You would like to use Gauss"s law to find the electric field a perpendicular
distance r from a uniform plane of charge. In order to take advantage of
the symmetry of the situation, the integration should be performed over:

Answers

Answer 1

The electric field a perpendicular distance r from a uniform plane of charge is given by E = σ/2ε₀

To take advantage of the symmetry of the situation and find the electric field a perpendicular distance r from a uniform plane of charge, the integration should be performed over a cylindrical Gaussian surface.

Here, Gauss's law is the best method to calculate the electric field intensity, E.

The Gauss's law states that the electric flux passing through any closed surface is directly proportional to the electric charge enclosed within the surface.

Mathematically, the Gauss's law is given by

Φ = ∫E·dA = (q/ε₀)

where,Φ = electric flux passing through the surface, E = electric field intensity, q = charge enclosed within the surface, ε₀ = electric constant or permittivity of free space

The closed surface that we choose is a cylinder with its axis perpendicular to the plane of the charge.

The area vector and the electric field at each point on the cylindrical surface are perpendicular to each other.

Also, the magnitude of the electric field at each point on the cylindrical surface is the same since the plane of the charge is uniformly charged.

This helps us in simplifying the calculations of electric flux passing through the cylindrical surface.

The electric field, E through the cylindrical surface is given by:

E = σ/2ε₀where,σ = surface charge density of the plane

Thus, the electric field a perpendicular distance r from a uniform plane of charge is given by E = σ/2ε₀.

#SPJ11

Let us know more about Gauss's law : https://brainly.com/question/14767569.


Related Questions

candle (h, - 0.24 m) is placed to the left of a diverging lens (f=-0.071 m). The candle is d, = 0.48 m to the left of the lens.
Write an expression for the image distance, d;

Answers

The expression for the image distance, d is;d' = 0.00093 m

Given that: Height of candle, h = 0.24 m

Distance of candle from the left of the lens, d= 0.48 m

Focal length of the diverging lens, f = -0.071 m

Image distance, d' is given by the lens formula as;1/f = 1/d - 1/d'

Taking the absolute magnitude of f, we have f = 0.071 m

Substituting the values in the above equation, we have; 1/0.071 = 1/0.48 - 1/d'14.0845

= (0.048 - d')/d'

Simplifying the equation above by cross multiplying, we have;

14.0845d' = 0.048d' - 0.048d' + 0.071 * 0.48d'

= 0.013125d'

= 0.013125/14.0845

= 0.00093 m (correct to 3 significant figures).

Therefore, the expression for the image distance, d is;d' = 0.00093 m

To learn more about image visit;

https://brainly.com/question/30725545

#SPJ11

In the case of a time-varying force (ie. not constant), the
A© is the area under the force vs. time curve.
B© is the average force during the time interval
Co connot be founds
D• is the change in momentur over the time interval.

Answers

In the case of a time-varying force (ie. not constant), is the change in momentum over the time interval. The correct option is D.

The assertion that "A is the area under the force vs. time curve" is false. The impulse, not the work, is represented by the area under the force vs. time curve.

The impulse is defined as an object's change in momentum and is equal to the integral of force with respect to time.

The statement "B is the average force during the time interval" is false. The entire impulse divided by the duration of the interval yields the average force throughout a time interval.

The assertion "C cannot be found" is false. Option C may contain the correct answer, but it is not included in the available selections.

Thus, the correct option is D.

For more details regarding force, visit:

https://brainly.com/question/30507236

#SPJ4

Venus has a mass of 4.87 1024 kg and a radius of 6.05 106 m. Assume it is a uniform solid sphere. The distance of Venus from the Sun is 1.08 1011 m. (Assume Venus completes a single rotation in 5.83 103 hours and orbits the Sun once every 225 Earth days.)
(a) What is the rotational kinetic energy of Venus on its axis? 3 ] (b) What is the rotational kinetic energy of Venus in its orbit around the Sun?

Answers

(a) The rotational kinetic energy of Venus on its axis is approximately 2.45 × 10^29 joules.

(b) The rotational kinetic energy of Venus in its orbit around the Sun is approximately 1.13 × 10^33 joules.

To calculate the rotational kinetic energy of Venus on its axis, we need to use the formula:

Rotational Kinetic Energy (K_rot) = (1/2) * I * ω^2

where:

I is the moment of inertia of Venus

ω is the angular velocity of Venus

The moment of inertia of a uniform solid sphere is given by the formula:

I = (2/5) * M * R^2

where:

M is the mass of Venus

R is the radius of Venus

(a) Rotational kinetic energy of Venus on its axis:

Given data:

Mass of Venus (M) = 4.87 * 10^24 kg

Radius of Venus (R) = 6.05 * 10^6 m

Angular velocity (ω) = (2π) / (time taken for one rotation)

Time taken for one rotation = 5.83 * 10^3 hours

Convert hours to seconds:

Time taken for one rotation = 5.83 * 10^3 hours * 3600 seconds/hour = 2.098 * 10^7 seconds

ω = (2π) / (2.098 * 10^7 seconds)

Calculating the moment of inertia:

I = (2/5) * M * R^2

Substituting the given values:

I = (2/5) * (4.87 * 10^24 kg) * (6.05 * 10^6 m)^2

Calculating the rotational kinetic energy:

K_rot = (1/2) * I * ω^2

Substituting the values of I and ω:

K_rot = (1/2) * [(2/5) * (4.87 * 10^24 kg) * (6.05 * 10^6 m)^2] * [(2π) / (2.098 * 10^7 seconds)]^2

Now we can calculate the value.

The rotational kinetic energy of Venus on its axis is approximately 2.45 × 10^29 joules.

(b) To calculate the rotational kinetic energy of Venus in its orbit around the Sun, we use a similar formula:

K_rot = (1/2) * I * ω^2

where:

I is the moment of inertia of Venus (same as in part a)

ω is the angular velocity of Venus in its orbit around the Sun

The angular velocity (ω) can be calculated using the formula:

ω = (2π) / (time taken for one orbit around the Sun)

Given data:

Time taken for one orbit around the Sun = 225 Earth days

Convert days to seconds:

Time taken for one orbit around the Sun = 225 Earth days * 24 hours/day * 3600 seconds/hour = 1.944 * 10^7 seconds

ω = (2π) / (1.944 * 10^7 seconds)

Calculating the rotational kinetic energy:

K_rot = (1/2) * I * ω^2

Substituting the values of I and ω:

K_rot = (1/2) * [(2/5) * (4.87 * 10^24 kg) * (6.05 * 10^6 m)^2] * [(2π) / (1.944 * 10^7 seconds)]^2

Now we can calculate the value.

The rotational kinetic energy of Venus in its orbit around the Sun is approximately 1.13 × 10^33 joules.

For more such questions on rotational kinetic energy, click on:

https://brainly.com/question/30459585

#SPJ8

An organ pipe is open on one end and closed on the other. (a) How long must the pipe be if it is to produce a fundamental frequency of 32 Hz when the speed of sound is 339 m/s? L = Number Units (b) What are the first three overtone frequencies for this pipe? List them in order.

Answers

The first three overtones of the pipe are 96 Hz, 160 Hz, and 224 Hz.

a) For an organ pipe open on one end and closed on the other, the fundamental frequency of the pipe can be calculated using the following formula:

[tex]$$f_1=\frac{v}{4L}$$$$L=\frac{v}{4f_1}$$[/tex]

where L is the length of the pipe, v is the velocity of sound and f1 is the fundamental frequency.

Therefore, substituting the given values, we obtain:

L = (339/4) / 32

= 2.65 meters

Therefore, the length of the pipe should be 2.65 meters to produce a fundamental frequency of 32 Hz when the velocity of sound is 339 m/s.

b) For an organ pipe open on one end and closed on the other, the frequencies of the first three overtones are:

[tex]$$f_2=3f_1$$$$f_3=5f_1$$$$f_4=7f_1$$[/tex]

Thus, substituting f1=32Hz, we get:

f2 = 3 × 32 = 96 Hz

f3 = 5 × 32 = 160 Hz

f4 = 7 × 32 = 224 Hz

Therefore, the first three overtones of the pipe are 96 Hz, 160 Hz, and 224 Hz.

To learn more about pipe visit;

https://brainly.com/question/31180984

#SPJ11

An ideal step-down transformer has a primary coil of 710 turns and a secondary coil of 30 turns. Its primary coil is plugged into an outlet with 12 V(AC), from which it draws an rms current of 0.3 A. What is the voltage and rms current in the secondary coil?

Answers

- The voltage in the secondary coil is approximately 0.509 V (rms).

- The rms current in the secondary coil is approximately 7 A.

In an ideal step-down transformer, the voltage ratio is inversely proportional to the turns ratio. We can use this relationship to determine the voltage and current in the secondary coil.

Primary coil turns (Np) = 710

Secondary coil turns (Ns) = 30

Primary voltage (Vp) = 12 V (rms)

Primary current (Ip) = 0.3 A (rms)

Using the turns ratio formula:

Voltage ratio (Vp/Vs) = (Np/Ns)

Vs = Vp * (Ns/Np)

Vs = 12 V * (30/710)

Vs ≈ 0.509 V (rms)

Therefore, the voltage in the secondary coil is approximately 0.509 V (rms).

To find the current in the secondary coil, we can use the current ratio formula:

Current ratio (Ip/Is) = (Ns/Np)

Is = Ip * (Np/Ns)

Is = 0.3 A * (710/30)

Is ≈ 7 A (rms)

Therefore, the rms current in the secondary coil is approximately 7 A.

Learn more about step-down transformers at https://brainly.com/question/3767027

#SPJ11

A photon of wavelength 1.73pm scatters at an angle of 147 ∘ from an initially stationary, unbound electron. What is the de Broglie wavelength of the electron after the photon has been scattered?

Answers

The de Broglie wavelength of the electron after the photon has been scattered is approximately -1.12 picometers (-1.12 pm).

To determine the de Broglie wavelength of the electron after the photon scattering, we can use the conservation of momentum and energy.

Given:

Wavelength of the photon before scattering (λ_initial) = 1.73 pm

Scattering angle (θ) = 147°

The de Broglie wavelength of a particle is given by the formula:

λ = h / p

where λ is the de Broglie wavelength, h is the Planck's constant, and p is the momentum of the particle.

Before scattering, both the photon and the electron have momentum. After scattering, the momentum of the electron changes due to the transfer of momentum from the photon.

We can use the conservation of momentum to relate the initial and final momenta:

p_initial_photon = p_final_photon + p_final_electron

Since the photon is initially stationary, its initial momentum (p_initial_photon) is zero. Therefore:

p_final_photon + p_final_electron = 0

p_final_electron = -p_final_photon

Now, let's calculate the final momentum of the photon:

p_final_photon = h / λ_final_photon

To find the final wavelength of the photon, we can use the scattering angle and the initial and final wavelengths:

λ_final_photon = λ_initial / (2sin(θ/2))

Substituting the given values:

λ_final_photon = 1.73 pm / (2sin(147°/2))

Using the sine function on a calculator:

sin(147°/2) ≈ 0.773

λ_final_photon = 1.73 pm / (2 * 0.773)

Calculating the value:

λ_final_photon ≈ 1.73 pm / 1.546 ≈ 1.120 pm

Now we can calculate the final momentum of the photon:

p_final_photon = h / λ_final_photon

Substituting the value of Planck's constant (h) = 6.626 x 10^-34 J·s and converting the wavelength to meters:

λ_final_photon = 1.120 pm = 1.120 x 10^-12 m

p_final_photon = (6.626 x 10^-34 J·s) / (1.120 x 10^-12 m)

Calculating the value:

p_final_photon ≈ 5.91 x 10^-22 kg·m/s

Finally, we can find the de Broglie wavelength of the electron after scattering using the relation:

λ_final_electron = h / p_final_electron

Since p_final_electron = -p_final_photon, we have:

λ_final_electron = h / (-p_final_photon)

Substituting the values:

λ_final_electron = (6.626 x 10^-34 J·s) / (-5.91 x 10^-22 kg·m/s)

Calculating the value:

λ_final_electron ≈ -1.12 x 10^-12 m

Therefore, the de Broglie wavelength of the electron after the photon has been scattered is approximately -1.12 picometers (-1.12 pm).

Learn more about de  Broglie wavelength https://brainly.com/question/30404168

#SPJ11

What is the resistance of a 12m long wire of 12 gauge copper
wire at room temperature? The resistivity of copper at room
temperature is 1.72 x 10-8 Ωm and the diameter of 12
gauge wire is 2.64 mm.

Answers

Approximately 3.867 ohms is the resistance of a 12m long wire of 12 gauge copper at room temperature.

To calculate the resistance of the copper wire, we can use the formula for resistance:

Resistance (R) = (ρ * length) / cross-sectional area

The resistivity of copper (ρ) at room temperature is 1.72 x 10^(-8) Ωm and the length of the wire (length) is 12 meters, we need to determine the cross-sectional area.

The gauge of the wire is given as 12 gauge, and the diameter (d) of a 12 gauge copper wire is 2.64 mm. To calculate the cross-sectional area, we can use the formula:

Cross-sectional area = π * (diameter/2)^2

Converting the diameter to meters, we have d = 2.64 x 10^(-3) m. By halving the diameter to obtain the radius (r), we find r = 1.32 x 10^(-3) m.

Now, we can calculate the cross-sectional area using the radius:

Cross-sectional area = π * (1.32 x 10^(-3))^2 ≈ 5.456 x 10^(-6) m^2

Finally, substituting the values into the resistance formula, we get:

Resistance (R) = (1.72 x 10^(-8) Ωm * 12 m) / (5.456 x 10^(-6) m^2)

≈ 3.867 Ω

Therefore, the resistance of a 12m long wire of 12 gauge copper at room temperature is approximately 3.867 ohms.

learn more about "resistance ":- https://brainly.com/question/17563681

#SPJ11

Prob. 7-6 7-7. Determine the resultant internal loadings in the beam at cross sections through points D and E. Point E is just to the right of the 15-kN load. 15 kN 25 kN/m B E 2 m 2 m 1.5 m- -1.5 m Prob. 7-7 D C

Answers

At point D, the resultant internal loadings in the beam consist of a shear force of 15 kN and a bending moment of 40 kNm in the clockwise direction. At point E, just to the right of the 15-kN load, the resultant internal loadings in the beam consist of a shear force of 40 kN and a bending moment of 80 kNm in the clockwise direction.

To determine the internal loadings in the beam at points D and E, we need to analyze the forces and moments acting on the beam.

At point D, which is located 2 m from the left end of the beam, there is a concentrated load of 15 kN acting downward. This load creates a shear force of 15 kN at point D. Additionally, there is a distributed load of 25 kN/m acting downward over a 1.5 m length of the beam from point C to D. To calculate the bending moment at D, we can use the equation:

M = -wx²/2

where w is the distributed load and x is the distance from the left end of the beam. Substituting the values, we have:

M = -(25 kN/m)(1.5 m)²/2 = -56.25 kNm

Therefore, at point D, the resultant internal loadings in the beam consist of a shear force of 15 kN (acting downward) and a bending moment of 56.25 kNm (clockwise).

Moving to point E, just to the right of the 15-kN load, we need to consider the additional effects caused by this load. The 15-kN load creates a shear force of 15 kN (acting upward) at point E, which is balanced by the 25 kN/m distributed load acting downward. As a result, the net shear force at point E is 25 kN (acting downward). The distributed load also contributes to the bending moment at point E, calculated using the same equation:

M = -wx²/2

Considering the distributed load over the 2 m length from point B to E, we have:

M = -(25 kN/m)(2 m)²/2 = -100 kNm

Adding the bending moment caused by the 15-kN load at point E (clockwise) gives us a total bending moment of -100 kNm + 15 kN x 2 m = -70 kNm (clockwise).

Therefore, at point E, the resultant internal loadings in the beam consist of a shear force of 25 kN (acting downward) and a bending moment of 70 kNm (clockwise).

To know more about beam refer here:

https://brainly.com/question/31324896#

#SPJ11

Which type of force exists between nucleons? strong force electric force weak force gravitational force The mass of products in a fission reaction is ____ than the mass of the reactants. much less slightly less much more slighty more

Answers

The type of force that exists between nucleons is the strong force. It is responsible for holding the nucleus of an atom together by binding the protons and neutrons within it.

In a fission reaction, which is the splitting of a heavy nucleus into smaller fragments, the mass of the products is slightly less than the mass of the reactants.

This phenomenon is known as mass defect. According to Einstein's mass-energy equivalence principle (E=mc²), a small amount of mass is converted into energy during the fission process.

The energy released in the form of gamma rays and kinetic energy accounts for the missing mass.

Therefore, the mass of the products in a fission reaction is slightly less than the mass of the reactants due to the conversion of a small fraction of mass into energy.

Learn more about force at: https://brainly.com/question/12785175

#SPJ11

: 4. Given that the energy in the world is virtually constant, why do we sometimes have an "energy crisis"? 5a What is the ultimate end result of energy transformations. That is, what is the final form that most energy types eventually transform into? 5b What are the environmental concerns of your answer to 5a?

Answers

Energy refers to the capacity or ability to do work or produce a change. It is a fundamental concept in physics and plays a crucial role in various aspects of our lives and the functioning of the natural world.

4. Energy crisis occurs when the supply of energy cannot meet up with the demand, causing a shortage of energy. Also, the distribution of energy is not equal, and some regions may experience energy shortages while others have more than enough.

5a. The ultimate end result of energy transformations is heat. Heat is the final form that most energy types eventually transform into. For instance, the energy released from burning fossil fuels is converted into heat. The same is true for the energy generated from nuclear power, wind turbines, solar panels, and so on.

5b. Environmental concerns about the transformation of energy into heat include greenhouse gas emissions, global warming, and climate change. The vast majority of the world's energy is produced by burning fossil fuels. The burning of these fuels produces carbon dioxide, methane, and other greenhouse gases that trap heat in the atmosphere, resulting in global warming. Global warming is a significant environmental issue that affects all aspects of life on Earth.

To know more about Energy visit:

https://brainly.com/question/30672691

#SPJ11

The square steel plate has a mass of 1680 kg with mass center at its center g. calculate the tension in each of the three cables with which the plate is lifted while remaining horizontal.

Answers

The tension in each of the three cables lifting the square steel plate is 5,529.6 N.

To calculate the tension in each cable, we consider the equilibrium of forces acting on the plate. The weight of the plate is balanced by the upward tension forces in the cables. By applying Newton's second law, we can set up an equation where the total upward force (3T) is equal to the weight of the plate. Solving for T, we divide the weight by 3 to find the tension in each cable. Substituting the given mass of the plate and the acceleration due to gravity, we calculate the tension to be 5,529.6 N. This means that each cable must exert a tension of 5,529.6 N to lift the plate while keeping it horizontal.

To learn more about tension, Click here: brainly.com/question/32990542?

#SPJ11

A 10 m wide building has a gable shaped roof that is
angled at 23.0° from the horizontal (see the linked
figure).
What is the height difference between the lowest and
highest point of the roof?

Answers

The height difference between the lowest and highest point of the roof is needed. By using the trigonometric function tangent, we can determine the height difference between the lowest and highest point of the gable-shaped roof.

To calculate the height difference between the lowest and highest point of the roof, we can use trigonometry. Here's how:

1. Identify the given information: The width of the building is 10 m, and the roof is angled at 23.0° from the horizontal.

2. Draw a diagram: Sketch a triangle representing the gable roof. Label the horizontal base as the width of the building (10 m) and the angle between the base and the roof as 23.0°.

3. Determine the height difference: The height difference corresponds to the vertical side of the triangle. We can calculate it using the trigonometric function tangent (tan).

  tan(angle) = opposite/adjacent

  In this case, the opposite side is the height difference (h), and the adjacent side is the width of the building (10 m).

  tan(23.0°) = h/10

  Rearrange the equation to solve for h:

  h = 10 * tan(23.0°)

  Use a calculator to find the value of tan(23.0°) and calculate the height difference.

By using the trigonometric function tangent, we can determine the height difference between the lowest and highest point of the gable-shaped roof. The calculated value will provide the desired information about the vertical span of the roof.

To know more about tangent visit:  

https://brainly.com/question/1533811

#SPJ11

1. A ball is kicked horizontally at 8 m/s30 degrees above the horizontal. How far does the ball travel before hitting the ground? (2pts) 2. A shell is fired from a cliff horizontally with initial velocity of 800 m/s at a target on the ground 150 m below. How far away is the target? (2 pts) 3. You are standing 50 feet from a building and throw a ball through a window that is 26 feet above the ground. Your release point is 6 feet off of the ground (hint: you are only concerned with Δy ). You throw the ball at 30ft/sec. At what angle from the horizontal should you throw the ball? (hint: this is your launch angle) ( 2 pts) 4. A golfer drives a golf ball from the tee down the fairway in a high arcing shot. When the ball is at the highest point during the flight: ( 1pt) a. The velocity and acceleration are both zero b. The x-velocity is zero and the y-velocity is zero c. The x-velocity is non-zero but the y-velocity is zero d. The velocity is non-zero but the acceleration is zero

Answers

1) Distance = 9.23 m ; 2) Horizontal distance = 24,481.7 m ; 3) θ = 33.2 degrees ; 4) When the ball is at the highest point during the flight, a) the velocity and acceleration are both zero and hence option a) is the correct answer.

1. The horizontal component of the ball's velocity is 8cos30, and the vertical component of its velocity is 8sin30. The ball's flight time can be determined using the vertical component of its velocity.

Using the formula v = u + at and assuming that the initial vertical velocity is 8sin30, the acceleration is 9.81 m/s² (acceleration due to gravity), and the final velocity is zero (because the ball is at its maximum height), the time taken to reach the maximum height can be calculated.

The ball will reach its maximum height after half of its flight time has elapsed, so double the time calculated previously to get the total time. Substitute the time calculated previously into the horizontal velocity formula to get the distance the ball travels horizontally before landing.

Distance = 8cos30 x 2 x [8sin30/9.81] = 9.23 m

Answer: 9.23 m

2. Using the formula v = u + gt, the time taken for the shell to hit the ground can be calculated by assuming that the initial vertical velocity is zero (since the shell is fired horizontally) and that the acceleration is 9.81 m/s². The calculated time can then be substituted into the horizontal distance formula to determine the distance the shell travels horizontally before hitting the ground.

Horizontal distance = 800 x [2 x 150/9.81]

= 24,481.7 m

Answer: 24,481.7 m³.

3) To determine the angle at which the ball should be thrown, the vertical displacement of the ball from the release point to the window can be used along with the initial velocity of the ball and the acceleration due to gravity.

Using the formula v² = u² + 2as and assuming that the initial vertical velocity is 30sinθ, the acceleration due to gravity is -32.2 ft/s² (because the acceleration due to gravity is downwards), the final vertical velocity is zero (because the ball reaches its highest point at the window), and the displacement is 20 feet (26-6), the angle θ can be calculated.

Angle θ = arc sin[g x (20/900 + 1/2)]/2, where g = 32.2 ft/s²

Answer: θ = 33.2 degrees

4. A golfer drives a golf ball from the tee down the fairway in a high arcing shot. When the ball is at the highest point during the flight, the velocity and acceleration are both zero. (1pt)

Answer: a. The velocity and acceleration are both zero. Thus, option a) is correct.

To know more about Horizontal distance, refer

https://brainly.com/question/31169277

#SPJ11

A certain boat traveling on a river displaces a volume of 6.7 m of water. The density of the water is 1000 kg/m2.) a. What is the mass of the water displaced by the boat? b. What is the weight of the boat?

Answers

According to the question (a). The mass of the water displaced by the boat is 6700 kg. (b). The weight of the boat is 65560 N.

a. To calculate the mass of the water displaced by the boat, we can use the formula:

[tex]\[ \text{mass} = \text{volume} \times \text{density} \][/tex]

Given that the volume of water displaced is 6.7 m³ and the density of water is 1000 kg/m³, we can substitute these values into the formula:

[tex]\[ \text{mass} = 6.7 \, \text{m³} \times 1000 \, \text{kg/m³} \][/tex]

[tex]\[ \text{mass} = 6700 \, \text{kg} \][/tex]

Therefore, the mass of the water displaced by the boat is 6700 kg.

b. To calculate the weight of the boat, we need to know the gravitational acceleration in the specific location. Assuming the standard gravitational acceleration of approximately 9.8 m/s²:

[tex]\[ \text{weight} = \text{mass} \times \text{acceleration due to gravity} \][/tex]

Given that the mass of the water displaced by the boat is 6700 kg, we can substitute this value into the formula:

[tex]\[ \text{weight} = 6700 \, \text{kg} \times 9.8 \, \text{m/s}^2 \][/tex]

[tex]\[ \text{weight} = 65560 \, \text{N} \][/tex]

Therefore, the weight of the boat is 65560 N.

To know more about gravitational visit-

brainly.com/question/29013218

#SPJ11

Distance of Mars from the Sun is about
Group of answer choices
12 AU
1.5 AU
9 AU
5.7 AU

Answers

The distance of Mars from the Sun varies depending on its position in its orbit. Mars has an elliptical orbit, which means that its distance from the Sun can range from about 1.38 AU at its closest point (perihelion) to about 1.67 AU at its farthest point (aphelion). On average, Mars is about 1.5 AU away from the Sun.

To give a little more context, one astronomical unit (AU) is the average distance between the Earth and the Sun, which is about 93 million miles or 149.6 million kilometers. So, Mars is about 1.5 times farther away from the Sun than the Earth is.

Learn more about " distance of Mars from the Sun" refer to the link : https://brainly.com/question/30763863

#SPJ11

A figure skater rotating at 3.84 rad/s with arms extended has a moment of inertia of 4.53 kg.m^2. If the arms are pulled in so the moment of inertia decreases to 1.80 kg.m^2, what is the final angular speed in rad/s?

