Answer:
1.076 mol (corrected to 2 d.p.)
Explanation:
Take the atomic mass of Ga be 69.7.
since no. of moles = mass/ molar mass,
no. of moles of Ga used = 100.0 / 69.7
= 1.43472023 mol
From the balanced equation, the mole ratio of Ga:S2 = 4:3, which means every 4 moles of Ga can react completely with 3 moles of S2.
So, let the no. of moles of Sulphur required be y.
[tex]\frac{4}{3} =\frac{ 1.43472023}{y}[/tex]
4 y = 1.43472023 x 3
y = 1.076 mol (corrected to 2 d.p.)
Which of the following atoms would have the longest de Broglie wavelength, if all have the same velocity?
A) Li
B) Na
C) Fe
D) Pb
E) Not possible to tell with given information
Answer:
Li
Explanation:
The phenomenon of wave particle duality was well established by Louis deBroglie. The wavelength associated with matter waves was related to its mass and velocity as shown below;
λ= h/mv
Where;
λ= wavelength of matter waves
m= mass of the particle
v= velocity of the particle
This implies that if the velocities of all particles are the same, the wavelength of matter waves will now depend on the mass of the particle. Hence; the wavelength of a matter wave associated with a particle is inversely proportional to the magnitude of the particle's linear momentum. The longest wavelength will then be obtained from the smallest mass of matter. Hence lithium which has the smallest mass will exhibit the longest DeBroglie wavelength
The atom that have the longest de Broglie wavelength is ; ( A ) Li
Wave particle duality is a phenomenon by de Broglie. that shows that The wavelength associated with matter waves is related to its mass and velocity .
Wave particle duality is represented as ; λ = h / mv
λ= wavelength of matter waves
m= mass of the particle
v= velocity of the particle
Given that the elements have the same velocity the atom that would have the longest de Broglie wavelength is Li
Learn more : https://brainly.com/question/21537274
Consider 1 M solutions of NaCl, ethyl alcohol (CH3CH2OH), and hydrofluoric acid. Rank them in terms of how well they conduct electricity and explain why you ranked them this way.
Answer:
conductivity increasing order CH₃-CH₂-OH < HF< NaCl
Explanation:
NaCl is the better conductor comparing with remaining two. it is strong electrolyte. dissociation percent always nearly eqaul to 100% but HF is weaker acid than NaCl and dissociation percent <100% . So, the no of ions furnished by HF less than that of NaCl
CH₃-CH₂-OH organic compound . in general it is not treated as an electrolyte and it cannot carry any charge. If it carries, it is very very less compared to remaining two
A transition in the balmer series for hydrogen has an observed wavelength of 434 nm. Use the Rydberg equation below to find the energy level that the transition originated. Transitions in the Balmer series all terminate n=2.
Delta E= -2.178 x10-18J ( 1/n2Final - 1/n2Initial )
The number is 5.
What is the energy of this transition in units of kJ/mole? ( hint: the anser is NOT 4.58x10-22kJ/mole or -4.58x10-22kJ/mole)
Answer:
i. n = 5
ii. ΔE = 7.61 × [tex]10^{-46}[/tex] KJ/mole
Explanation:
1. ΔE = (1/λ) = -2.178 × [tex]10^{-18}[/tex]([tex]\frac{1}{n^{2}_{final} }[/tex] - [tex]\frac{1}{n^{2}_{initial} }[/tex])
(1/434 × [tex]10^{-9}[/tex]) = -2.178 × [tex]10^{-18}[/tex] ([tex]\frac{n^{2}_{initial} - n^{2}_{final} }{n^{2}_{final} n^{2}_{initial} }[/tex])
⇒ 434 × [tex]10^{-9}[/tex] = (1/-2.178 × [tex]10^{-18}[/tex])[tex]\frac{n^{2}_{final} *n^{2}_{initial} }{n^{2}_{initial} - n^{2}_{final} }[/tex]
But, [tex]n_{final}[/tex] = 2
434 × [tex]10^{-9}[/tex] = (1/2.178 × [tex]10^{-18}[/tex])[tex]\frac{2^{2} n^{2}_{initial} }{n^{2}_{initial} - 2^{2} }[/tex]
434 × [tex]10^{-9}[/tex] × 2.178 × [tex]10^{-18}[/tex] = [tex](\frac{4n^{2}_{initial} }{n^{2}_{initial} - 4 })[/tex]
⇒ [tex]n_{initial}[/tex] = 5
Therefore, the initial energy level where transition occurred is from 5.
