You have 2 gallons of juice for a school event with 100 students. If each cup holds 3 oz, how many cups can each student drink? How much will be left over.

Answers

Answer 1

Answer:

1 cup per drink per student.

20 oz. left over

Step-by-step explanation:

given; 2 gallons for 100 students

1 cup holds 3 oz.

first, convert 2 gallons to oz.

1 gal = 160 oz.

2 gallons * 160 oz per 1 gal = 320 oz.

320 oz / 100 students = 3.2oz.

but 1 cup can only hold 3 oz.

therefore 3.2 - 3 = 0.2 oz * 100 = 20 oz. left over.

hope it helps.


Related Questions

You can model that you expect a 1.25% raise each year that you work for a certain company. If you currently make $40,000, how many years should go by until you are making $120,000? (Round to the closest year.)

Answers

Answer:

94 years

Step-by-step explanation:

We can approach the solution using the compound interest equation

[tex]A= P(1+r)^t[/tex]

Given data

P= $40,000

A=  $120,000

r=  1.25%= 1.25/100= 0.0125

substituting and solving for t we have

[tex]120000= 40000(1+0.0125)^t \\\120000= 40000(1.0125)^t[/tex]

dividing both sides by 40,000 we have

[tex](1.0125)^t=\frac{120000}{40000} \\\\(1.0125)^t=3\\\ t Log(1.0125)= log(3)\\\ t*0.005= 0.47[/tex]

dividing both sides by 0.005 we have

[tex]t= 0.47/0.005\\t= 94[/tex]

What are the steps and answer to this equation?[tex](8x^4)/(16x^7)[/tex]

Answers

Answer:

[tex] \frac{1}{2 {x}^{3} } [/tex]

Step-by-step explanation:

[tex] \frac{8 {x}^{4} }{16 {x}^{7} } [/tex]

Reduce the fraction with 8

[tex] \frac{ {x}^{4} }{2 {x}^{7} } [/tex]

Simplify the expression

[tex] \frac{1}{2 {x}^{3} } [/tex]

Hope this helps...

Good luck on your assignment...

Over the past several years, the proportion of one-person households has been increasing. The Census Bureau would like to test the hypothesis that the proportion of one-person households exceeds 0.27. A random sample of 125 households found that 43 consisted of one person. The Census Bureau would like to set α = 0.05. Use the critical value approach to test this hypothesis. Explain.

Answers

Answer:

For this case we can find the critical value with the significance level [tex]\alpha=0.05[/tex] and if we find in the right tail of the z distribution we got:

[tex] z_{\alpha}= 1.64[/tex]

The statistic is given by:

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

Replacing we got:  

[tex]z=\frac{0.344 -0.27}{\sqrt{\frac{0.27(1-0.27)}{125}}}=1.86[/tex]  

Since the calculated value is higher than the critical value we have enough evidence to reject the null hypothesis and we can conclude that the true proportion of households with one person is significantly higher than 0.27

Step-by-step explanation:

We have the following dataset given:

[tex] X= 43[/tex] represent the households consisted of one person

[tex]n= 125[/tex] represent the sample size

[tex] \hat p= \frac{43}{125}= 0.344[/tex] estimated proportion of  households consisted of one person

We want to test the following hypothesis:

Null hypothesis: [tex]p \leq 0.27[/tex]

Alternative hypothesis: [tex]p>0.27[/tex]

And for this case we can find the critical value with the significance level [tex]\alpha=0.05[/tex] and if we find in the right tail of the z distribution we got:

[tex] z_{\alpha}= 1.64[/tex]

The statistic is given by:

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

Replacing we got:  

[tex]z=\frac{0.344 -0.27}{\sqrt{\frac{0.27(1-0.27)}{125}}}=1.86[/tex]  

Since the calculated value is higher than the critical value we have enough evidence to reject the null hypothesis and we can conclude that the true proportion of households with one person is significantly higher than 0.27

if karen was 27 and her oldest brother was 29 years older and and there dad was 22 when Karen was born how old is the dad?

Answers

Answer:

49

Step-by-step explanation:

When Karen was born, the dad is 22 so Karen is now 27 which means the dad is 22+27= 49

Answer:

Their father is 49.