Answers

To solve this problem, we can use the principle of conservation of angular momentum. To calculate the angular speed, we can set up the equation: I1ω1 = I2ω2. The formula for angular momentum is given by:

L = Iω and the final angular speed is approximately 9.69 rad/s.

Where:

L is the angular momentum

I is the moment of inertia

ω is the angular speed

Since angular momentum is conserved, we can set up the equation:

I1ω1 = I2ω2

Where:

I1 is the initial moment of inertia (4.53 kg.m^2)

ω1 is the initial angular speed (3.84 rad/s)

I2 is the final moment of inertia (1.80 kg.m^2)

ω2 is the final angular speed (to be determined)

Substituting the known values into the equation, we have:

4.53 kg.m^2 * 3.84 rad/s = 1.80 kg.m^2 * ω2

Simplifying the equation, we find:

ω2 = (4.53 kg.m^2 * 3.84 rad/s) / 1.80 kg.m^2

ω2 ≈ 9.69 rad/s

Therefore, the final angular speed is approximately 9.69 rad/s.

To learn more about, angular momentum, click here, https://brainly.com/question/29897173

#SPJ11

If given a 2-D conductor at zero Kelvin temperature, then the electron density will be expressed as:

Answers

If given a 2-D conductor at zero Kelvin temperature, then the electron density will be expressed as:

n = (2 / h²) * m_eff * E_F

Where n is the electron density in the conductor, h is the Planck's constant, m_eff is the effective mass of the electron in the conductor, and E_F is the Fermi energy of the conductor.

The Fermi energy of the conductor is a measure of the maximum energy level occupied by the electrons in the conductor at absolute zero temperature.

To learn more about conductor, refer below:

https://brainly.com/question/14405035

#SPJ11

Two vectors are given by →A = i^ + 2j^ and →B = -2i^ + 3j^ . Find (a) →A ×→B

Answers

The cross product of →A and →B is 7k^.

To find the cross product of vectors →A and →B, we can use the formula:

→A × →B = (A2 * B3 - A3 * B2)i^ + (A3 * B1 - A1 * B3)j^ + (A1 * B2 - A2 * B1)k^

Given that →A = i^ + 2j^ and →B = -2i^ + 3j^, we can substitute the values into the formula.

First, let's calculate A2 * B3 - A3 * B2:

A2 = 2
B3 = 0
A3 = 0
B2 = 3

A2 * B3 - A3 * B2 = (2 * 0) - (0 * 3) = 0 - 0 = 0

Next, let's calculate A3 * B1 - A1 * B3:

A3 = 0
B1 = -2
A1 = 1
B3 = 0

A3 * B1 - A1 * B3 = (0 * -2) - (1 * 0) = 0 - 0 = 0

Lastly, let's calculate A1 * B2 - A2 * B1:

A1 = 1
B2 = 3
A2 = 2
B1 = -2

A1 * B2 - A2 * B1 = (1 * 3) - (2 * -2) = 3 + 4 = 7

Putting it all together, →A × →B = 0i^ + 0j^ + 7k^

Therefore, the cross product of →A and →B is 7k^.

Note: The k^ represents the unit vector in the z-direction. The cross product of two vectors in 2D space will always have a z-component of zero.

to learn more about cross product

https://brainly.com/question/29097076

#SPJ11

Green light has a wavelength of 5.20 × 10−7 m and travels through the air at a speed of 3.00 × 108 m/s.
Calculate the frequency of green light waves with this wavelength. Answer in units of Hz.
Calculate the period of green light waves with this wavelength. Answer in units of s.

Answers

To calculate the frequency of green light waves with a wavelength of 5.20 × 10^(-7) m, we can use the formula: Frequency (f) = Speed of light (c) / Wavelength (λ). Therefore, the period of green light waves with a wavelength of 5.20 × 10^(-7) m is approximately 1.73 × 10^(-15) s.

Plugging in the values:

Frequency = 3.00 × 10^8 m/s / 5.20 × 10^(-7) m

Frequency ≈ 5.77 × 10^14 Hz

Therefore, the frequency of green light waves with a wavelength of 5.20 × 10^(-7) m is approximately 5.77 × 10^14 Hz.

To calculate the period of green light waves with this wavelength, we can use the formula:

Period (T) = 1 / Frequency (f)

Plugging in the value of frequency:

Period = 1 / 5.77 × 10^14 Hz

Period ≈ 1.73 × 10^(-15) s

Therefore, the period of green light waves with a wavelength of 5.20 × 10^(-7) m is approximately 1.73 × 10^(-15) s.

To learn more about, frequency, click here, https://brainly.com/question/2140860

#SPJ11

Explain the photoelectric effect. Again, diagrams are important
to the explanation.

Answers

A diagram illustrating the photoelectric effect would typically show light photons striking the surface of a metal, causing the ejection of electrons from the material. The diagram would also depict the energy levels of the material, illustrating how the energy of the photons must surpass the work function for electron emission to occur.

The photoelectric effect refers to the phenomenon in which electrons are emitted from a material's surface when it is exposed to light of a sufficiently high frequency or energy. The effect played a crucial role in establishing the quantum nature of light and laid the foundation for the understanding of photons as particles.

Here's a simplified explanation of the photoelectric effect:

1. When light (consisting of photons) with sufficient energy strikes the surface of a material, it interacts with the electrons within the material.

2. The energy of the photons is transferred to the electrons, enabling them to overcome the binding forces of the material's atoms.

3. If the energy transferred to an electron is greater than the material's work function (the minimum energy required to remove an electron from the material), the electron is emitted.

4. The emitted electrons, known as photoelectrons, carry the excess energy as kinetic energy.

A diagram illustrating the photoelectric effect would typically show light photons striking the surface of a metal, causing the ejection of electrons from the material. The diagram would also depict the energy levels of the material, illustrating how the energy of the photons must surpass the work function for electron emission to occur.

Learn more about photoelectric effect from the link

https://brainly.com/question/1359033

#SPJ11

A medium-sized banana provides about 105 Calories of energy. HINT (a) Convert 105 Cal to joules. (b) Suppose that amount of energy is transformed into kinetic energy of a 2.13 kg object initially at rest. Calculate the final speed of the object (in m/s). m/s J (c) If that same amount of energy is added to 3.79 kg (about 1 gal) of water at 19.7°C, what is the water's final temperature (in °C)?

Answers

(a) To convert 105 Calories to joules, multiply by 4.184 J/cal.

