Answer:
Confidence level = 59.46%
Step-by-step explanation:
Given that:
An economist reports that 576 out of a sample of 1,200 middle-income American households participate in the stock market.
sample mean = 576
sample size = 1200
The sample proportion [tex]\hat p[/tex] = x/n
The sample proportion [tex]\hat p[/tex] = 576/1200 = 0.48
A confidence interval of [0.468, 0.492] was calculated. What confidence level was used in this calculation?
The confidence interval level can be determined by using the formula:
[tex]M.E =Z_{critical} \times \sqrt{\dfrac{\hat p (1- \hat p)}{n}}[/tex]
If the calculated confidence interval was [0.468, 0.492]
Then,
[tex]\hat p[/tex] - M.E = 0.468
0.48 -M.E = 0.468
0.48 - 0.468 = M.E
0.012 = M.E
M.E = 0.012
NOW;
[tex]0. 012 =Z_{critical} \times \sqrt{\dfrac{0.48 (1- 0.48)}{1200}}[/tex]
[tex]0. 012 =Z_{critical} \times \sqrt{\dfrac{0.48 (0.52)}{1200}}[/tex]
[tex]0. 012 =Z_{critical} \times \sqrt{\dfrac{0.2496}{1200}}[/tex]
[tex]0. 012 =Z_{critical} \times \sqrt{2.08\times10^{-4}}[/tex]
[tex]0. 012 =Z_{critical} \times 0.01442[/tex]
[tex]\dfrac{0. 012}{0.01442} =Z_{critical}[/tex]
[tex]Z_{critical} =0.8322[/tex]
From the standard normal tables,
the p - value at [tex]Z_{critical} =0.8322[/tex] = 0.7973
Since the test is two tailed
[tex]1 - \alpha/2= 0.7973[/tex]
[tex]\alpha/2= 1-0.7973[/tex]
[tex]\alpha/2= 0.2027[/tex]
[tex]\alpha= 0.2027 \times 2[/tex]
[tex]\alpha= 0.4054[/tex]
the level of significance = 0.4054
Confidence level = 1 - level of significance
Confidence level = 1 - 0.4054
Confidence level = 0.5946
Confidence level = 59.46%
What is the maximum value of -4z^2+20z-6?
Answer:
Hello,
19
Step-by-step explanation:
2 methodes:
1)
[tex]y=-4x^2+20x-6\\\\=-4(x^2-5x)-6\\\\=-4(x^2-2*\dfrac{5}{2}*x+\dfrac{25}{4} ) +25-6\\\\=-4(x-\frac{5}{2} )^2+19\\\\Maximum\ =19 \ if\ x=\dfrac{5}{2} \\[/tex]
2)
y'=-8x+20=0 ==> x=20/8=5/2
and y=-4*(5/2)²+20*5/2-6=-25+50-6=19
finding maximums/minimums in quadratic equations:
The maximum value is 19
We want to find the maximum value of:
y = -4z^2+20z-6
Here, you can see that we have a quadratic equation with a negative leading coefficient.
This means that the arms of the graph will go downwards. From this, we can conclude that the maximum will the at the vertex (the highest point).
Remember that for a general equation like:
y = a*x^2 + b*x + c
The x-value of the vertex is:
x = -b/(2a)
(you can see that the variable is a different letter, that does not matter, is just notation)
Then for our equation:
y = -4z^2+20z-6
The z-value of the vertex is:
z = -20/(2*-4) = -20/-8 = 5/2
Then the maximum of the equation:
y = -4z^2+20z-6
is that equation evaluated in z = 5/2
So we get:
y = -4*(5/2)^2 + 20*(5/2) - 6 = 19
The maximum value is 19
If you want to learn more about this topic, you can read:
https://brainly.com/question/14336752
What type of polynomial is: sqrt 7x^4 - x^3
Answer:
Quartic cause highest degree is 4
Use mathematical induction to prove the statement is true for all positive integers n. The integer n3 + 2n is divisible by 3 for every positive integer n.
Answer:
Prove:
Using 1
n³+2n = (1)³+2(1) = 1+2= 3 ---> 3/3= 1 ✔
Using 2
n³+2n = (2)³+2(2)= 8+4=12 --> 12/3=4✔
Using 3
n³+2n= (3)³+2(3)= 27+6= 33 --> 33/3=11✔
So it is proven that n³+2n is divisible by 3 for every positive integer.
I hope this helps
if u have question let me know in comments
State the correct polar coordinate for the graph shown:
Answer:
Solution : ( - 5, 5π / 4 )
Step-by-step explanation:
There are four cases to consider here, the first two with respect to r > 0, the second two with respect to r < 0. r is the directed distance from the pole, and theta is the directed angle from the positive x - axis. Let's start by listing coordinates when r is positive. r here is 5 units from the positive x - axis.
( 5, θ ) theta here is between 30 and 60 degrees, so we can say it's about 45 degrees.
( 5, θ ) theta here is the remaining negative side of 360 - 45 = 315. That would make it - 315.
And when r is negative ( r < 0 ),
( - 5, θ ) now the point is going to lie on the ray pointing in the opposite direction of the terminal side of theta. This will be 45 degrees more than 180, or 180 + 45 = 225 degrees.
Right away we know that ( - 5, 225° ) is our solution, we don't have to consider the second case. Converting 225 to radians in terms of π will be 5π / 4 radians, giving us a solution of ( - 5, 5π / 4 ) or option b.
The total number of branches in a tree diagram will be which of the following values?
the probability of an event occurring
the denominator of a probability
the numerator of a probability
Answer:
The total number of branches = total possibilities = the denominator of a probability.
So the second choice is correct.
Let me know if this helps!
Answer:
Step-by-step explanation: answer B (the denominator of a probability)
What is the range of the function shown in the graph below?
Answer:
Step-by-step explanation:
Hey there!
The range is the possible y values, so the range of this graph would be all real numbers less than or equal to -5.
Let me know if this helps :)
Quadrilateral ABCD is similiar to quadrilateral EFGH. The lengths of the three longest sides in quadrilateral ABCD are 60 feet, 40 feet, and 30 feet long. If the two shortest sides of quadrilateral EFGH are 6 feet long and 12 feet long, how long is the 2nd longest side on quadrilateral EFGH?
Answer:
24
Step-by-step explanation:
For ABCD the three longest are:
60,40,30
60 to 40 is 20
40 to 30 is 10
so each time it's decreasing by 1/2
For EFGH the two shortest are:
6 and 12
12 to 6 is 1/2
Assuming there is a pattern
it logically would be 24
as 12(2)=24
algebra and trigonometry difference
Answer:
Algebra deals with knowing the value of unknown variables and functional relationships, while trigonometry touches on triangles, sides and angles and the relationship between them.
Algebra is more on polynomial equations, x and y while trigonometry more on sine, cosine, tangent, and degrees.
Trigonometry is much more complicated than algebra but algebra has its uses in our daily lives, be it calculating distance from point to another or determining the volume of milk in a milk container.
Step-by-step explanation:
Answer:
Although both Algebra II and Trigonometry involve solving mathematical problems, Algebra II focuses on solving equations and inequalities while Trigonometry is the study of triangles and how sides are connected to angles.
hope this answer helps u
pls mark as brainliest .-.
Reflect the given triangle over
the y-axis.
[3 6 3 ]
[-3 3 3]
Answer:
Step-by-step explanation:
[tex]\left[\begin{array}{ccc}x_{1} &x_{2} &x_{3} \\y_{1} &y_{2} &y_{3} \end{array}\right][/tex] ---------> [tex]\left[\begin{array}{ccc}-x_{1} &-x_{2} &-x_{3} \\y_{1} &y_{2} &y_{3} \end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}-3&-6&-3\\-3&3&3\end{array}\right][/tex]
sipho's dad used 4/11 of the packet of oranges to make juice.The next day he used another 4/11 of the packet of oranges.How many eleventh were left of the pocket of oranges?
9514 1404 393
Answer:
3/11 were left
Step-by-step explanation:
A packet of oranges is 11/11. Subtracting 4/11 +4/11 = 8/11 from that leaves ...
11/11 -8/11 = (11 -8)/11 = 3/11
3 elevenths were left.
√10 Multiple √15 is equal to
(a) 6√5
(b) √30
(c) √25
step by step
Solve :-
Answer:
Answer is 5√6 ( none of the objectives )
Step-by-step explanation:
[tex] \sqrt{10} \times \sqrt{15} \\ = \sqrt{150} \\ = \sqrt{25 \times 6} \\ = \sqrt{25} \times \sqrt{6} \\ = 5 \times \sqrt{6} \\ = 5 \sqrt{6} [/tex]
the coefficient of 6x
Answer:
The coefficient is 6
Step-by-step explanation:
The coefficient is the number in front of the variable
The variable is x
The coefficient is 6
Answer:
6
Step-by-step explanation: The coefficient of this would be the real number that is in front of a variable that is not a variable like x, and that number is 6. So, the coefficient of 6x is 6.
NEED HELP ASAP!!!! PLEASEEE
The first answer of the missing blank is 4/5.
The second answer of the missing blank is 2.
The third answer of the missing blank is 25.
*For all of these solutions, I will be using the common rules for logarithms.*
Solution for the first question:
Log9^4/5 must equal log9^4-log9^5, or it could also equal the more proper version, which is simplified: 2log9^2-log9^5.
Solution for the second question:
Log3^22 must equal log3^11+log3^2, if you break it down.
Solution for the third question:
Log9^25 must equal 2log9^5 because it will be like this when simplifying it:
log9^25=2log9^5
log9^5²=2log9^5
2log9^5=2log9^5
These are all of the step-by-step procedures for all three of these given questions. Anyways, I hope that this helped you!
In one city, 35% of all aluminum cans distributed will be recycled each year. A juice company distributes 110,000 cans. The number still in use after time t, in years, is given by
Answer: [tex]n(t) = 110000(0.35)^t[/tex]
Step-by-step explanation:
Given: Rate of of all aluminum cans distributed will be recycled each year. = 35%
= 0.35
Total cans distributed = 110,000
Now , the number of cans recycled in 1 year = 110,000 ×0.35
The number of cans recycled in 2 years = 110,000 ×0.35 ×0.35 = 110,000 ×(0.35)²
..so on
The number of cans recycled in t years = [tex]110000(0.35)^t[/tex]
Let n(t) be the number still in use after time t, in years:
Then, [tex]n(t) = 110000(0.35)^t[/tex]
Which quadratic equation would be used to solve for the unknown dimensions?
0 = 2w2
512 = w2
512 = 2w2
512 = 2l + 2w
Answer:
C
Step-by-step explanation:
Answer:
C: 512 = 2w2
Step-by-step explanation:
on edge
A coin is flipped eight times where each flip comes up either heads or tails. How many possible outcomes a) are there in total
Answer:
256 outcomes.
Step-by-step explanation:
Each time you flip the coin you have two possible outcomes, it can either come up with heads or tails.
You're going to flip the coin eight times so the first time you can have 2 possible outcomes, the second time you have 2 possible outcomes, the third time you have 2 possible outcomes, etc.
Since you are going to do this eight times you are going to multiply each of the outcomes, so you will have:
Possible outcomes = 2×2×2×2×2×2×2×2= 256
Thus, there are 256 different outcomes in total.
You roll two fair dice, a green one and a red one. (a) What is the probability of getting a sum of 6? (Enter your answer as a fraction.) (b) What is the probability of getting a sum of 10? (Enter your answer as a fraction.) (c) What is the probability of getting a sum of 6 or 10? (Enter your answer as a fraction.) Are these outcomes mutually exclusive? Yes No
Answer:
5/36 ; 1/12 ; 2/9 ; yes
Step-by-step explanation:
Given the following :
Roll of two fair dice : green and red
Probability = (number of required outcomes / number of total possible outcomes)
(a) What is the probability of getting a sum of 6?
Number of required outcomes = 5
P(sum of 6) = 5/36
b.) What is the probability of getting a sum of 10?
Number of required outcomes = 3
P(sum of 10) = 3 / 36 = 1/12
c.) What is the probability of getting a sum of 6 or 10?
P(getting a sum of 6) + P(getting a sum of 10)
(5/36) + (1/12) = (5 + 3) / 36
= 8/36 = 2/9
The events are mutually exclusive because each event cannot occur at the same time.
please help me
no links or files
thank you !
Jane is saving to buy a cell phone. She is given a $100 gift to start and saves $35 a month from her allowance. So after one month, Jane has saved $135. Does it make sense to represent the relationship between the amount saved and the number of months with one constant rate? Why or why not? Explain your answer.
Jane is given a $100 gift to start and saves $35 a month from her allowance.
After 1 month, Jane has saved
After 2 months, Jane has saved
After three months, Jane has saved
and so on
In general, after x months Jane has saved
This means that it makes sense to represent the relationship between the amount saved and the number of months with one constant rate (in this case the constant rate is 35). It makes sense because the amount of money increases by $35 each month. Since the amount of increase is constant, we get constant rate. Also the initial amount is known ($100), so there is a possibility to write the equation of linear function representing this situation.
Step-by-step explanation:
Daniella accidentally left the drain partially open as she began filling the bathtub. The amount of water, in gallons, pouring into the tub after x minutes is given by the function f. f( x )=12x The amount of water, in gallons, draining from the tub after x minutes is given by the function g. g( x )=6x What is the equation of a function k that gives the amount of water in the tub in this situation after x minutes?
Answer:
k(x) = 6x
Step-by-step explanation:
A function shows the relationship between two or more variables. It shows the relationship between an independent and a dependent variable.
Given that the amount of water being poured into the tube is given by f(x) = 12x, where x is in minutes and the amount of water draining out of the tub is given by the function g( x )=6x. The amount of water remaining in the tube after x minutes is gotten by finding the difference between the amount of water entering the tube and the amount leaving the tube after x minutes. If k is the function representing the amount of water in the tube after x minutes, it is given by:
k(x) = f(x) - g(x)
k(x) = 12x - 6x
k(x) = 6x
Fertilizing bromeliads. Bromeliads are tropical flowering plants. Many are epiphytes that attach to trees and obtain moisture and nutrients from air and rain. Their leaf bases form cups that collect water and are home to the larvae of many insects. As a preliminary to a study of changes in the nutrient cycle, Jacqueline Ngai and Diane Srivastava examined the effects of adding nitrogen, phosphorus, or both to the cups. They randomly assigned 8 bromeliads growing in Costa Rica to each of 4 treatment groups, including an unfertilized control group. A monkey destroyed one of the plants in the control group, leaving 7 bromeliads in that group. Here are the numbers of new leaves on each plant over the seven months following fertilization:
Nitrogen Phosphorus Both Neither
15 15 14 14
14 17 18 19
18 13 14 11
16 13 15 16
14 14 15 13
11 17 14 15
13 12 15 15
(a) Give the degrees of freedom for the F statistic. numerator degrees of freedom denominator degrees of freedom
(b) Find the F-statistic. (Round your answer to two decimal places.)
(c) Find the associated P-value. (Round your answer to four decimal places.)
Answer:
Calculated value of F = 0.0535
The critical region is F >F ₀.₀₅ (6,21) = 2.575
Reject H0
Step-by-step explanation:
1. Null hypothesis
H0: µ Nitrogen = µ Phosphorus = µ Both = µ Neither
2. Alternative hypothesis
H1: Not all means are equal.
3. The degrees of freedom for the numerator of the F-ratio = k- 1= 7-1=6
4.The degrees of freedom for the denominator of the F-ratio = n-k= 28-7
= 21
5. The significance level is set at α-0.05
The critical region is F >F ₀.₀₅ (6,21) = 2.575
The test statistic to use is
F = sb²/ sw²
Which if H0 is true has an F distribution with v₁=k-1 and v₂= n-k degrees of freedom
Correction Factor = CF = Tj²/n = (410)²/28= 6003.57
Total SS ∑∑X²- C. F = 6108- 6003.57= 104.43
Between SS ∑T²j/r - C.F = 42036/ 7 - 6003.57 = 1.57286
Within SS = Total SS - Between SS= 104.43- 1.573= 102.86
The Analysis of Variance Table is
Source Of Sum of Mean Computed
Variation d.f Squares Squares F
Between
Samples 6 1.57286 0.2621 0.0535
Within
Samples 21 102.86 4.898
Calculated value of F = 0.0535
Pvalue = 2.575
Since it is smaller than 5 % reject H0.
The following is the number of minutes to commute from home to work for a group of 25 automobile executives. 35 36 39 43 37 35 34 30 36 34 30 39 37 40 38 33 31 28 39 35 35 36 41 24 36 How many classes would you recommend? What class interval would you suggest? (Round up your answer to the next whole number.) Organize the data and plot a frequency distribution on a piece of paper. Comment on the shape of the frequency distribution. It is not symmetric. It is fairly symmetric, with most of the values between 24 and 43. It is not very symmetric, but most of the values lie between 24 and 43.
Answer:
It is not symmetric, but skewed left. Data appears more to be on the left side.
Step-by-step explanation:
The smallest value is 24 and the largest is 43 . The difference between these two values is 19 which can be divided into into intervals of 4.
19/4= 4.75 It will be rounded to 5.
The class interval can of 5. Starting from 20 we get class intervals and frequency distribution as
Class Intervals Data Frequency
20-24 24 1
25- 29 28, 1
30-34 34,30,34,30,33,31, 6
35-39 35,36,39,37,35,36,39,37, 14
38,39,35,35,36,36
40-44 43,40,41 3
The class intervals are inclusive of both upper and lower limits. The difference between the lower limits of two consecutive classes or upper limits of two consecutive classes must be the same.
As we see the difference here is that of 5 between the two upper or lower limits of consecutive classes.
The histogram is attached which shows the class intervals along x- axis and data frequency along y- axis.
The volume of a spherical sculpture is 256 ft³. Rhianna wants to estimate the surface area of the sculpture. To do the estimate, she approximates π using 3 in both the surface area and volume formulas for a sphere.
Using this method, what value does she get for the approximate surface area of the sculpture?
Answer:
192 [tex]ft^2[/tex]
Step-by-step explanation:
Given that
Volume of spherical sculpture = 256 ft³
[tex]\pi[/tex] is used as 3.
To find:
Surface area of sculpture = ?
Solution:
First of all, let us learn about the formula for Volume and Surface Area of Sphere:
1. [tex]Volume =\frac{4}{3}\pi r^3[/tex]
2. [tex]Surface\ Area = 4\pi r^2[/tex]
Given volume is 256 ft³.
[tex]256 = \dfrac{4}{3}\pi r^3\\\Rightarrow 256 = \dfrac{4}{3}\times 3 r^3\\\Rightarrow 256 = 4 r^3\\\Rightarrow r^3=64\\\Rightarrow \bold{r = 4\ ft}[/tex]
Now, let us put r = 4 in the formula of Surface Area to find the value of Surface Area:
[tex]Surface\ Area = 4\pi 4^2 = 4 \times 3 \times 16 = \bold{192\ ft^2}[/tex]
So, approximate surface area of sculpture is 192 [tex]ft^2[/tex].