Step-by-step explanation:

Her father had her when he was 22, meaning that he is 22 years older than Karen. Karen is 27 right now, so her fathers age is (27+22) 49 years old.

Hope this helps!

Which of the following functions is graphed below

Answers

Answer:

the answer is C. y=[x-4]-2

Answer:

Step-by-step explanation:

Y=(x+4)-2

What is the simplified form of this expression?
(-3x^2+ 2x - 4) + (4x^2 + 5x+9)

OPTIONS
7x^2 + 7x + 5
x^2 + 7x + 13
x^2 + 11x + 1
x^² + 7x+5

Answers

Answer:

Option 4

Step-by-step explanation:

=> [tex]-3x^2+2x-4 + 4x^2+5x+9[/tex]

Combining like terms

=> [tex]-3x^2+4x^2+2x+5x-4+9[/tex]

=> [tex]x^2+7x+5[/tex]

solve for x enter the solution from least to greatest x^2+3x-28=0​

Answers

Answer:

x+4=0,x=−4x−7=0,x=7

consider the difference of squares identity a^2-2b^2=(a+b)(a-b)

Answers

Answer: a= 3x and b= 7

Step-by-step explanation:

^^

A bacteria culture initially contains 100 cells and grows at a rate proportional to its size. After an hour the population has increased to 420. Find the rate of growth after 3 hours.

Answers

Step-by-step explanation:

Rate of growth equals 420/100 = 4.2 times per hour

So after t=three hours,

size of culture = 100*(4.2)^t = 100*4.2^3=7408.8 bacteria,

round to nearest unit 7409 bacteria after three hours (after initial size of 100).

Answer:

a) 100•4.2^t

b) P(3)= about 7409 bacteria

c) P’(3)= about 10,632 bacteria per hour

d) t= about 3.2 hours

Step-by-step explanation:

What is the value of x in equation 1/3 (12x -24) = 16
Thank you

Answers

Answer:

The value of x is x = 6

Step-by-step explanation:

[tex]\frac{1}{3}(12x - 24) = 16\\ 12x - 24 = 48\\12x = 48+ 24\\12x = 72\\12/12 = x\\72/12 = 6\\x=6[/tex]

Hope this helped! :)

asdasd I don't actually have a question I accidentally typed this
akjkdsk ak


asndansjawjk

Answers

Answer:

that's cool . . .

\is ok everyone makes mistakes

(a +2b)2 + 4b² - a²​

Answers

Answer:

a^2+4b^2+2a+4b

Step-by-step explanation:

(a +2b)2 + 4b² - a²​

=2a+4b+4b^2+a^2

=a^2+4b^2+2a+4b

What is the equation of a line passes thru the point (4, 2) and is perpendicular to the line whose equation is y = ×/3 - 1 ??

Answers

Answer:

Perpendicular lines have slopes that are opposite and reciprocal. Therefore, the line we are looking for has a -3 slope.

y= -3x+b

Now, we can substitute in the point given to find the intercept.

2= -3(4)+b

2= -12+b

b=14

Finally, put in everything we've found to finish the equation.

y= -3x+14

Answer:

y = -3x + 14

Step-by-step explanation:

First find the reciprocal slope since it is perpendicular.  Slope of the other line is 1/3 so the slope for our new equation is -3.  

Plug information into point-slope equation

(y - y1) = m (x-x1)

y - 2 = -3 (x-4)

Simplify if needed

y - 2 = -3x + 12

y = -3x + 14

The probability distribution for a
random variable x is given in the table.

Answers

Answer: 79% probability

Step-by-step explanation:

.17 + .13 + .33 + .16 = .79

.79 x 100 = 79%

Answer:

.79

Step-by-step explanation:

Identify the axis of symmetry and vertex of f(x) = –x2 –2x–1.

Answers

Answer:

Vertex: (-1, 0)

Axis of Symmetry: x = -1

Step-by-step explanation:

Use a graphing calc.

Prove that If A1, A2, ... , An and B1, B2,...,Bn are sets such that Aj ⊆ Bj for j = 1, 2, 3, ... , n, then ∪j=1nAj ⊆ ∪j=1nBj .

Answers

Answer:

This is proved using Proof by induction method. There are two steps in this method

Let P(n) represent the given statement  ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex]

1. Basis Step: This step proves the given statement for n = 1

2. Induction step: The step proves that if the given statement holds for any given case n = k  then it should also be true for n = k + 1.

If the above two steps are true this means that given statement P(n) holds true for all positive n and the mathematical induction P(n): ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] is true.

Step-by-step explanation:

Basis Step:

For n = 1

∪[tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] = ∪[tex]{ {{1} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] = A₁ ⊆ B₁ = ∪[tex]{ {{1} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] = ∪[tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex]

We show that

∪[tex]{ {{1} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] = A₁ ⊆ B₁ = ∪[tex]{ {{1} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex]  for n = 1

Hence P(1) is true

Induction Step:

Let P(k) be true which means that we assume that:

for all k with k≥1, P(k): ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] is true

This is our induction hypothesis and we have to prove that P(k + 1) is also true

This means if ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] holds for n = k  then this should also hold for n = k + 1.

In simple words if P(k): ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] is true then ∪[tex]{ {{k+1} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪[tex]{ {{k+1} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] is also true

∪[tex]{ {{k+1} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] = ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ∪ [tex]A_{k+1}[/tex]

           ⊆ ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] ∪ [tex]A_{k+1}[/tex]                 As ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex]

           ⊆ ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] ∪ [tex]B_{k+1}[/tex]                 As  [tex]A_{k+1}[/tex] ⊆ [tex]B_{k+1}[/tex]

           =  ∪[tex]{ {{k+1} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex]

The whole step:

∪[tex]{ {{k+1} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] = ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ∪ [tex]A_{k+1}[/tex] ⊆ ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] ∪ [tex]A_{k+1}[/tex] ⊆ ∪[tex]{ {{k} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] ∪ [tex]B_{k+1}[/tex] =  ∪[tex]{ {{k+1} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex]

shows that the P(k+1) also holds for ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex]

hence P(k+1) is true

So proof by induction method proves that P(n) is true. This means

P(n): ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]A_{j}[/tex] ⊆ ∪ [tex]{ {{n} \atop {j=1}} \right.[/tex] [tex]B_{j}[/tex] is true

A survey of 400 non-fatal accidents showed that 189 involved the use of a cell phone. Determine a point estimate for p, the population proportion of non-fatal accidents that involved the use of a cell phone.

Answers

Answer:

[tex] X= 189[/tex] represent the number of non-fatal accidents involved the use of a cell phone

[tex] n=400[/tex] represent the sample size

And we want to find a  point estimate for p, the population proportion of non-fatal accidents that involved the use of a cell phone and we can use the following formula:

[tex]\hat p=\frac{X}{n}[/tex]

And replacing we got:

[tex] \hat p=\frac{189}{400}=0.4725[/tex]

Step-by-step explanation:

For this problem we have the following info given:

[tex] X= 189[/tex] represent the number of non-fatal accidents involved the use of a cell phone

[tex] n=400[/tex] represent the sample size

And we want to find a  point estimate for p, the population proportion of non-fatal accidents that involved the use of a cell phone and we can use the following formula:

[tex]\hat p=\frac{X}{n}[/tex]

And replacing we got:

[tex] \hat p=\frac{189}{400}=0.4725[/tex]

Classify the hypothesis test as two-tailed, left-tailed, or right-tailed. At one school, the average amount of time that spend watching television each week is The principal introduces a campaign to encourage the students to watch less television. One year later, the principal wants to perform a hypothesis test to determine whether the average amount of time spent watching television per week has decreased from the previous mean of

Answers

Answer:

Left tailed test

Step-by-step explanation:

A two tailed test usually determined by the alternative hypothesis involves both the less than and the greater than option.

A left tailed test corresponds to an alternative hypothesis having just one of either options (less than and the greater than option) usually the less than option.

A right tailed test corresponds to an alternative hypothesis having just one of either options (less than and the greater than option) usually the greatest than option.

In this experiment, the null hypothesis is the average amount of time that spend watching television each week is ---

He introduces a campaign to encourage the students to watch less television and then performs a hypothesis test to determine whether the average amount of time spent watching television per week has decreased. The alternative hypothesis would be: u < ---. This means that this test is a left tailed test.

Unit sales for new product ABC has varied in the first seven months of this year as follows: Month Jan Feb Mar Apr May Jun Jul Unit Sales 330 274 492 371 160 283 164 What is the (population) standard deviation of the data

Answers

Answer:

Approximately standard deviation= 108

Step-by-step explanation:

Let's calculate the mean of the data first.

Mean =( 330+ 274+ 492 +371 +160+ 283+ 164)/7

Mean= 2074/7

Mean= 296.3

Calculating the variance.

Variance = ((330-296.3)²+( 274-296.3)²+ (492-296.3)²+( 371-296.3)²+ (160-296.3)² (283-296.3)²+(164-296.3)²)/7

Variance= (1135.69+497.29+38298.49+5580.09+18577.69+176.89+17503.29)/7

Variance= 81769.43/7

Variance= 11681.347

Standard deviation= √variance

Standard deviation= √11681.347

Standard deviation= 108.080

Approximately 108

Will give brainliest answer

Answers

Answer:

98 units

Solution,

Circumference of circle = 615.44 units

Radius = ?

Now,

Circumference of circle = 615.44

[tex]2\pi \: r = 615.44[/tex]

[tex]2 \times 3.14 \times r = 615.44[/tex]

[tex]6.28r = 615.44[/tex]

[tex]r = \frac{615.44}{6.28} [/tex]

[tex]r = 98 \: units[/tex]

Hope this helps...

Good luck on your assignment...

Suppose we write down the smallest positive 2-digit, 3-digit, and 4-digit multiples of 9,8 and 7(separate number sum for each multiple). What is the sum of these three numbers?

Answers

Answer:

Sum of 2 digit = 48

Sum of 3 digit = 317

Sum of 4 digit = 3009

Total = 3374

Step-by-step explanation:

Given:

9, 8 and 7

Required

Sum of Multiples

The first step is to list out the multiples of each number

9:- 9,18,....,99,108,117,................,999

,1008

,1017....

8:- 8,16........,96,104,...............,992,1000,1008....

7:- 7,14,........,98,105,.............,994,1001,1008.....

Calculating the sum of smallest 2 digit multiple of 9, 8 and 7

The smallest positive 2 digit multiple of:

- 9 is 18

- 8 is 16

- 7 is 14

Sum = 18 + 16 + 14

Sum = 48

Calculating the sum of smallest 3 digit multiple of 9, 8 and 7

The smallest positive 3 digit multiple of:

- 9 is 108

- 8 is 104

- 7 is 105

Sum = 108 + 104 + 105

Sum = 317

Calculating the sum of smallest 4 digit multiple of 9, 8 and 7

The smallest positive 4 digit multiple of:

- 9 is 1008

- 8 is 1000

- 7 is 1001

Sum = 1008 + 1000 + 1001

Sum = 3009

Sum of All = Sum of 2 digit + Sum of 3 digit + Sum of 4 digit

Sum of All = 48 + 317 + 3009

Sum of All = 3374

An item is regularly priced at $83. It is on sale for 95% off the regular price.

Answers

Answer:

Step-by-step explanation:

Regular price  = $ 83

Discount  = 95% of 83

               = 0.95 * 83

              = $ 78.85

Price after discount = 83 - 78.85

                                = $ 4.15

Answer:

$4.15

Step-by-step explanation:

Multiply 83 by .05 to get the new price of $4.15. Additionally, multiply 83 by .95 to get the amount taken off ($78.85).

When 440 junior college students were surveyed, 200 said they have a passport. Construct a 95% confidence interval for the proportion of junior college students that have a passport.

Answers

sample proportion: 190/425 = 0.45
ME = 1.96*sqrt[0.45*0.55/425] = 0.047
-----
95% CI: 0.45-0.047 < p < 0.45+0.047

The Confidence Interval is 0.403 < p < 0.497

What is Confidence Interval?

The mean of your estimate plus and minus the range of that estimate constitutes a confidence interval. Within a specific level of confidence, this is the range of values you anticipate your estimate to fall within if you repeat the test. In statistics, confidence is another word for probability.