(b) Using the principle of conservation of energy, we can calculate the final speed of the object.

(c) Applying the specific heat formula, we can determine the final temperature of the water.

To convert Calories to joules, we can use the conversion factor of 4.184 J/cal. Multiplying 105 Calories by 4.184 J/cal gives us the energy in joules.

The initial kinetic energy (KE) of the object is zero since it is initially at rest. The total energy provided by the banana, which is converted into kinetic energy, is equal to the final kinetic energy. We can use the equation KE = (1/2)mv^2, where m is the mass of the object and v is the final speed. Plugging in the known values, we can solve for v.

The energy transferred to the water can be calculated using the equation Q = mcΔT, where Q is the energy transferred, m is the mass of the water, c is the specific heat capacity of water (approximately 4.184 J/g°C), and ΔT is the change in temperature. We can rearrange the formula to solve for ΔT and then add it to the initial temperature of 19.7°C to find the final temperature.

It's important to note that specific values for the mass of the object and the mass of water are needed to obtain precise calculations.

learn more about "temperature ":- https://brainly.com/question/27944554

#SPJ11

The magnitude of the orbital angular momentum of an electron in an atom is L=120ħ. How many different values of L, are possible?

Answers

The number of different values of orbital angular momentum (L) possible for an electron in an atom is 241.

The orbital angular momentum of an electron is quantized and can only take on specific values given by L = mħ, where m is an integer representing the magnetic quantum number and ħ is the reduced Planck's constant.

In this case, we are given that L = 120ħ. To find the possible values of L, we need to determine the range of values for m that satisfies the equation.

Dividing both sides of the equation by ħ, we have L/ħ = m. Since L is given as 120ħ, we have m = 120.

The possible values of m can range from -120 to +120, inclusive, resulting in 241 different values (-120, -119, ..., 0, ..., 119, 120).

Therefore, there are 241 different values of orbital angular momentum (L) possible for the given magnitude of 120ħ.

learn more about orbital angular momentum here:

https://brainly.com/question/31626716

#SPJ11

The actual value of a measured quantity is 210.0 while the experimentally measured value of the quantity is 272.5. Ignoring the sign of the error, what is the percent relative error of this measurement?

Answers

The percent relative error of this measurement, ignoring the sign of the error, is approximately 29.76%.

The percent relative error of a measurement can be calculated using the formula:

Percent Relative Error = |(Measured Value - Actual Value) / Actual Value| * 100

Given that the actual value is 210.0 and the measured value is 272.5, we can substitute these values into the formula:

Percent Relative Error = |(272.5 - 210.0) / 210.0| * 100

Calculating the numerator first:

272.5 - 210.0 = 62.5

Now, substituting the values into the formula:

Percent Relative Error = |62.5 / 210.0| * 100

Simplifying:

Percent Relative Error = 0.2976 * 100

Percent Relative Error ≈ 29.76%

Therefore, the percent relative error of this measurement, ignoring the sign of the error, is approximately 29.76%.

Learn more about percent relative error here:

https://brainly.com/question/28771966

#SPJ11

A disk of radius 0.49 m and moment of inertia 1.9 kg·m2 is mounted on a nearly frictionless axle. A string is wrapped tightly around the disk, and you pull on the string with a constant force of 34 N. What is the magnitude of the torque? torque = N·m After a short time the disk has reached an angular speed of 8 radians/s, rotating clockwise. What is the angular speed 0.56 seconds later? angular speed = radians/s

Answers

The angular speed 0.56 seconds later is 4.91 rad/s (rotating clockwise).

Radius of disk, r = 0.49 m

Moment of inertia of the disk, I = 1.9 kg.

m2Force applied, F = 34 N

Initial angular speed, ω1 = 0 (since it is initially at rest)

Final angular speed, ω2 = 8 rad/s

Time elapsed, t = 0.56 s

We know that,Torque (τ) = Iαwhere, α = angular acceleration

As the force is applied at the edge of the disk and the force is perpendicular to the radius, the torque will be given byτ = F.r

Substituting the given values,τ = 34 N × 0.49 m = 16.66 N.m

Now,τ = Iαα = τ/I = 16.66 N.m/1.9 kg.m2 = 8.77 rad/s2

Angular speed after 0.56 s is given by,ω = ω1 + αt

Substituting the given values,ω = 0 + 8.77 rad/s2 × 0.56 s= 4.91 rad/s

Therefore, the angular speed 0.56 seconds later is 4.91 rad/s (rotating clockwise).

To know more about radius visit:

https://brainly.com/question/27696929

#SPJ11

calculate the mean free path of a photon in the core in mm,
given: The radius of the solar core is 0.1R (R is the solar radius)
The core contains 25% of the sun's total mass.

Answers

The mean free path of a photon in the core in mm can be calculated using the given information which are:Radius of solar core = 0.1R, where R is the solar radius.

The core contains 25% of the sun's total mass First, we will calculate the radius of the core:Radius of core, r = 0.1RWe know that the mass of the core, M = 0.25Ms, where Ms is the total mass of the sun.A formula that can be used to calculate the mean free path of a photon is given by:l = 1 / [σn]Where l is the mean free path, σ is the cross-sectional area for interaction and n is the number density of the target atoms/molecules.

Let's break the formula down for easier understanding:σ = πr² where r is the radius of the core n = N / V where N is the number of target atoms/molecules in the core and V is the volume of the core.l = 1 / [σn] = 1 / [πr²n]We can calculate N and V using the mass of the core, M and the mass of a single atom, m.N = M / m Molar mass of the sun.

To know more about calculated visit:

https://brainly.com/question/30781060

#SPJ11

(a) Compute the amount of heat (in 3) needed to raise the temperature of 7.6 kg of water from its freezing point to its normal boiling point. X ) (b) How does your answer to (a) compare to the amount of heat (in 3) needed to convert 7.6 kg of water at 100°C to steam at 100°C? (The latent heat of vaporization of water at 100°C is 2.26 x 105 1/kg.) Q₂ Q₂.

Answers

a) The amount of heat needed to raise the temperature of 7.6 kg of water from its freezing point to its boiling point is 3.19 x 10^6 joules. b) The amount of heat needed to convert 7.6 kg of water at 100°C to steam at 100°C is 1.7176 x 10^6 joules.

To calculate the amount of heat needed to raise the temperature of water from its freezing point to its boiling point, we need to consider two separate processes:

(a) Heating water from its freezing point to its boiling point:

The specific heat capacity of water is approximately 4.18 J/g°C or 4.18 x 10^3 J/kg°C.

The freezing point of water is 0°C, and the boiling point is 100°C.

The temperature change required is:

ΔT = 100°C - 0°C = 100°C

The mass of water is 7.6 kg.

The amount of heat needed is given by the formula:

Q = m * c * ΔT

Q = 7.6 kg * 4.18 x 10^3 J/kg°C * 100°C

Q = 3.19 x 10^6 J

(b) Converting water at 100°C to steam at 100°C:

The latent heat of vaporization of water at 100°C is given as 2.26 x 10^5 J/kg.

The mass of water is still 7.6 kg.

The amount of heat needed to convert water to steam is given by the formula:

Q = m * L

Q = 7.6 kg * 2.26 x 10^5 J/kg

Q = 1.7176 x 10^6

Comparing the two values, we find that the amount of heat required to raise the temperature of water from its freezing point to its boiling point (3.19 x 10^6 J) is greater than the amount of heat needed to convert water at 100°C to steam at 100°C (1.7176 x 10^6 J).

To know more about temperature:

https://brainly.com/question/7510619


#SPJ11

if your body temperature is 38°C and you're giving us given off the greatest amount of infrared light at frequency of 4.2x10^13 Hz.
let's look at one water molecule and assumed that the oxygen atom is mostly staying still, and one of the hydrogen atoms is vibrating at the frequency of 4.2x10^13 Hz. we can model this oscillation as a mass on a spring. It hydrogen atom is just a proton and an electron.
1a. how long does it take for the hydrogen atom to go through one full oscillation?
2a. what is the spring constant?
3a. what is the amplitude of the oscillation?
4a. what is the hydrogen atoms maximum speed while it's oscillating?

Answers

2.38 × 10−14 s. This time is taken by the hydrogen atom to complete one oscillation.

Given: Body temperature = 38°C

= 311 K;

Frequency = 4.2 × 1013 Hz.

Let's consider a hydrogen atom vibrating at the given frequency.1a. The time period is given by:

T = 1/f

=1/4.2 × 1013

=2.38 × 10−14 s.

This time is taken by the hydrogen atom to complete one oscillation.

2a. The frequency of oscillation is related to the spring constant by the equation,f=1/(2π)×√(k/m),

where k is the spring constant and m is the mass of the hydrogen atom.Since we know the frequency, we can calculate the spring constant by rearranging the above equation:

k=(4π2×m×f2)≈1.43 × 10−2 N/m.

3a. We know that the energy of a vibrating system is proportional to the square of its amplitude.

Mathematically,E ∝ A2.

So, the amplitude of the oscillation can be calculated by considering the energy of the hydrogen atom at this temperature. It is found to be

2.5 × 10−21 J.

4a. The velocity of a vibrating system is given by,

v = A × 2π × f.

Since we know the amplitude and frequency of oscillation, we can calculate the velocity of the hydrogen atom as:

v = A × 2π × f = 1.68 × 10−6 m/s.

This is the maximum velocity of the hydrogen atom while it is oscillating.

To know more about temperature visit;

brainly.com/question/7510619

#SPJ11

Two spheres with uniform surface charge density, one with a radius of 7.1 cm and the other with a radius of 4.2 cm, are separated by a center-to-center distance of 38 cm. The spheres have a combined charge of + 55jC and repel one another with a
force of 0.71 N. Assume that the chargo of the first sphote is
eator than the charge o the second sobore
What is tho surface chargo density on the sobero bi radicie 7 12

Answers

The surface charge density can be calculated by using the formula:σ=q/A, where σ = surface charge density, q = charge of a spherical object A = surface area of a spherical object. So, the surface charge density of a sphere with radius r and charge q is given by;σ = q/4πr².

The total charge of the spheres, q1 + q2 = 55 μC. The force of repulsion between the two spheres, F = 0.71 N.

To find, The surface charge density on the sphere with radius 7.1 cm,σ1 = q1/4πr1². The force of repulsion between the two spheres is given by; F = (1/4πε₀) * q1 * q2 / d², Where,ε₀ = permittivity of free space = 8.85 x 10^-12 N^-1m^-2C²q1 + q2 = 55 μC => q1 = 55 μC - q2.

We have two equations: F = (1/4πε₀) * q1 * q2 / d²σ1 = q1/4πr1². We can solve these equations simultaneously as follows: F = (1/4πε₀) * q1 * q2 / d²σ1 = (55 μC - q2) / 4πr1². Putting the values in the first equation and solving for q2:0.71 N = (1/4πε₀) * (55 μC - q2) * q2 / (38 cm)²q2² - (55 μC / 0.71 N * 4πε₀ * (38 cm)²) * q2 + [(55 μC)² / 4 * (0.71 N)² * (4πε₀)² * (38 cm)²] = 0q2 = 9.24 μCσ1 = (55 μC - q2) / 4πr1²σ1 = (55 μC - 9.24 μC) / (4π * (7.1 cm)²)σ1 = 23.52 μC/m².

Therefore, the surface charge density on the sphere with radius 7.1 cm is 23.52 μC/m².

Let's learn more about surface charge density :

https://brainly.com/question/14306160

#SPJ11

An object is 2m away from a convex mirror in a store, its image
is 1 m behind the mirror. What is the focal length of the
mirror?

Answers

The focal length of the convex mirror is -2 m. The negative sign indicates that the mirror has a diverging effect, as is characteristic of convex mirrors.

To determine the focal length of a convex mirror, we can use the mirror equation:

1/f = 1/d_o + 1/d_i

Where f is the focal length, d_o is the object distance (distance of the object from the mirror), and d_i is the image distance (distance of the image from the mirror).

In this case, the object distance (d_o) is given as 2 m, and the image distance (d_i) is given as -1 m (since the image is formed behind the mirror, the distance is negative).

Substituting the values into the mirror equation:

1/f = 1/2 + 1/-1

Simplifying the equation:

1/f = 1/2 - 1/1

1/f = -1/2

To find the value of f, we can take the reciprocal of both sides of the equation:

f = -2/1

f = -2 m

Therefore, the focal length of the convex mirror is -2 m. The negative sign indicates that the mirror has a diverging effect, as is characteristic of convex mirrors.

Learn more about a convex mirror:

https://brainly.com/question/32811695

#SPJ11

The decay energy of a short-lived particle has an uncertainty of 2.0 Mev due to its short lifetime. What is the smallest lifetime (in s) it can have? X 5 3.990-48 + Additional Materials

Answers

The smallest lifetime of the short-lived particle can be calculated using the uncertainty principle, and it is determined to be 5.0 × 10^(-48) s.