Answer:
192
Step-by-step explanation:
In accounting, a company's gross profit rate measures how well the company controls cost of goods sold to maximize gross profit. The gross profit rate, PPP, is calculated using the formula P = \dfrac{S - C}{S}P= S S−C P, equals, start fraction, S, minus, C, divided by, S, end fraction, where SSS is the net sales and CCC is the cost of goods sold. Rearrange the formula to solve for the cost of goods sold (C)(C)left parenthesis, C, right parenthesis. C=C=C, equals What is the cost of goods sold if the net sales is \$1{,}200{,}000$1,200,000dollar sign, 1, comma, 200, comma, 000 and the gross profit ratio is 0.20.20, point, 2? Round your answer, if necessary, to the nearest dollar. C=C=C, equals dollars
Answer:
$960,000Step-by-step explanation:
The gross profit rate of the company is expressed as [tex]P = \dfrac{S - C}{S}[/tex] where C is the cost of goods sold and S is the net sales. If the net sales S = $1,200,000, and gross profit ratio is 0.20, the cost of goods sold will be expressed as shown;
Making C the subject of the formula from the expression given.
[tex]P = \dfrac{S - C}{S}\\\\cross \ multiply\\\\SP = S-C\\\-C = SP-S\\\\C = S -SP\\[/tex]
Substituting P = 0.20 and S = $1,200,000 into the resulting equation, we will have;
[tex]C = $1,2000,000 - 0.2($1,2000,000)\\C = $1,2000,000- 240,000\\ C = 960,000[/tex]
Hence the cost of goods sold is $960,000
Ben and Susan are truck drivers who start at the same location. Ben drives 300 miles due west and Susan drives 160 miles due south. To the nearest mile, how far apart would they be?
Answer:
Ben and Susan will be 340 miles apart
Step by Step Solution
Step 1: We plot the problem on a graph to visualize the problem
Step 2: We notice that the problem creates a right triangle with the distance Ben and Susan travel as the legs of the right triangle
Step 3: We can use the Pythagorean Theorem: a²+b²=c² to solve the distance between Ben and Susan
Step 4: We enter the numbers into the formula
a² + b² = c²
300² + 160² = c²
90000 + 25600 = c²
115600 = c² *square root both sides
c = 340
Therefore Ben and Susan are 340 miles apart
Ben and Susan are apart by 340 miles.
After drawing diagram according to question, it is observed that a right angle triangle is formed.
The distance between Ben and Susan is represented by Hypotenuse of right angle triangle shown in attached diagram.
Applying Pythagoras theorem in right triangle shown in attached diagram.
Distance between Ben and Susan =
[tex]\sqrt{(300)^{2}+(160)^{2} } =\sqrt{90000+25600}=\sqrt{115600} =340 miles.[/tex]
Therefore, Ben and Susan are apart by 340 miles.
Learn more:
https://brainly.com/question/11528638
Find a 3 digit number with all these properties: all 3 digits are different, the 1st digit is the square of the second digit in the 3rd digit on one more than twice the second digit
Answer:
425 or 937
Step-by-step explanation:
First, I listed out all the possible numbers for the first digits, namely, the squares under 10.
1*1=1
2*2=4
3*3=9
Since all the digits have to be different, the first digit cannot be 1 because 1 squared is 1. So that leaves us 4 and 9 to work with, which I tried out one at a time.
Starting with 4:
2 squared is 4.
42
2 times 2 plus 1 equals 5.
425
Starting with 9:
3 squared is 9.
93
2 times 3 plus 1 equals 7.
937
So here we have two numbers that both work and meet the requirements (unless I understood the problem wrong at the part where it says "...the second digit in the 3rd digit on one more than twice the second digit")!
I hope this helped! :D
Is -8 an irrational number?
yes or no
no bc it is not no no no no no no no
what is the answer to 5- -8
Answer:
13
5 - -8
When you subtract a negative number it changes to an addition so 5- -8 becomes 5 + 8 which equals 13.