2. ΔE = hf
= (hc) ÷ λ
= (6.626 × 10−34 × 3.0 × [tex]10^{8}[/tex] ) ÷ (434 × [tex]10^{-9}[/tex])
= (1.9878 × [tex]10^{-25}[/tex]) ÷ (434 × [tex]10^{-9}[/tex])
= 4.58 × [tex]10^{-19}[/tex] J
= 4.58 × [tex]10^{-22}[/tex] KJ
But 1 mole = 6.02×[tex]10^{23}[/tex], then;
energy in KJ/mole = (4.58 × [tex]10^{-22}[/tex] KJ) ÷ (6.02×[tex]10^{23}[/tex])
= 7.61 × [tex]10^{-46}[/tex] KJ/mole
The initial energy level is 5 and the energy of this transition in units of kJ/mole is 7.57 * 10^-43 kJ/mole
We must first calculate ΔE as follows;
ΔE = hc/λ
h = Plank's constant = 6.6 * 10^-34 Js
c = speed of light = 3 * 10^8 m/s
λ = wavelength = 434 * 10^-9
ΔE = 6.6 * 10^-34 * 3 * 10^8/434 * 10^-9
ΔE = 0.0456 * 10^-17 J
ΔE = [tex]ΔE = -2.178 x10^-18 (\frac{1}{n^2final} - \frac{1}{n^2initial}) \\ΔE = -2.178 x10^-18 (\frac{1}{2^2} - \frac{1}{n^2initial} )\\\\4.56 * 10^-19/2.178 x10^-18 = (\frac{1}{2^2} - \frac{1}{n^2initial})\\0.210 = (\frac{1}{2^2} - \frac{1}{n^2initial})\\\frac{1}{n^2initial} = 0.25 - 0.210\\\frac{1}{n^2final} = 0.04\\n = (\sqrt{(0.04)^-1} \\n = 5[/tex]
Energy of this transition in units of kJ/mole = 4.56 * 10^-19/ 6.02 * 10^23
= 7.57 * 10^-43 kJ/mole
Learn more; https://brainly.com/question/5295294
How does the carbon calculator estimate the amount of CO2 that each individual releases into the atmosphere?
Answer:
The calculator add the CO2 released from the use of electricity, released from driving and the CO2 from the waste that we disposed.
Explanation:
The carbon dioxide, CO2 is what the human body does not need, therefore, we breathe it out, hence taking in oxygen(respiration process). The plants need oxygen for the production of their own food.
The carbon calculator estimate the amount of CO2 that each individual releases into the atmosphere through the consideration of several factors such as the kind of food that we eat.
Therefore, if we are to use the carbon calculator to determine the amount of CO2 that each individual releases into the atmosphere we will have:
The amount of CO2 that each individual releases into the atmosphere =( CO2 released from the use of electricity) + (CO2 released from driving) + (the CO2 from the waste that we disposed).
When 75.5 grams of phosphorus pentachloride react with an excess of water, as shown in the unbalanced chemical equation below, how many moles of hydrochloric acid will be produced? Please show all your work for the calculations for full credit. PCl5 + H2O --> H3PO4 + HC
Answer:
Explanation: M(PCL5)= 31 + 5(35.5)
=208.5g/mol
M(H20)= 18g/mol
n(PCL5) = 75.5÷208.5
= 0.362mol
n(HCl)/n(PCL5)= 5/1
n(HCl)= 5×0.362
=1.81mol of HCl
Which example involves a phase change in which heat energy is released by the substance?
Ofreezing ice cream
O cooking a pot of soup
O melting ice under sunlight
O watching frost disappear into air
Answer:
Cooking a pot of soup
Explanation:
id say that because when you freeze ice cream, its already frozen, so no heat is being released. melting ice wouldn't be the answer because, once again, it is already frozen, and no heat is being released.
Answer:
the correct answer is freezing ice cream
Explanation:
i took the test & got this question correct. also, heat energy is released when freezing because there is no heat energy involved.
An electrode has a negative electrode potential. Which statement is correct regarding the potential energy of an electron at this electrode?
A. An electron at this electrode has the same potential energy as it has at a standard hydrogen electrode.
B. An electron at this electrode has a lower potential energy than it has at a standard hydrogen electrode.
C. An electron at this electrode has a higher potential energy than it has at a standard hydrogen electrode.
Answer:
C. An electron at this electrode has a higher potential energy than it has at a standard hydrogen electrode.
Explanation:
The standard hydrogen electrode (SHE) is used to measure the electrode potential of substances. The standard hydrogen electrode is arbitrarily assigned an electrode potential of zero. Recall that electrode potentials are always measured as reduction potentials in electrochemical systems.
For an electrode that has a negative electrode potential, electrons at this electrode have a higher potential energy compared to electrons at the standard hydrogen electrode. Electrons flow from this electrode to the hydrogen electrode.
On the other hand, a positive electrode potential implies that an electron at this electrode has a lower potential energy than it has at a standard hydrogen electrode. Hence electrons will flow from the standard hydrogen electrode to this electrode.
Which element has 4 valence electrons in the 3p sublevel?
The Periodic Table
A. Ga
B. Si
C. N
D. S
Answer:
D . Sulphur
Explanation:
the element with a 3p4 valence configuration, look in period 3 and group XVI, and that is ...
S, sulfur.
Which of the following is NOT one of the types of bonds? A. Ionic B. Metallic C. Covalent D. Valence
Considering the definition of bond and the different type of bonds, valence is not one of the types of bonds.
What is a chemical bondA chemical bond is defined as the force by which the atoms of a compound are held together. These are electromagnetic forces that give rise to different types of chemical bonds.
In other words, a chemical bond is the force that joins atoms to form chemical compounds and confers stability to the resulting compound.
Covalent bondThe covalent bond is the chemical bond between atoms where electrons are shared, forming a molecule. Covalent bonds are established between non-metallic elements, such as hydrogen H, oxygen O and chlorine Cl. These elements have many electrons in their outermost level (valence electrons) and have a tendency to gain electrons to acquire the stability of the electronic structure of noble gas. The shared electron pair is common to the two atoms and holds them together.
Ionic bondAn ionic bond is produced between metallic and non-metallic atoms, where electrons are completely transferred from one atom to another. During this process, one atom loses electrons and another one gains them, forming ions.
Metallic bondMetallic bonds are a type of chemical bond that occurs only between atoms of the same metallic element. In this way, metals achieve extremely compact, solid and resistant molecular structures, since the atoms that share their valence electrons.
SummaryIn summary, valence is not one of the types of bonds. The types of bonds are covalent, ionic and metallic.
Learn more about chemical bonds:
https://brainly.com/question/25385832
https://brainly.com/question/13178368
#SPJ1
Silver crystallizes in a face-centered cubic structure. What is the edge length of the unit cell if the atomic radius of silver is 144 pm?
Answer:
Edge length of the unit cell is 4.07x10⁻¹⁰m
Explanation:
In a face-centered cubic structure, the edge, a, could be obtained using pythagoras theorem knowing the hypotenuse of the unit cell, b, is equal to 4r:
a² + a² = b² = (4r)²
2a² = 16r²
a = √8 r
That means edge lenght is = √8 r
adius
As radius of Silver is 144pm = 144x10⁻¹²m:
a = √8 r
a = √8 ₓ 144x10⁻¹²m
a = 4.07x10⁻¹⁰m
Edge length of the unit cell is 4.07x10⁻¹⁰mCalculate the number of moles of C2H6 in 3.97×1023 molecules of C2H6.
3.97×1023 molecules C2H6 1 mol C2H6
------------------------------------------ x ------------------------------------ = 0.66 mol C2H6
6.022 x 1023 molec. C2H6
Calculate the mass of a body
Whose volume is
Is 2cm3 and
density is 520cm3
Answer:
The answer is
1040gExplanation:
Density = mass / volume
mass = density × volume
volume = 2cm³
density = 520g/cm³
mass = 2 × 520
= 1040g
Hope this helps you
: Starting with 0.3500 mol CO(g) and 0.05500 mol COCl2(g) in a 3.050-L flask at 668 K, how many moles of Cl2(g) will be present at equilibrium
Answer:
The number of moles of Cl₂ present at equilibrium is 3.94x10⁻⁴ moles.
Explanation:
The reaction is:
CO(g) + Cl₂(g) ⇄ COCl₂(g)
The equilibrium constant of the above reaction is:
K = 1.2x10³
To find the moles of Cl₂ present at equilibrium, let's evaluate the reverse reaction:
COCl₂(g) ⇄ CO(g) + Cl₂(g)
The equilibrium constant for the reverse reaction is:
[tex] K_{r} = \frac{1}{1.2 \cdot 10^{3}} = 8.3 \cdot 10^{-4} [/tex]
Now, we need to calculate the concentration of CO and COCl₂:
[tex] C_{CO} = \frac{\eta_{CO}}{V} = \frac{0.3500 moles}{3.050 L} = 0.115 M [/tex]
[tex] C_{COCl_{2}} = \frac{\eta_{COCl_{2}}}{V} = \frac{0.05500 moles}{3.050 L} = 0.018 M [/tex]
Now, from the reaction we have:
COCl₂(g) ⇄ CO(g) + Cl₂(g)
0.018 - x 0.115+x x
The concentration of Cl₂ is:
[tex] K_{r} = \frac{[CO][Cl_{2}]}{[COCl_{2}]} [/tex]
[tex] 8.3 \cdot 10^{-4} = \frac{(0.115 + x)(x)}{0.018 - x} [/tex]
[tex] 8.3 \cdot 10^{-4}*(0.018 - x) - (0.115 + x)(x) = 0 [/tex]
By solving the above equation for x we have:
x = 1.29x10⁻⁴ M = [Cl₂]
Finally, the number of moles of Cl₂ present at equilibrium is:
[tex] \eta_{Cl_{2}} = C_{Cl_{2}}*V = 1.29 \cdot 10^{-4} mol/L*3.050 L = 3.94 \cdot 10^{-4} moles [/tex]
Therefore, the number of moles of Cl₂ present at equilibrium is 3.94x10⁻⁴ moles.
I hope it helps you!
If you combine 24.2 g of a solute that has a molar mass of 24.2 g/mol with 100.0 g of a solvent, what is the molality of the resulting solution
Answer: 10 moles/kg.
Explanation:
Given, Mass of solute = 24.2 g
Molar mass of solute = 24.2 g/mol
[tex]\text{Moles of solute =}\dfrac{\text{Mass of solute}}{\text{Molar mass of solute}}\\\\=\dfrac{24.2}{24.2}=1[/tex]
Mass of solvent = 100.0g = 0.1 kg [1 g=0.001 kg]
[tex]\text{Molality}=\dfrac{\text{Moles of solute}}{\text{kilograms of Solvent}}\\\\=\dfrac{1}{0.1}\\\\=10\ moles/kg[/tex]
Hence, the molality of the resulting solution is 10 moles/kg.
The thermochemical equation is for the reaction of hydrogen bromide gas to form hydrogen gas and bromine liquid. 2HBr(g) = H 2 (g)+ Br 2 (l) 72.6 kJ How many grams of HBr (g) would be made to react if 11.4 energy were provided?
Answer:
the mass of HBr that would react is 25.41 g of HBr
Explanation:
attached is the calculations.
Calculate the combustion of gaseous dimethyl ether CH 3 OCH 3 (g)+3O 2 (g) 2CO 2 (g)+3H 2 O(l) using standard molar enthalpies of formation Molecule AH H l ^ 0 (k)/mol) CH 3 OCH 3 (g) - 184.1
Answer:
[tex]\Delta _cH=-1328.3kJ/mol[/tex]
Explanation:
Helllo,
In this case, for the given chemical reaction in gaseous state:
[tex]CH_3OCH_3+3O_2\rightarrow 2CO_2+3H_2O[/tex]
We comoute the combustion enthalpy as the reaction enthalpy for one mole of fuel (dimethyl ether) considering the formation enthalpy of each given substance and whether they are reactants (subtracting) or products (adding), therefore we write:
[tex]\Delta _cH=2*\Delta _fH_{CO_2}+3*\Delta _fH_{H_2O}-\Delta _fH_{CH_3OCH_3}-3*\Delta _fH_{O_2}[/tex]
Whereas the formation enthalpies for carbon dioxide, water, dimethyl ether and oxygen are -393.5, -241.8, -184.1 and 0 kJ/mol respectively, thereby, the combustion enthalpy turns out:
[tex]\Delta _cH=2(-393.5)+3*(-241.8)-(-184.1)-3(0)\\\\\Delta _cH=-1328.3kJ/mol[/tex]
Notice that enthalpy of formation of oxygen is zero since forming an element has no chemical sense, it just exists as it has been early demonstrated.
Regards.
How many valence electrons are in the electron dot structures for the elements in group 3A(13)?
Answer:
here, as we have known the elements of group 3A(13) such as aluminium , boron has three valance electron and in perodic table the elements are kept with similar proterties in same place so, their valance electron is 3.
hope it helps...
The number of valence electrons are in the electron dot structures for the elements in group 3A(13) is three.
What are Groups in the Periodic Table?The periodic table is organized into groups (vertical columns), periods (horizontal rows), and families (groups of elements that are similar). Elements in the same group have the same number of valence electrons.
Groups are the columns of the periodic table, and periods are the rows. There are 18 groups, and there are 7 periods plus the lanthanides and actinides.
There are two different numbering systems that are commonly used to designate groups, and you should be familiar with both.
The traditional system used in the United States involves the use of the letters A and B. The first two groups are 1A and 2A, while the last six groups are 3A through 8A. The middle groups use B in their titles.
Therefore, The number of valence electrons are in the electron dot structures for the elements in group 3A(13) is three.
Learn more about Groups in the periodic table, here:
https://brainly.com/question/30858972
#SPJ3
Given the specific heat for aluminum is 0.900 J/g.°C, how much heat is released when a 3.8 g sample
of Al cools from 450.0°C to 25°C?
A. 1.5 kJ
B. 54 J
C. 60J
D. 1.7 kJ
E. 86 J
Answer:
Q = 1.5 kJ
Explanation:
It is given that,
The specific heat for aluminum is 0.900 J/g°C
Mass of sample, m = 3.8 g
Initial temperature, [tex]T_i=450^{\circ} C[/tex]
Final temperature, [tex]T_f=25^{\circ} C[/tex]
We need to find the heat released. The amount of heat released is given by the formula:
[tex]Q=mc\Delta T\\\\Q=mc(T_f-T_i)\\\\Q=3.8\times 0.9\times (25-450)\\\\Q=1453.5\ J\\\\Q=1.45\ kJ[/tex]
or
[tex]Q=1.5\ kJ[/tex]
So, the correct option is (A) i.e. 1.5 kJ.
The molecular weight of table salt, NaCl, is 58.5 g/mol. A tablespoon of salt weighs 6.37 grams. Calculate the number of moles of salt in one tablespoon.
Finally, solve (remember significant figures):
Answer:
0.109 mol/tablespoon
Explanation:
6.37 g/ 58.5 mol = 0.10888888 mol (0.109 significantly)
Answer:
A: 0.109
Explanation:
Edge 2020
If the reaction starts with a mixture of PCl5, PCl3 and Cl2 at pressures of 0.820 atm, 1.322 atm and 0.911 atm respectively, is the reaction at equilibrium
Answer:
The reaction is not in equilibrium
Explanation:
For the reaction:
PCl₅ ⇄ PCl₃ + Cl₂
Equilibrium constant, Kp, is defined as:
[tex]Kp = \frac{P_{PCl_3}P_{Cl_2}}{P_{PCl_5}} = 0.497[/tex]
When this ratio is = 0.497, the reaction is in equilibrium. Replacing the pressures of the problem, reaction quotient, Q, is:
[tex]Q =\frac{1.322atm*0.911atm}{0.820atm} = 1.469[/tex]
As Q ≠ Kp, the reaction is not in equilibrium
To reach the equilibrium, the reaction will shift to the left producing more reactant and decreasing amount of products.
Identify the following substances:
(1) An acidic gas which gives dense white fumes with NH3
(11 An alkane which can also be called a green house gas.
(iii) A solid which when kept in the open, forms a solution after som
(iv) An alloy used in electrical fittings.
(v) A metal which gives hydrogen gas on reacting with both dilute a
Write equations for the following reactions:
Aluminium oxide and Sodium hydroxide.
(ii) Zine and dilute sulphuric acid.
(
11
Answer:
1) HCl (Hydrochloric acid reacts with NH3 and forms dense fumes)
2) Methane (It is from the group of alkanes and is a green house gas)
3) Deliquescent substance (It is a solid which when kept in open forms a solution after sometime)
4) Brass (It is a solid-in-solid solution used to make electrical fittings)
5) Aluminium
Question 2:
1) Al₂O₃ + 2NaOH ⇒ 2NaAlO₂ (Sodium Aluminate) + H₂O
2) Zn + H₂SO₄ (dilute) => ZnSO₄ (Zinc Sulphate) + H₂
Answer:
HCl is the gasmethanedeliquescent substances (they absorbs water out of the air until they dissolve themselves into liquid solutions. )brassequations
Aluminium oxide and Sodium hydroxide react to form water and sodium aluminate
Al2O3 + 2NaOH → 2NaAlO2 + H2OZinc reacts with dilute sulphuric acid to form zinc sulphate and hydrogen gas
Zn + H2SO4 → ZnSO4 +H2
What is the shape of a molecule that has 4 atoms bonded to a central atom
and no lone pairs of electrons?
A. Octahedral
B. Cubic
C. Tetrahedral
D. Trigonal-pyramidal
Answer:
C. Tetrahedral
Explanation:
Tetrahedral would be the correct choice because the central atom has 4 domains (1 bond counts as 1 domain so 4 bonds =4) and no lone pairs which means it has tetra (which translates to four) domains hence tetrahedral.
Tetrahedral is the shape of a molecule that has 4 atoms bonded to a central atom and no lone pairs of electrons. Hence, option C is correct.
What is an atom?An atom consists of a central nucleus that is usually surrounded by one or more electrons.
Tetrahedral would be the correct choice because the central atom has 4 domains (1 bond counts as 1 domain so 4 bonds =4) and no lone pairs which mean it has tetra (which translates to four) domains hence tetrahedral.
Hence, option C is correct.