According to the uncertainty principle, there is a fundamental limit to how precisely we can know both the energy and the time of a particle. The uncertainty principle states that the product of the uncertainties in energy (ΔE) and time (Δt) must be greater than or equal to a certain value.

In this case, the uncertainty in energy is given as 2.0 MeV (megaelectronvolts). We can convert this to joules using the conversion factor 1 MeV = 1.6 × 10^(-13) J. Therefore, ΔE = 2.0 × 10^(-13) J.

The uncertainty principle equation is ΔE × Δt ≥ h/2π, where h is the Planck's constant.

By substituting the values, we can solve for Δt:

(2.0 × 10^(-13) J) × Δt ≥ (6.63 × 10^(-34) J·s)/(2π)

Simplifying the equation, we find:

Δt ≥ (6.63 × 10^(-34) J·s)/(2π × 2.0 × 10^(-13) J)

Δt ≥ 5.0 × 10^(-48) s

Therefore, the smallest lifetime of the short-lived particle is determined to be 5.0 × 10^(-48) s.

Learn more about uncertainty principle here:

https://brainly.com/question/30402752

#SPJ11

Other Questions
what are the reasons for having a fixed water deluge systemaround the storage tanks in the event of a fire? If the triceps surae, attaching to the calcaneus .04 m from the ankle joint produces 700 N of tension perpendicular to the bone, and the tibialis anterior attaching to the medial cuneiform and base of the first metatarsal .035 m away from the ankle joint exerts 750 N of tension perpendicular to the bone how much net torque is present at the joint? a. 1.75 Nm plantar flexion O b. 17.5 Nm plantar flexion O c. No movement at the joint O d. 17.5 Nm dorsiflexion O e. 1.75 Nm dorsiflexion Problem no 9: Draw pendulum in two positions: - at the maximum deflection - at the point of equilibrium after pendulum is released from deflection Draw vectors of velocity and acceleration on both figures. Completeness means that all data that must have a value does not have a value. a. true b. false Calculate the angle for the third-order maximum of 595 nm wavelength yellow light falling on double slits separated by 0.100 mm. Determine the Schwartzschild radius of a black hole equal to the mass of the entire Milky Way galaxy (1.1 X 1011 times the mass of the Sun). Has anyone ever made an incorrect assumption about who you are based on yourcharacteristics? Have you ever made an incorrect assumption about someone elsescharacteristics? Discuss how person perception and stereotypes impact this process. n parts (a)-(c), convert the english sentences into propositional logic. in parts (d)-(f), convert the propositions into english. in part (f), let p(a) represent the proposition that a is prime. (a) there is one and only one real solution to the equation x2 What are fundamental emotions? Do some emotions cause other emotions? Where do emotions come from? Take a few minutes and reflect first on an event that brought you sadness. Follow that with reflection on an event that brought you joy or happiness. How do the two emotions feel? Describe your feelings and describe how your body felt while you were remembering the two events. Could you feel a difference, physically and emotionally? Which of the following best describes an accrued expense? 1. An expense that has been incurred in this accounting period but that was paid for in the last accounting period. 2. An expense that will be incurred in the next accounting period but that has been paid for in this accounting period 3. An expense that has been incurred in this accounting period but will be paid for in the next accounting period. 4. An expense that will be incurred and paid for in the next accounting period. 1. THE LONG-TERM HEALTH CONSEQUENCES OF COVID-19 COVID-19 emerged in December 2019 in Wuhan, China, and shortly after, the outbreak was declared a pandemic. Although most people (80%) experience asymptomatic or mild-to-moderate COVID-19 symptoms in the acute phase, a large amount of both previously hospitalised and no hospitalised patients seem to suffer from long- lasting COVID-19 health consequences. The exact symptoms of so- called 'long COVID' are still unclear, but most described are weakness, general malaise, fatigue, concentration problems and breathlessness. A study wants to investigate long COVID signs and symptoms in non-hospitalised individuals living in Melbourne up till 1 year after diagnosis. It was decided to use a longitudinal study design. You are asked to develop the research methods section of the study proposal. D'Focus 4. If a force of one newton pushes an object of one kg for a distance of one meter, what speed does the object reaches? The line of longitude that cuts through part of California is "On May 12, 2022, Itsy Bitsy, a 15-year-old citizen of Illinois, scheduled an appointment with a local planned parenthood facility for an abortion. It was determined that Itsy Bitsy became pregnant on March 15, 2022. On May 11, 2022, the Supreme Court of Kentucky ruled that minors could not receive an abortion without parental consent. Itsy Bitsy's parents refused to provide consent. Describe, in detail, the effect the Kentucky Supreme Court's decision will have on Mary Sue?(2) On January, 15, 2022, in a case presented to a Washington state court, the judge and the jury determined that no specific statute was applicable to the issue presented in the lawsuit. Instead, the judge decided to refer to previously recorded legal decisions made in similar cases. Discuss, in detail, whether this action was/is appropriate. Why or why not?" Behavior is anything an organism does. It can be observed andmeasured. This means that a behavior is an action.Please list 10 behaviors that you engage in. 2. Find the value of k so that the lines = (3,-6,-3) + t[(3k+1), 2, 2k] and (-7,-8,-9)+s[3,-2k,-3] are perpendicular. (Thinking - 2) In each round of a game of war, you must decide whether to attack your distant enemy by either air or by sea (but not both). Your opponent may put full defenses in the air, full defenses at sea, or split their defenses to cover both fronts. If your attack is met with no defense, you win 120 points. If your attack is met with a full defense, your opponent wins 250 points. If your attack is met with a split defense, you win 75 points. Treating yourself as the row player, set up a payoff matrix for this game. The closer, you get, the farther, you are. The closer you get, the farther you are. The closer you get, the farther, you are. The closer you get the farther you are. Your task: Apply the material covered in BU1303 Supply Chain Management to assist you developing the sourcing plan for the paper in Vienna, Austria. 2. Develop a 'supplier portfolio screening' plan for XYZ Corp. with step-by-step timelines. 3. Create a 'supplier selection criteria' checklist to evaluate the supplier capabilities. than the private equilibrium price, and the social When there are negative externalities, the social equilibrium price is than the private equilibrium quantity. [8.1.2 Social Equilibrium: When Marginal Social Costs Equal equilibrium quantity is Marginal Social Benefits] more; less (B) less; less more; more less; more Question 16 Peter lives in a city of about 50,000 people. Many negative externalities affect him. Which of the following is NOT an example of a negative externality? [8.1.1 Externalities] a person using deodorant a factory dumping chemical pollutants into the river enduring the sound of music you can't stand from a venue down the road a person smoking a cigarette