Answer using the graph
Answer:
8
Step-by-step explanation:
f(x)=x²+4 ( find quadratic equation: given vertex)
g(x)=x+2 ( find linear equation : given 2 points)
(f-g)(-2)
(x²+4-x-2)of (-2)
x²-x+2 now find (f-g)(-2)
-2²-(-2)+2=4+2+2=8
PLS HELP:Find all the missing elements:
Answer:
b = 9.5 , c = 15Step-by-step explanation:
For b
To find side b we use the sine rule
[tex] \frac{ |a| }{ \sin(A) } = \frac{ |b| }{ \sin(B) } [/tex]a = 7
A = 23°
B = 32°
b = ?
Substitute the values into the above formula
That's
[tex] \frac{7}{ \sin(23) } = \frac{ |b| }{ \sin(32) } [/tex][tex] |b| \sin(23) = 7 \sin(32) [/tex]Divide both sides by sin 23°
[tex] |b| = \frac{7 \sin(32) }{ \sin(23) } [/tex]b = 9.493573
b = 9.5 to the nearest tenthFor cTo find side c we use sine rule
[tex] \frac{ |a| }{ \sin(A) } = \frac{ |c| }{ \sin(C) } [/tex]C = 125°
So we have
[tex] \frac{7}{ \sin(23) } = \frac{ |c| }{ \sin(125) } [/tex][tex] |c| \sin(23) = 7 \sin(125) [/tex]Divide both sides by sin 23°
[tex] |c| = \frac{7 \sin(125) }{ \sin(23) } [/tex]c = 14.67521
c = 15.0 to the nearest tenthHope this helps you
Determine the number of degrees of freedom for the two-sample t test or CI in each of the following situations. (Round your answers down to the nearest whole number.)a. m = 12, n = 15, s1 = 4.0, s2 = 6.0b. m = 12, n = 21, s1 = 4.0, s2 = 6.0c. m = 12, n = 21, s1 = 3.0, s2 = 6.0d. m = 10, n = 24, s1 = 4.0, s2 = 6.0
Answer:
Part a ) The degrees of freedom for the given two sample non-pooled t test is 24
Part b ) The degrees of freedom for the given two sample non-pooled t test is 30
Part c ) The degrees of freedom for the given two sample non-pooled t test is 30
Part d ) The degrees of freedom for the given two sample non-pooled t test is 25
Step-by-step explanation:
Degrees of freedom for a non-pooled two sample t-test is given by;
Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}
Now given the information;
a) :- m = 12, n = 15, s₁ = 4.0, s₂ = 6.0
we substitute
Δf = {[ 4²/12 + 6²/15 ]²} / {[( 4²/12)²/12-1] + [(6²/15)²/15-1]}
Δf = 30184 / 1241
Δf = 24.3223 ≈ 24 (down to the nearest whole number)
b) :- m = 12, n = 21, s₁ = 4.0, s₂ = 6.0
we substitute using same formula
Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}
Δf = {[ 4²/12 + 6²/21 ]²} / {[( 4²/12)²/12-1] + [(6²/21)²/21-1]}
Δf = 56320 / 1871
Δf = 30.1015 ≈ 30 (down to the nearest whole number)
c) :- m = 12, n = 21, s₁ = 3.0, s₂ = 6.0
we substitute using same formula
Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}
Δf = {[ 3²/12 + 6²/21 ]²} / {[( 3²/12)²/12-1] + [(6²/21)²/21-1]}
Δf = 29095 / 949
Δf = 30.6585 ≈ 30 (down to the nearest whole number)
d) :- m = 10, n = 24, s₁ = 4.0, s₂ = 6.0
we substitute using same formula
Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}
Δf = {[ 4²/10 + 6²/24 ]²} / {[( 4²/10)²/10-1] + [(6²/24)²/24-1]}
Δf = 1044 / 41
Δf = 25.4634 ≈ 25 (down to the nearest whole number).