25.00 mL solution of sulfuric acid (H2SO4) is titrated to phenolphthalein end point with 27.00 mL of 1.700 M KOH. Calculate the molarity of the acid solution? H2SO4(aq) + 2KOH(aq) o K2SO4(aq) + 2H2O(l)
Answer:
0.9180 M
Explanation:
Step 1: Write the balanced equation
H₂SO₄(aq) + 2 KOH(aq) ⇒ K₂SO₄(aq) + 2 H₂O(l)
Step 2: Calculate the reacting moles of KOH
27.00 mL of 1.700 M KOH react. The reacting moles of KOH are:
[tex]0.02700L \times \frac{1.700mol}{L} = 0.04590mol[/tex]
Step 3: Calculate the reacting moles of H₂SO₄
The molar ratio of H₂SO₄ to KOH is 1:2. The reacting moles of H₂SO₄ are 1/2 × 0.04590 mol = 0.02295 mol.
Step 4: Calculate the molarity of H₂SO₄
0.02295 moles of H₂SO₄ are in 25.00 mL of solution. The molarity of the acid solution is:
[tex]M = \frac{0.02295 mol}{0.02500} = 0.9180 M[/tex]
Draw the products formed from 2-methyl-2-butene by sequences (1.) and (2.). hydroboration followed by oxidation with alkaline hydrogen peroxide. acid-catalyzed hydration. You do not have to consider stereochemistry. You do not have to explicitly draw H atoms. Product of sequence 1:
Answer:
product won't form hydrogen bond with water
Explanation: