Your 64-cm-diameter car tire is rotating at 3.4 rev/s when suddenly you press down hard on the accelerator. After traveling 260 m, the tire's rotation has increased to 5.5 rev/s.
What is the tires angular acceleration?

Answers

Answer 1

Answer:

The angular acceleration of the tire is 0.454 rad/s²

Explanation:

Given;

initial velocity, u = 3.4 rev/s = 3.4 rev/s x 2π rad/rev

                        u = 21.3656 rad/sec

final velocity, v = 5.5 rev/s = 5.5 rev/s x 2π rad/rev

                      v = 34.562 rad/sec

Calculate the value of angular rotation, θ, of the tire

θ = Number of revolutions x 2π rad/rev

θ = [tex]\frac{260}{2 \pi r} *\frac{2 \pi \ rad}{rev}[/tex]

θ = (260 / r)

r is the radius of the tire = 64 / 2 = 32cm = 0.32 m

θ = (260 / 0.32)

θ = 812.5 rad

Apply the following kinematic equation, to determine angular acceleration of the tire;

[tex]v^2 = u^2 + 2 \alpha \theta\\\\2 \alpha \theta = v^2 - u^2\\\\\alpha = \frac{v^2-u^2}{2 \theta} \\\\\alpha = \frac{(34.562)^2-(21.3656)^2}{2 (812.5)}\\\\\alpha = \frac{738.043}{1625} \\\\\alpha = 0.454 \ rad/s^2[/tex]

Therefore, the angular acceleration of the tire is 0.454 rad/s²


Related Questions

The electric field must be zero inside a conductor in electrostatic equilibrium, but not inside an insulator. It turns out that we can still apply Gauss's law to a Gaussian surface that is entirely within an insulator by replacing the right-hand side of Gauss's law, Qin/eo, with Qin/e, where ε is the permittivity of the material. (Technically, Eo is called the vacuum permittivity.) Suppose that a 70 nC point charge is surrounded by a thin, 32-cm-diameter spherical rubber shell and that the electric field strength inside the rubber shell is 2500 N/C.
What is the permittivity of rubber?

Answers

Answer:

The permittivity of rubber is  [tex]\epsilon = 8.703 *10^{-11}[/tex]

Explanation:

From the question we are told that

     The  magnitude of the point charge is  [tex]q_1 = 70 \ nC = 70 *10^{-9} \ C[/tex]

      The diameter of the rubber shell is  [tex]d = 32 \ cm = 0.32 \ m[/tex]

       The Electric field inside the rubber shell is  [tex]E = 2500 \ N/ C[/tex]

The radius of the rubber is  mathematically evaluated as

              [tex]r = \frac{d}{2} = \frac{0.32}{2} = 0.16 \ m[/tex]

Generally the electric field for a point  is in an insulator(rubber) is mathematically represented as

         [tex]E = \frac{Q}{ \epsilon } * \frac{1}{4 * \pi r^2}[/tex]

Where [tex]\epsilon[/tex] is the permittivity of rubber

    =>     [tex]E * \epsilon * 4 * \pi * r^2 = Q[/tex]

   =>      [tex]\epsilon = \frac{Q}{E * 4 * \pi * r^2}[/tex]

substituting values

            [tex]\epsilon = \frac{70 *10^{-9}}{2500 * 4 * 3.142 * (0.16)^2}[/tex]

            [tex]\epsilon = 8.703 *10^{-11}[/tex]

A 1750kg bumpercar moving at 1.50m/s to the right collides elastically with a 1450kg car going to the left at 1.10m/s. The 1750kg car speed afterwards is 0.250m/s to the right. What is the speed of the 1450kg car after the collision?

Answers

1984.08 kg that’s the answer

The momentum in an elastic collision is conserved. Thus, the velocity of the 1450 kg car after collision will be 2.60 m/s.

What is momentum ?

Momentum of a moving object  is the product of its velocity and mass. For an elastic collision, the momentum and kinetic energy is conserved. Hence, the energy lost by an object is gained by another object.

Let u and V be the initial and final velocities and m1 and m2 be the colliding masses. Then,

m1u1 + m2u2 = m1v1 + m2v2.

The initial momentum in this collision is :

(1750 kg ×1.50 m/s) + (1450 kg × 1.10 m/s) = 4220 kg m/s

Final momentum = (1750  kg × 0.250 m/s) + (1450 kg × v2) = 4220 kg m/s

v2 = 2.60 m/s

Therefore, the final speed of the 1450 kg car is 2.60 m/s

Find more on elastic collision:

https://brainly.com/question/2356330

#SPJ5

The ability to distinguish between acceleration and velocity will be critical to your understanding of many other concepts in this course. Some of the most prevalent issues arise in interpreting the sign of both the velocity and acceleration of an object. I would recommend reading through the section "The Sign of the Acceleration" carefully. An object moves with a positive acceleration. Could the object be moving with increasing speed, decreasing speed or constant speed?

Answers

Answer:

Object could only be moving with increasing speed.

Explanation:

Let us consider the general formula of acceleration:

a = (Vf - Vi)/t

Vf = Vi + at   -------- equation 1

where,

Vf = Final Velocity

Vi = Initial Velocity

a = acceleration

t = time

FOR POSITIVE ACCELERATION:

Vf = Vi + at

since, both acceleration and time are positive quantities. Hence, it means that the final velocity of the object shall be greater than the initial velocity of the object.

Vf > Vi

It clearly shows that if an object moves with positive acceleration. It could only be moving with increasing speed.

Solving the same equation for negative acceleration shows that the final velocity will be less than initial velocity and object will be moving with decreasing speed.

And for the constant velocity final and initial velocities are equal and thus, acceleration will be zero.

In a uniform electric field, the magnitude of torque is given by:-

Answers

Answer:

Electric dipole

Explanation:

the axis of a dipole makes an angle with the electric field. depending on the direction (clockwise/anticlockwise) we can get the torque (positive/negative).

hope this helps :D

Please help! Average speed. Show work!

Answers

Answer:

3.78 m/s

Explanation:

Recall that the formula for average speed is given by

Speed = Distance ÷ Time taken

Where,

Speed = we are asked to find this

Distance = given as 340m

Time taken = 1.5 min = 1.5 x 60 = 90 seconds

Substituting the values into the equation:

Speed = Distance ÷ Time taken

= 340 meters  ÷ 90 seconds

= 3.777777 m/s

= 3.78 m/s (round to nearest hundredth)

Answer:

3.78 m/s

Option D is the right option.

solution,

Distance travelled=340 metre

Time taken= 1.5 minutes ( 1 minute=60 seconds)

=1.5* 60

=90 seconds

Now,

Average speed:

[tex] \ \frac{distance \: travelled \: }{time \: taken} \\ = \frac{340 \: m}{90 \: s} \\ = 3.78 \: metre \: per \: second[/tex]

Hope this helps...

Good luck on your assignment..

A basketball rolls across a classroom floor without slipping, with its center of mass moving at a certain speed. A block of ice of the same mass is set sliding across the floor with the same speed along a parallel line. (i) Which object has more kinetic energy

Answers

Answer:

The two objects encounter a ramp sloping upward.

Explanation:

The basketball will travel farther up theramp

A 100-m long transmission cable is suspended between two towers. If the mass density is 2.01 kg/m and the tension in the cable is 3.00 x 104 N, what is the speed of transverse waves on the cable

Answers

Answer:

The speed  is [tex]v =122.2 \ m/s[/tex]

Explanation:

From the question we are told that

   The  length of the wire is [tex]L = 100 \ m[/tex]

    The  mass density is  [tex]\mu = 2.01 \ kg/m[/tex]

    The tension is [tex]T = 3.00 *10^{4} \ N[/tex]

   

Generally the speed of the transverse cable is mathematically represented as

           [tex]v = \sqrt{\frac{T}{\mu} }[/tex]

substituting values

         [tex]v = \sqrt{\frac{3.0 *10^{4}}{2.01} }[/tex]

        [tex]v =122.2 \ m/s[/tex]

           

A crate of mass 9.2 kg is pulled up a rough incline with an initial speed of 1.58 m/s. The pulling force is 110 N parallel to the incline, which makes an angle of 20.2° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.10 m.A) How much work is done by the gravitational force on thecrate?
B) Determine the increase in internal energy of the crate-inclinesystem owing to friction.
C) How much work is done by the 100N force on the crate?
D) What is the change in kinetic energy of the crate?
E) What is the speed of the crate after being pulled 5.00m?

Answers

Given that,

Mass = 9.2 kg

Force = 110 N

Angle = 20.2°

Distance = 5.10 m

Speed = 1.58 m/s

(A). We need to calculate the work done by the gravitational force

Using formula of work done

[tex]W_{g}=mgd\sin\theta[/tex]

Where, w = work

m = mass

g = acceleration due to gravity

d = distance

Put the value into the formula

[tex]W_{g}=9.2\times(-9.8)\times5.10\sin20.2[/tex]

[tex]W_{g}=-158.8\ J[/tex]

(B). We need to calculate the increase in internal energy of the crate-incline system owing to friction

Using formula of potential energy

[tex]\Delta U=-W[/tex]

Put the value into the formula

[tex]\Delta U=-(-158.8)\ J[/tex]

[tex]\Delta U=158.8\ J[/tex]

(C). We need to calculate the work done by 100 N force on the crate

Using formula of work done

[tex]W=F\times d[/tex]

Put the value into the formula

[tex]W=100\times5.10[/tex]

[tex]W=510\ J[/tex]

We need to calculate the work done by frictional force

Using formula of work done

[tex]W=-f\times d[/tex]

[tex]W=-\mu mg\cos\theta\times d[/tex]

Put the value into the formula

[tex]W=-0.4\times9.2\times9.8\cos20.2\times5.10[/tex]

[tex]W=-172.5\ J[/tex]

We need to calculate the change in kinetic energy of the crate

Using formula for change in kinetic energy

[tex]\Delta k=W_{g}+W_{f}+W_{F}[/tex]

Put the value into the formula

[tex]\Delta k=-158.8-172.5+510[/tex]

[tex]\Delta k=178.7\ J[/tex]

(E). We need to calculate the speed of the crate after being pulled 5.00m

Using formula of change in kinetic energy

[tex]\Delta k=\dfrac{1}{2}m(v_{2}^2-v_{1}^{2})[/tex]

[tex]v_{2}^2=\dfrac{2\times\Delta k}{m}+v_{1}^2[/tex]

Put the value into the formula

[tex]v_{2}^2=\dfrac{2\times178.7}{9.2}+1.58[/tex]

[tex]v_{2}=\sqrt{\dfrac{2\times178.7}{9.2}+1.58}[/tex]

[tex]v_{2}=6.35\ m/s[/tex]

Hence, (A). The work done by the gravitational force is -158.8 J.

(B). The increase in internal energy of the crate-incline system owing to friction is 158.8 J.

(C). The work done by 100 N force on the crate is 510 J.

(D). The change in kinetic energy of the crate is 178.7 J.

(E). The speed of the crate after being pulled 5.00m is 6.35 m/s

Oceanographers often express the density of sea water in units of kilograms per cubic meter. If the density of sea water is 1.025 g/cm3 at 15ºC, what is its density in kilograms per cubic meter?

Answers

Answer: The density in kilograms per cubic meter is 1025

Explanation:

Density is defined as mass contained per unit volume.

Given : Density of sea water = [tex]1.025g/cm^3[/tex]

Conversion : [tex]1.025g/cm^3=?kg/m^3[/tex]

As 1 g = 0.001 kg

Thus 1.025 g =[tex]\frac{0.001}{1}\times 1.025=0.001025kg[/tex]

Also [tex]1cm^3=10^{-6}m^3[/tex]

Thus  [tex]1.025g/cm^3=\frac{0.001025}{10^{-6}kg/m^3}=1025kg/m^3[/tex]

Thus density in kilograms per cubic meter is 1025

A soft tennis ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.10 m. (a) Calculate its velocity just before it strikes the floor. (b) Calculate its velocity just after it leaves the floor on its way back up. (c) Calculate its acceleration during contact with the floor if that contact lasts 3.50 ms (3.50×10−3s). (d) How much did the ball compress during its collision with the floor, assuming the floor is absolutely rigid

Answers

Answer:

(a)   v = 5.42m/s

(b)   vo = 4.64m/s

(c)   a = 2874.28m/s^2

(d)   Δy = 5.11*10^-3m

Explanation:

(a) The velocity of the ball before it hits the floor is given by:

[tex]v=\sqrt{2gh}[/tex]        (1)

g: gravitational acceleration = 9.8m/s^2

h: height where the ball falls down = 1.50m

[tex]v=\sqrt{2(9.8m/s^2)(1.50m)}=5.42\frac{m}{s}[/tex]

The speed of the ball is 5.42m/s

(b) To calculate the velocity of the ball, after it leaves the floor, you use the information of the maximum height reached by the ball after it leaves the floor.

You use the following formula:

[tex]h_{max}=\frac{v_o^2}{2g}[/tex]       (2)

vo: velocity of the ball where it starts its motion upward

You solve for vo and replace the values of the parameters:

[tex]v_o=\sqrt{2gh_{max}}=\sqrt{2(9.8m/s^2)(1.10m)}=4.64\frac{m}{s}[/tex]

The velocity of the ball is 4.64m/s

(c) The acceleration is given by:

[tex]a=\frac{\Delta v}{\Delta t}=\frac{v_o-v}{3.50*10^{-3}s}=\frac{4.64m/s-(-5.42m)/s}{3.50*10^{-3}s}=2874.285\frac{m}{s^2}[/tex]

[tex]a=\frac{\Delta v}{\Delta t}=\frac{v_o-v}{3.50*10^{-3}s}=\frac{4.64m/s-5.42m/s}{3.50*10^{-3}s}=-222.85\frac{m}{s^2}[/tex]

The acceleration of the ball is 2874.28/s^2

(d) The compression of the ball is:

[tex]\Deta y=\frac{v^2}{2(a)}=\frac{(5.42m/s)^2}{2(2874.28m/s^2)}=5.11*10^{-3}m[/tex]

THe compression of the ball when it strikes the floor is 5.11*10^-3m

Use Kepler's third law to determine how many days it takes a spacecraft to travel in an elliptical orbit from a point 6 590 km from the Earth's center to the Moon, 385 000 km from the Earth's center.

Answers

Answer:

1.363×10^15 seconds

Explanation:

The spaceship travels an elliptical orbit from a point of 6590km from the earth center to the moon and 38500km from the earth center.

To calculate the time taken from Kepler's third Law :

T^2 = ( 4π^2/GMe ) r^3

Where Me is the mass of the earth

r is the average distance travel

G is the universal gravitational constant. = 6.67×10-11 m3 kg-1 s-2

π = 3.14

Me = mass of earth = 5.972×10^24kg

r =( r minimum + r maximum)/2 ......1

rmin = 6590km

rmax = 385000km

From equation 1

r = (6590+385000)/2

r = 391590/2

r = 195795km

From T^2 = ( 4π^2/GMe ) r^3

T^2 = (4 × 3.14^2/ 6.67×10-11 × 5.972×10^24) × 195795^3

= ( 4×9.8596/ 3.983×10^14 ) × 7.5059×10^15

= 39.4384/ 3.983×10^14 ) × 7.5059×10^15

= (9.901×10^14) × 7.5059×10^15

T^2 = 7.4321× 10^30

T =√7.4321× 10^30

T = 2.726×10^15 seconds

The time for one way trip from Earth to the moon is :

∆T = T/2

= 2.726×10^15 /2

= 1.363×10^15 secs

A circular coil of wire of 200 turns and diameter 2.0 cm carries a current of 4.0 A. It is placed in a magnetic field of 0.70 T with the plane of the coil making an angle of 30° with the magnetic field. What is the magnetic torque on the coil?

Answers

Answer:

0.087976 Nm

Explanation:

The magnetic torque (τ) on a current-carrying loop in a magnetic field is given by;

τ = NIAB sinθ     --------- (i)

Where;

N = number of turns of the loop

I = current in the loop

A = area of each of the turns

B = magnetic field

θ = angle the loop makes with the magnetic field

From the question;

N = 200

I = 4.0A

B = 0.70T

θ = 30°

A = π d² / 4        [d = diameter of the coil = 2.0cm = 0.02m]

A = π x 0.02² / 4 = 0.0003142m²         [taking π = 3.142]

Substitute these values into equation (i) as follows;

τ = 200 x 4.0 x 0.0003142 x 0.70 sin30°

τ = 200 x 4.0 x 0.0003142 x 0.70 x 0.5

τ = 200 x 4.0 x 0.0003142 x 0.70      

τ = 0.087976 Nm

Therefore, the torque on the coil is 0.087976 Nm

A stretch spring has an elastic potential energy of 35 J when it is stretched 0.54m. What is the spring constant of the spring?

Answers

Answer:

240.1 N/m

Explanation:

Applying the formula for the potential energy stored in a stretched spring,

E = 1/2ke².................... Equation 1

Where E = potential energy, k = spring constant, e = extension.

make k the subject of the equation,

k = 2E/e².................. Equation 2

Given: E = 35 J, e = 0.54 m

Substitute into equation 2

k = 2(35)/0.54²

k = 70/0.2916

k = 240.1 N/m.

Hence the spring constant of the spring is 240.1 N/m

Answer:

240 N/m

Explanation:

edge2o2o

In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with:_________.
1. yellow light.
2. red light.
3. blue light.
4. green light.
5. The separation is the same for all wavelengths.

Answers

Answer:

Red light

Explanation:

This because All interference or diffraction patterns depend upon the wavelength of the light (or whatever wave) involved. Red light has the longest wavelength (about 700 nm)

Legacy issues $570,000 of 8.5%, four-year bonds dated January 1, 2019, that pay interest semiannually on June 30 and December 31. They are issued at $508,050 when the market rate is 12%.
1. Determine the total bond interest expense to be recognized.
Total bond interest expense over life of bonds:
Amount repaid:
8 payments of $24,225 $193,800
Par value at maturity 570,000
Total repaid 763,800
Less amount borrowed 645 669
Total bond interest expense $118.131
2. Prepare a straight-line amortization table for the bonds' first two years.
Semiannual Period End Unamortized Discount Carrying Value
01/01/2019
06/30/2019
12/31/2019
06/30/2020
12/31/2020
3. Record the interest payment and amortization on June 30. Note:
Date General Journal Debit Credit
June 30
4. Record the interest payment and amortization on December 31.
Date General Journal Debit Credit
December 31

Answers

Answer:

1) Determine the total bond interest expense to be recognized.

Total bond interest expense over life of bonds:

Amount repaid:    

8 payments of $24,225:           $193,800    

Par value at maturity:                 $570,000    

Total repaid:                                   $763800 (193,800 + 570,000)  

Less amount borrowed:         $508050    

Total bond interest expense: $255750 (763800 - 508,050)

2)Prepare a straight-line amortization table for the bonds' first two years.

Semiannual Interest Period­ End; Unamortized Discount; Carrying Value

01/01/2019                                      61,950                           508,050  

06/30/2019                                      54,206                          515,794  

12/31/2019                                       46,462                         523,538  

06/30/2020                                       38,718                        531,282  

12/31/2020                                         30,974                          539,026

3) Record the interest payment and amortization on June 30:

June 30            Bond interest expense, dr                         31969  

                       Discount on bonds payable, Cr     (61950/8)  7743.75

                                        Cash, Cr                     ( 570000*8.5%/2)  24225  

4) Record the interest payment and amortization on December 31:

Dec 31                 Bond interest expense, Dr               31969  

                           Discount on bonds payable, Cr  7744  

                                    Cash, Cr                                24225

Calculate the angular momentum of a solid uniform sphere with a radius of 0.150 m and a mass of 13.0 kg if it is rotating at 5.70 rad/s about an axis through its center.

Answers

Answer:

The angular momentum of the solid sphere is 0.667 kgm²/s

Explanation:

Given;

radius of the solid sphere, r = 0.15 m

mass of the sphere, m = 13 kg

angular speed of the sphere, ω = 5.70 rad/s

The angular momentum of the solid sphere is given;

L = Iω

Where;

I is the moment of inertia of the solid sphere

ω is the angular speed of the solid sphere

The moment of inertia of solid sphere is given by;

I = ²/₅mr²

I = ²/₅ x (13 x 0.15²)

I = 0.117 kg.m²

The angular momentum of the solid sphere is calculated as;

L = Iω

L = 0.117 x 5.7

L = 0.667 kgm²/s

Therefore, the angular momentum of the solid sphere is 0.667 kgm²/s

A cylinder initially contains 1.5 kg of air at 100 kPa and 17 C. The air is compressed polytropically until the volume is reduced by one-half. The polytropic exponent is 1.3. Determine the work done (absolute value) and heat transfer for this process.

Answers

Answer:

Work done = 96.15 KJ

Heat transferred = 24 KJ

Explanation:

We are given;

Mass of air;m = 1.5 kg

Initial pressure;P1 = 100 KPa

Initial temperature;T1 = 17°C = 273 + 17 K = 290 K

Final volume;V2 = 0.5V1

Since the polytropic exponent is 1.3,thus it means;

P2 = P1[V1/V2]^(1.3)

So,P2 = 100(V1/0.5V1)^(1.3)

P2 = 100(2)^(1.3)

P2 = 246.2 KPa

To find the final temperature, we will make use of combined gas law.

So,

(P1×V1)/T1 = (P2×V2)/T2

T2 = (P2×V2×T1)/(P1×V1)

Plugging in the known values;

T2 = (246.2×0.5V1×290)/(100×V1)

V1 cancels out to give;

T2 = (246.2×0.5×290)/100

T2 = 356.99 K

The boundary work for this polytropic process is given by;

W_b = - ∫P. dv between the initial boundary and final boundary.

Thus,

W_b = - (P2.V2 - P1.V1)/(1 - n) = -mR(T2 - T1)/(1 - n)

R is gas constant for air = 0.28705 KPa.m³/Kg.K

n is the polytropic exponent which is 1.3

Thus;

W_b = -1.5 × 0.28705(356.99 - 290)/(1 - 1.3)

W_b = 96.15 KJ

The formula for the heat transfer is given as;

Q_out = W_b - m.c_v(T2 - T1)

c_v for air = 0.718 KJ/Kg.k

Q_out = 96.15 - (1.5×0.718(356.99 - 290))

Q_out = 24 KJ

1. A ski-plane with a total mass of 1200 kg lands towards the west on a frozen lake at 30.0
m/s. The coefficient of kinetic friction between the skis and the ice is 0.200. How far does
the plane slide before coming to a stop?

Answers

Answer:

d = 229.5 m

Explanation:

It is given that,

Total mass of a ski-plane is 1200 kg

It lands towards the west on a frozen lake at 30.0  m/s.

The coefficient of kinetic friction between the skis and the ice is 0.200.

We need to find the distance covered by the plane before coming to rest. In this case,

[tex]\mu mg=ma\\\\a=\mu g\\\\a=0.2\times 9.8\\\\a=1.96\ m/s^2[/tex]

It is decelerating, a = -1.96 m/s²

Now using the third equation of motion to find the distance covered by the plane such that :

[tex]v^2-u^2=2ad\\\\d=\dfrac{-u^2}{2a}\\\\d=\dfrac{-(30)^2}{2\times -1.96}\\\\d=229.59\ m[/tex]

So, the plane slide a distance of 229.5 m.  

A coil has resistance of 20 W and inductance of 0.35 H. Compute its reactance and its impedance to an alternating current of 25 cycles/s.

Answers

Answer:

Reactance of the coil is 55 WImpedance of the coil is 59 W

Explanation:

Given;

Resistance of the coil, R = 20 W

Inductance of the coil, L = 0.35 H

Frequency of the alternating current, F = 25 cycle/s

Reactance of the coil is calculated as;

[tex]X_L=[/tex] 2πFL

Substitute in the given values and calculate the reactance [tex](X_L)[/tex]

[tex]X_L =[/tex] 2π(25)(0.35)

[tex]X_L[/tex] = 55 W

Impedance of the coil is calculated as;

[tex]Z = \sqrt{R^2 + X_L^2} \\\\Z = \sqrt{20^2 + 55^2} \\\\Z = 59 \ W[/tex]

Therefore, the reactance of the coil is 55 W and Impedance of the coil is 59 W

An electron has an initial velocity of (17.1 + 12.7) km/s, and a constant acceleration of (1.60 × 1012 m/s2) in the positive x direction in a region in which uniform electric and magnetic fields are present. If = (529 µT) find the electric field .

Answers

Answer:

Explanation:

Since B is perpendicular, it does no work on the electron but instead deflects it in a circular path.

q = 1.6 x 10-19 C

v = (17.1j + 12.7k) km/s = square root(17.1² + 12.7²) = 2.13 x 10⁴ m/s

the force acting on electron is

F= qvBsinΦ

F= (1.6 x 10⁻¹⁹C)(2.13.x 10⁴ m/s)(526 x 10⁻⁶ T)(sin90º)

F = 1.793x 10⁻¹⁸ N

The net force acting on electron is

F = e ( E+ ( vXB)

= ( - 1.6 × 10⁻¹⁹) ( E + ( 17.1 × 10³j + 12.7 × 10³ k)X( 529 × 10⁻⁶ ) (i)

= ( -1.6 × 10⁻¹⁹ ) ( E- 6.7k + 9.0j)

a= F/m

1.60 × 10¹² i =  ( -1.6 × 10⁻¹⁹ ) ( E- 6.9 k + 7.56 j)/9.11 × 10⁻³¹

9.11 i = - ( E- 6.7 k + 9.0 j)

E = -9.11i + 6.7k - 9.0j

Three sleds (30kg sled connected by tension rope B to 20kg sled connected by tension rope A to 10kg sled) are being pulled horizontally on frictionless horizontal ice using horizontal ropes. The pull is horizontal and of magnitude 143N . Required:a. Find the acceleration of the system. b. Find the tension in rope A. c. Find the tension in rope B.

Answers

Answer:

a) a = 2.383 m / s², b)   T₂ = 120,617 N , c)   T₃ = 72,957 N

Explanation:

This is an exercise of Newton's second law let's fix a horizontal frame of reference

in this case the mass of the sleds is 30, 20 10 kg from the last to the first, in the first the horizontal force is applied.

a) request the acceleration of the system

we can take the sledges together and write Newton's second law

     T = (m₁ + m₂ + m₃) a

    a = T / (m₁ + m₂ + m₃)

     a = 143 / (10 +20 +30)

     a = 2.383 m / s²

b) the tension of the cables we think through cable A between the sledges of 1 and 20 kg

on the sled of m₁ = 10 kg

          T - T₂ = m₁ a

in this case T₂ is the cable tension

           T₂ = T - m₁ a

            T₂ = 143 - 10 2,383

            T₂ = 120,617 N

c) The cable tension between the masses of 20 and 30 kg

            T₂ - T₃ = m₂ a

             T₃ = T₂ -m₂ a

             T₃ = 120,617 - 20 2,383

             T₃ = 72,957 N

Given small samples of three liquids, you are asked to determine their refractive indexes. However, you do not have enough of each liquid to measure the angle of refraction for light retracting from air into the liquid. Instead, for each liquid, you take a rectangular block of glass (n= 1.52) and Place a drop of the liquid on the top surface f the block. you shine a laser beam with wavelength 638 nm in vacuum at one Side of the block and measure the largest angle of incidence for which there is total internal reflection at the interface between the glass and the liquid. Your results are given in the table.

Liquid A B C
θ 52.0 44.3 36.3

Required:
a. What is the refractive index of liquid A at this wavelength?
b. What is the refractive index of liquid B at this wavelength?
c. What is the refractive index of liquid C at this wavelength?

Answers

Answer:

A — 1.198B — 1.062C — 0.900

Explanation:

The index of refraction of the liquid can be computed from ...

  [tex]n_i\sin{(\theta_t)}=n_t[/tex]

where ni is the index of refraction of the glass block (1.52) and θt is the angle at which there is total internal refraction. nt is the index of refraction of the liquid.

For the given incidence angles, the computed indices of refraction are ...

  A: n = 1.52sin(52.0°) = 1.198

  B: n = 1.52sin(44.3°) = 1.062

  C: n = 1.52sin(36.3°) = 0.900

(a) According to Hooke's Law, the force required to hold any spring stretched x meters beyond its natural length is f(x)=kx. Suppose a spring has a natural length of 20 cm. If a 25-N force is required to keep it stretched to a length of 30 cm, how much work is required to stretch it from 20 cm to 25 cm?
(b) Find the area of the region enclosed by one loop of the curve r=2sin(5θ).

Answers

Answer:

a) The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules, b) The area of the region enclosed by one loop of the curve [tex]r(\theta) = 2\cdot \sin 5\theta[/tex] is [tex]4\pi[/tex].

Explanation:

a) The work, measured in joules, is a physical variable represented by the following integral:

[tex]W = \int\limits^{x_{f}}_{x_{o}} {F(x)} \, dx[/tex]

Where

[tex]x_{o}[/tex], [tex]x_{f}[/tex] - Initial and final position, respectively, measured in meters.

[tex]F(x)[/tex] - Force as a function of position, measured in newtons.

Given that [tex]F = k\cdot x[/tex] and the fact that [tex]F = 25\,N[/tex] when [tex]x = 0.3\,m - 0.2\,m[/tex], the spring constant ([tex]k[/tex]), measured in newtons per meter, is:

[tex]k = \frac{F}{x}[/tex]

[tex]k = \frac{25\,N}{0.3\,m-0.2\,m}[/tex]

[tex]k = 250\,\frac{N}{m}[/tex]

Now, the work function is obtained:

[tex]W = \left(250\,\frac{N}{m} \right)\int\limits^{0.05\,m}_{0\,m} {x} \, dx[/tex]

[tex]W = \frac{1}{2}\cdot \left(250\,\frac{N}{m} \right)\cdot [(0.05\,m)^{2}-(0.00\,m)^{2}][/tex]

[tex]W = 0.313\,J[/tex]

The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules.

b) Let be [tex]r(\theta) = 2\cdot \sin 5\theta[/tex]. The area of the region enclosed by one loop of the curve is given by the following integral:

[tex]A = \int\limits^{2\pi}_0 {[r(\theta)]^{2}} \, d\theta[/tex]

[tex]A = 4\int\limits^{2\pi}_{0} {\sin^{2}5\theta} \, d\theta[/tex]

By using trigonometrical identities, the integral is further simplified:

[tex]A = 4\int\limits^{2\pi}_{0} {\frac{1-\cos 10\theta}{2} } \, d\theta[/tex]

[tex]A = 2 \int\limits^{2\pi}_{0} {(1-\cos 10\theta)} \, d\theta[/tex]

[tex]A = 2\int\limits^{2\pi}_{0}\, d\theta - 2\int\limits^{2\pi}_{0} {\cos10\theta} \, d\theta[/tex]

[tex]A = 2\cdot (2\pi - 0) - \frac{1}{5}\cdot (\sin 20\pi-\sin 0)[/tex]

[tex]A = 4\pi[/tex]

The area of the region enclosed by one loop of the curve [tex]r(\theta) = 2\cdot \sin 5\theta[/tex] is [tex]4\pi[/tex].

what is mean by the terminal velocity​

Answers

Terminal Velocity is the constant speed that a falling thing reaches when the resistence of a medium prevents the thing to reach any further speed.

Best of Luck!

Q 6.30: What is the underlying physical reason for the difference between the static and kinetic coefficients of friction of ordinary surfaces

Answers

Answer:

the coefficient of static friction is larger than kinetic coefficients of friction

Explanation:

The coefficient of static friction is usually larger than the kinetic coefficients of friction because an object at rest has increasingly settled agreements with the surface it's resting on at the molecular level, so it takes more force to break these agreement.

Until this force is been overcome, kinetic coefficient of friction is not going to surface.

Note: coefficient of static friction is the friction between two bodies when the bodies aren't moving. Meanwhile, kinetic coefficient is the ratio of frictional force of a moving body to the normal reaction.

[tex]F_{s}[/tex] ≤μ[tex]_{s}[/tex]N(coefficient of static friction)

where [tex]F_{s}[/tex]  is the static friction, μ[tex]_{s}[/tex] is the coefficient of static friction and N is the normal reaction

μ = [tex]\frac{F}{N}[/tex](kinetic coefficient of friction)

attached is diagram illustrating the explanation

A parallel-plate capacitor with circular plates of radius R is being discharged. The displacement current through a central circular area, parallel to the plates and with radius R/2, is 9.2 A. What is the discharging current?

Answers

Answer:

The discharging current is [tex]I_d = 36.8 \ A[/tex]

Explanation:

From the question we are told that  

     The radius of each circular plates is  R

     The displacement current is  [tex]I = 9.2 \ A[/tex]

      The radius of the central circular area is  [tex]\frac{R}{2}[/tex]

The discharging current is mathematically represented as

       [tex]I_d = \frac{A}{k} * I[/tex]

where A is the area of each plate which is mathematically represented as

       [tex]A = \pi R ^2[/tex]

and   k is central circular area which is mathematically represented as

     [tex]k = \pi [\frac{R}{2} ]^2[/tex]

So  

     [tex]I_d = \frac{\pi R^2 }{\pi * [ \frac{R}{2}]^2 } * I[/tex]

     [tex]I_d = \frac{\pi R^2 }{\pi * \frac{R^2}{4} } * I[/tex]

     [tex]I_d = 4 * I[/tex]

substituting values

     [tex]I_d = 4 * 9.2[/tex]

     [tex]I_d = 36.8 \ A[/tex]

     

what are the rays that come of the sun called? A. Ultraviolent rays B. Gamma rays C. soundwaves D. sonic rays

Answers

Answer:

The answer is ultraviolet rays...

Explanation:

...because the ozone layer protects us from the UV rays of the sun.

If the frequency of a periodic wave is cut in half while the speed remains the same, what happens to the wavelength

Answers

Answer:

The wavelength becomes twice the original wavelength

Explanation:

Recall that for regular waves, the relationship between wavelength, velocity (i.e speed) and frequency is given by

v = fλ

where,

v = velocity,

f = frequency

λ = wavelength

Before a change was made to the frequency, we have: v₁ = f₁ λ₁

After a change was made to the frequency, we have: v₂ = f₂ λ₂

We are told that the speed remains the same, so

v₁ = v₂

f₁ λ₁ = f₂ λ₂ (rearranging this)

f₁ / f₂ = λ₂/λ₁ --------(1)

we are given that the frequency is cut in half.

f₂ = (1/2) f₁     (rearranging this)

f₁/f₂ = 2 -------------(2)

if we substitute equation (2) into equation (1):

f₁ / f₂ = λ₂/λ₁

2 = λ₂/λ₁

λ₂ = 2λ₁

Hence we can see that the wavelength after the change becomes twice (i.e doubles) the initial wavelength.

PLS HELP ILL MARK U BRAINLIEST I DONT HAVE MUCH TIME!!


A football player of mass 103 kg running with a velocity of 2.0 m/s [E] collides head-
on with a 110 kg player on the opposing team travelling with a velocity of 3.2 m/s
[W]. Immediately after the collision the two players move in the same direction.
Calculate the final velocity of the two players.

Answers

Answer:

The final velocity of the two players is 0.69 m/s in the direction of the opposing player.

Explanation:

Since the players are moving in opposite directions, from the principle of conservation of linear momentum;

[tex]m_{1} u_{1}[/tex] - [tex]m_{2}u_{2}[/tex] = [tex](m_{1} + m_{2} )[/tex] v

Where: [tex]m_{1}[/tex] is the mass of the first player, [tex]u_{1}[/tex] is the initial velocity of the first player, [tex]m_{2}[/tex] is the mass of the second player, [tex]u_{2}[/tex] is the initial velocity of the second player and v is the final common velocity of the two players after collision.

[tex]m_{1}[/tex] = 103 kg, [tex]u_{1}[/tex] = 2.0 m/s, [tex]m_{2}[/tex] = 110 kg, [tex]u_{2}[/tex] = 3.2 m/s. Thus;

103 × 2.0 - 110 × 3.2 = (103 + 110)v

206 - 352 = 213 v

-146 = 213 v

v = [tex]\frac{-146}{213}[/tex]

v = -0.69 m/s

The final velocity of the two players is 0.69 m/s in the direction of the opposing player.

A Ferris wheel starts at rest and builds up to a final angular speed of 0.70 rad/s while rotating through an angular displacement of 4.9 rad. What is its average angular acceleration

Answers

Answer:

The average angular acceleration is 0.05 radians per square second.

Explanation:

Let suppose that Ferris wheel accelerates at constant rate, the angular acceleration as a function of change in angular position and the squared final and initial angular velocities can be clear from the following expression:

[tex]\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha\cdot (\theta-\theta_{o})[/tex]

Where:

[tex]\omega_{o}[/tex], [tex]\omega[/tex] - Initial and final angular velocities, measured in radians per second.

[tex]\alpha[/tex] - Angular acceleration, measured in radians per square second.

[tex]\theta_{o}[/tex], [tex]\theta[/tex] - Initial and final angular position, measured in radians.

Then,

[tex]\alpha = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot (\theta-\theta_{o})}[/tex]

Given that [tex]\omega_{o} = 0\,\frac{rad}{s}[/tex], [tex]\omega = 0.70\,\frac{rad}{s}[/tex] and [tex]\theta-\theta_{o} = 4.9\,rad[/tex], the angular acceleration is:

[tex]\alpha = \frac{\left(0.70\,\frac{rad}{s} \right)^{2}-\left(0\,\frac{rad}{s} \right)^{2}}{2\cdot \left(4.9\,rad\right)}[/tex]

[tex]\alpha = 0.05\,\frac{rad}{s^{2}}[/tex]

Now, the time needed to accelerate the Ferris wheel uniformly is described by this kinematic equation:

[tex]\omega = \omega_{o} + \alpha \cdot t[/tex]

Where [tex]t[/tex] is the time measured in seconds.

The time is cleared and obtain after replacing every value:

[tex]t = \frac{\omega-\omega_{o}}{\alpha}[/tex]

If [tex]\omega_{o} = 0\,\frac{rad}{s}[/tex],  [tex]\omega = 0.70\,\frac{rad}{s}[/tex] and [tex]\alpha = 0.05\,\frac{rad}{s^{2}}[/tex], the required time is:

[tex]t = \frac{0.70\,\frac{rad}{s} - 0\,\frac{rad}{s} }{0.05\,\frac{rad}{s^{2}} }[/tex]

[tex]t = 14\,s[/tex]

Average angular acceleration is obtained by dividing the difference between final and initial angular velocities by the time found in the previous step. That is:

[tex]\bar \alpha = \frac{\omega-\omega_{o}}{t}[/tex]

If [tex]\omega_{o} = 0\,\frac{rad}{s}[/tex],  [tex]\omega = 0.70\,\frac{rad}{s}[/tex] and [tex]t = 14\,s[/tex], the average angular acceleration is:

[tex]\bar \alpha = \frac{0.70\,\frac{rad}{s} - 0\,\frac{rad}{s} }{14\,s}[/tex]

[tex]\bar \alpha = 0.05\,\frac{rad}{s^{2}}[/tex]

The average angular acceleration is 0.05 radians per square second.

Other Questions
A spring hangs vertically. A 250 g mass is attached to the spring and allowed to come to rest. The spring stretches 8 cm as the mass comes to rest. What is the spring constant of the spring 1. changed Todos los ecuatorianos que trabajan en Ecuador son muy felices en su trabajo. En Ecuador, como en todos los pases del mundo, hay personas que aman su trabajo y hay otras que lo odian (hate). 2. unattempted En Quito, las oficinas donde trabaja la gente son muy similares a las oficinas de cualquier otra gran ciudad. Las oficinas donde trabajan los quiteos son muy diferentes a las oficinas de otras grandes ciudades. 3. changed La agencia de viajes Klein Tours de Ecuador organiza viajes exclusivamente a las islas Galpagos. La agencia de viajes Klein Tours se especializa en organizar viajes por toda la geografa de Ecuador. 4. unattempted Las islas Galpagos, los Andes, la selva amaznica y los muchsimos volcanes activos que hay en Ecuador son algunos de los principales destinos de las excursiones de Klein Tours. Algunos de los principales destinos de las excursiones de Klein Tours son el mirador de la Colina del Panecillo, el centro de Quito y las zonas situadas a ms de 2900 metros de altura sobre el nivel del mar. 5. changed El xito de Klein Tours es el resultado de la exuberante e incomparable belleza natural de Ecuador. Experiencia, conocimiento y diversin son los elementos del xito de Klein Tours. 6. unattempted En su trabajo, los empleados de Klein Tours tienen la oportunidad de viajar a otros pases y conocer a personas de todas las nacionalidades. Conocer gente interesante de todas las nacionalidades mientras promocionan su propio pas es una de las principales ventajas de los empleados de Klein Tours. if alpha beta are the roots of a x square + bx + c = 0 then the roots of a x square + b x + c^2 square = not equal to zero?a) alpha , betab) alpha/beta, beta/alphac) alpha/ , beta/alphad) alpha^k, beta^k Alana has 100 mL of water in her water bottle. She needs to share it with 3 other students so that all 4 of them have the same amount. How much should each student have? Please I am in need of help if you go solve all my questions o will mark brainliest work out the shaded area Jack tries to place magnets on his refrigerator at home, but they wont stick. What could be the reason? Select the correct answer.If the range of the function f(x) = x/4' is {28, 30, 32, 34, 36}, what is its domain? x + y = 243x + 5y = 100What does the solution of this system indicate about the questions on the test? Stressors that threaten your security and self-esteem are_____. A.) major life changes B.) environmental problems C.) catastrophe or. D.) everyday problems The friends spend some time thinking about a beam of light traveling from one medium to another medium with higher index of refraction, which strikes the boundary obliquely. Which of Tristan's statements is correct Which of the following is the value of a when the function f(x)=3 [x]written in the standard form of an absolute value function? I WILL GIVE BRAINLIEST TO BEST EXPLANATION!! How many 6-digit numbers, formed using each digit from 1 to 6 exactly once, are divisible by 6? Consider the system of equations given in slope-intercept form. y = 13x + 17, y = 5x - 23 The solution seems to be about (8, 14). Use the graphing calculator to find the exact values for the intersection point. What is the solution to this system of equations? CAN I GET SOME HELP ASAP PLEASE When you are told that the wind has a "Small Coriolis force" associated with it, what is that "small force" exactly Which is correct ? Next year, we may return to the tradition of spending Christmas with our families. Maybe we will return tothe snowy mountains of Colorado..Next year, we may return to the tradition of spending Christmas with our families; or maybe we willreturn to the snowy mountains of Colorado.Next year, we may return to the tradition of spending Christmas with our families, or maybe we will.return to the snowy mountains of Colorado.Next year, we may return to the tradition of spending Christmas with our families or maybe we will.return to the snowy mountains of Colorado. A certain dam generates 120 MJ of mechanical (hydroelectric) energy each minute. If the conversion from mechanical to electrical energy is then 15% efficient, what is the dam's electrical power output in W? In the phosphorous cycle, phosphorous enters the food chain whenA: it is in atom formB: it is in the form of phosphate and bound in solidsC: it is the form of phosphate ions and dissolved in waterD: it is exposed to the air during weathering Find the pH. What are the pH values for the following solutions? (a) 0.1 M HCl (b) 0.1 M NaOH (c) 0.05 M HCl (d) 0.05 M NaOH