Learn more about atom here:
https://brainly.com/question/1566330
#SPJ2
What is the electron geometry and molecular geometry of:
A. H2O
B. CH2CL2
C. OPCL3
D. CO3^2-
E. ALCL6^3-
F. SO2
G. PCL5
Answer:
H2O
Electron geometry-tetrahedral
Molecular geometry bent
CH2Cl2
Electron geometry- tetrahedral
Molecular geometry-tetrahedral
OPCL3
Electron geometry- tetrahedral
Molecular geometry- tetrahedral
CO3^2-
Electron geometry- trigonal planar
Molecular geometry- trigonal planar
ALCL6^3-
Electron geometry-octahedral
Molecular geometry- octahedral
SO2
Electron geometry-tetrahedral
Molecular geometry-bent
PCL5
Electron geometry-trigonal bipyramidal
Molecular geometry- trigonal bipyramidal
Explanation:
Water contains four electron domains this corresponds to a tetrahedral electron geometry. How ever, there are two lone pairs in the molecule hence it is bent.
CH2Cl2 is shows a tetrahedral molecular geometry and a tetrahedral electron geometry. This can only be observed from the structure of the compound.
OPCL3 is bonded to four groups making it a tetrahedral molecule. There are non lone pairs on phosphorus so the molecule is not bent.
CO3^2- is bonded to three groups which leads to a trigonal planar geometry.
ALCL6^3- contains six bonding groups which arrange themselves at the corners of a regular octahedron at a bond angle of 90°.
SO2 has four electron domains leading to a tetrahedral electron domain geometry according to valence shell electron pair repulsion theory. However, the lone pairs on the central atom in the molecule leads to a bent molecular geometry.
PCL5 has five electron domains without lone pairs of electrons on its central atom. Hence the molecule possess a trigonal bipyramidal geometry.
The electron geometry and molecular geometry of the molecule are as follows:
A. H₂O: The electron geometry is tetrahedral because it has four electron domains (two bonding pairs and two lone pairs). However, due to the presence of two lone pairs, the molecular geometry is bent or V-shaped.
B. CH2Cl₂: The electron geometry is tetrahedral. However, the molecular geometry is trigonal planar because two of the electron domains are occupied by chlorine atoms, resulting in a bent shape.
C. OPCl₃: The electron geometry is tetrahedral. However, the molecular geometry is trigonal pyramidal because one of the electron domains is occupied by a lone pair on phosphorus.
D. CO3⁻²: The electron geometry is trigonal planar because it has three electron domains (three single bonds). The molecular geometry is also trigonal planar.
E. AlCl6⁻³: The electron geometry is octahedral because it has six electron domains. The molecular geometry is also octahedral.
F. SO₂: The electron geometry is trigonal planar because it has three electron domains (two single bonds and one lone pair). The molecular geometry is bent or V-shaped due to the presence of a lone pair on sulfur.
G. PCl₅: The electron geometry is trigonal bipyramidal because it has five electron domains. The molecular geometry is also trigonal bipyramidal.
To learn more about the electron geometry, follow the link:
https://brainly.com/question/9651182
#SPJ6
Which physical method can be used for obtaining a sample of salt from a small beaker of salt water?
boiling
freezing
chromatography
sorting
Answer:
a. boiling
Explanation:
Name MgSo4.7H2O /Cs3PO4.H2O
Answer:
MgSo4.7H2O = Magnesium sulfate
Cs3PO4.H2O = Cesium Phosphate
Hope this helps!
The compound barium nitrate is a strong electrolyte. Write the transformation that occurs when solid barium nitrate dissolves in water.
Answer:
Ba(NO₃)₂(s) → Ba²⁺ + 2NO₃⁻
Explanation:
A strong electrolyte is a salt (A compound that has an anion and a cation and are neutral) that, in water, dissociates completely in its ions.
In Barium nitrate, Ba(NO₃)₂, the cation is Ba²⁺ (Alkaline earth metal), and the anion is the nitrate ion, NO₃⁻.
Thus, when Ba(NO₃)₂ (s) is dissolved in water, its transformation is:
Ba(NO₃)₂(s) → Ba²⁺ + 2NO₃⁻When solid barium nitrate (Ba(NO₃)₂) dissolves in water, it undergoes a dissociation process where the compound breaks apart into its constituent ions.
Dissociation refers to the process in which a compound breaks apart into its constituent ions when dissolved in a solvent, typically water. In this process, the chemical bonds within the compound are disrupted, resulting in the separation of positive and negative ions.
The dissociation occurs due to the interaction between the solute particles and the solvent molecules, leading to the formation of hydrated ions.
The transformation can be represented as follows:
Ba(NO₃)₂(s) → Ba²⁺(aq) + 2NO₃⁻(aq)
In this process, the barium nitrate compound dissociates into barium ions (Ba²⁺) and nitrate ions (NO₃⁻) in the aqueous solution. The resulting ions are free to move and conduct electricity, indicating that barium nitrate is a strong electrolyte when dissolved in water.
Learn more about Dissociation, here:
https://brainly.com/question/32501023
#SPJ6
What is the atomic mass of OsO4
Answer:
254.23 g/mol
Explanation:
Atomic mass for Osmium tetroxide would be 254.23 g/ml
Answer:254.2276
Explanation:
Draw a structural formula of an alkene or alkenes (if more than one) that undergo acid-catalyzed hydration and without re-arrangement give 2-butanol as the major product.
Answer:
See explanation
Explanation:
Hydration of alkenes is a common reaction in organic chemistry. Hydration is simply the addition of water to an alkene. This is an acid catalysed reaction as we can see from the mechanism attached.
Recall that our task is to carry out the synthesis of 2-butanol using an alkene starting material in which there will be no rearrangement of the intermediate carbocation. If we start with the compound shown in the image (but-2-ene), the first step is the formation of the secondary carbocation. This is followed by the addition of water. Subsequently, the added water is deprotonated by another water molecule to yield 2-butanol and the acid catalyst. All these steps have been clearly outlined in the image attached.
A constant volume and mass of helium gas at 77°C is heated so that the pressure of the gas doubles. What is the new temperature of the gas in Celsius degrees?
Answer:
427°C .
Explanation:
Step 1:
Data obtained from the question. This include the following:
Initial temperature (T1) = 77°C
Initial pressure (P1) = P
Final pressure (P2) = 2P
Final temperature (T2) =?
Step 2:
Conversion of celsius temperature to Kelvin temperature.
This is illustrated below:
T(K) = T (°C) + 273
Initial temperature (T1) = 77°C
Initial temperature (T1) = 77°C+ 273 = 350K
Step 3:
Determination of the new temperature. The new temperature can be obtained as follow:
P1/T1 = P2/T2
P/350 = 2P/T2
Cross multiply
P x T2 = 350 x 2P
Divide both side by P
T2 = (350 x 2P ) / P
T2 = 700K
Step 4:
Conversion of Kelvin temperature to celsius temperature.
This can be obtained as follow:
T(°C) = T(K) – 273
T(K) = 700K
T(°C) = 700 – 273
T(°C) = 427°C
Therefore, the new temperature of the gas is 427°C
A sample of a pure compound that weighs 60.3 g contains 20.7 g Sb (antimony) and 39.6 g F (fluorine). What is the percent composition of fluorine
Answer:
The percent composition of fluorine is 65.67%
Explanation:
Percent Composition is a measure of the amount of mass an element occupies in a compound. It is measured in percentage of mass.
That is, the percentage composition is the percentage by mass of each of the elements present in a compound.
The calculation of the percentage composition of an element is made by:
[tex]percent composition element A=\frac{total mass of element A}{mass of compound} *100[/tex]
In this case, the percent composition of fluorine is:
[tex]percent composition of fluorine=\frac{39.6 g}{60.3 g} *100[/tex]
percent composition of fluorine= 65.67%
The percent composition of fluorine is 65.67%
Answer:
The percent composition of fluorine is 65.67%
Explanation:
Percent Composition is a measure of the amount of mass an element occupies in a compound. It is measured in percentage of mass.
That is, the percentage composition is the percentage by mass of each of the elements present in a compound.
The calculation of the percentage composition of an element is made by:
In this case, the percent composition of fluorine is:
percent composition of fluorine= 65.67%
The percent composition of fluorine is 65.67%