Given:

Sample proportion =  190/425

                                = 0.45

Now, [tex]\mu[/tex] = 1.96 x √[0.45 x 0.55/425]

          [tex]\mu[/tex] = 0.047

So, 95% CI:

0.45-0.047 < p < 0.45+0.047

0.403 < p < 0.497

Learn more about Confidence Interval here:

https://brainly.com/question/24131141

#SPJ5

Use the data below, showing a summary of highway gas mileage for several observations, to decide if the average highway gas mileage is the same for midsize cars, SUV’s, and pickup trucks. Test the appropriate hypotheses at the α = 0.01 level.
n Mean Std. Dev.
Midsize 31 25.8 2.56
SUV’s 31 22.68 3.67
Pickups 14 21.29 2.76

Answers

Answer:

Step-by-step explanation:

Hello!

You need to test at 1% if the average highway gas mileage is the same for three types of vehicles (midsize cars, SUV's and pickup trucks) to compare the average values of the three groups altogether, you have to apply an ANOVA.

                n  |  Mean |  Std. Dev.

Midsize  | 31 |  25.8   |  2.56

SUV’s     | 31 |  22.68 |  3.67

Pickups  | 14 |  21.29  |  2.76

Be the study variables :

X₁: highway gas mileage of a midsize car

X₂: highway gas mileage of an SUV

X₃: highway gas mileage of a pickup truck.

Assuming these variables have a normal distribution and are independent.

The hypotheses are:

H₀: μ₁ = μ₂ = μ₃

H₁: At least one of the population means is different.

α: 0.01

The statistic for this test is:

[tex]F= \frac{MS_{Treatment}}{MS_{Error}}[/tex]~[tex]F_{k-1;n-k}[/tex]

Attached you'll find an ANOVA table with all its components. As you see, to manually calculate the statistic you have to determine the Sum of Squares and the degrees of freedom for the treatments and the errors, next you calculate the means square for both and finally the test statistic.

For the treatments:

The degrees of freedom between treatments are k-1 (k represents the amount of treatments): [tex]Df_{Tr}= k - 1= 3 - 1 = 2[/tex]

The sum of squares is:

SSTr: ∑ni(Ÿi - Ÿ..)²

Ÿi= sample mean of sample i ∀ i= 1,2,3

Ÿ..= grand mean, is the mean that results of all the groups together.

So the Sum of squares pf treatments SStr is the sum of the square of difference between the sample mean of each group and the grand mean.

To calculate the grand mean you can sum the means of each group and dive it by the number of groups:

Ÿ..= (Ÿ₁ + Ÿ₂ + Ÿ₃)/ 3 = (25.8+22.68+21.29)/3 = 23.256≅ 23.26

[tex]SS_{Tr}[/tex]= (Ÿ₁ - Ÿ..)² + (Ÿ₂ - Ÿ..)² + (Ÿ₃ - Ÿ..)²= (25.8-23.26)² + (22.68-23.26)² + (21.29-23.26)²= 10.6689

[tex]MS_{Tr}= \frac{SS_{Tr}}{Df_{Tr}}= \frac{10.6689}{2}= 5.33[/tex]

For the errors:

The degrees of freedom for the errors are: [tex]Df_{Errors}= N-k= (31+31+14)-3= 76-3= 73[/tex]

The Mean square are equal to the estimation of the variance of errors, you can calculate them using the following formula:

[tex]MS_{Errors}= S^2_e= \frac{(n_1-1)S^2_1+(n_2-1)S^2_2+(n_3-1)S^2_3}{n_1+n_2+n_3-k}= \frac{(30*2.56^2)+(30*3.67^2)+(13*2.76^2)}{31+31+14-3} = \frac{695.3118}{73}= 9.52[/tex]

Now you can calculate the test statistic

[tex]F_{H_0}= \frac{MS_{Tr}}{MS_{Error}} = \frac{5.33}{9.52}= 0.559= 0.56[/tex]

The rejection region for this test is always one-tailed to the right, meaning that you'll reject the null hypothesis to big values of the statistic:

[tex]F_{k-1;N-k;1-\alpha }= F_{2; 73; 0.99}= 4.07[/tex]

If [tex]F_{H_0}[/tex] ≥ 4.07, reject the null hypothesis.

If [tex]F_{H_0}[/tex] < 4.07, do not reject the null hypothesis.

Since the calculated value is less than the critical value, the decision is to not reject the null hypothesis.

Then at a 1% significance level you can conclude that the average highway mileage is the same for the three types of vehicles (mid size, SUV and pickup trucks)

I hope this helps!

Find the total surface area of this triangular prism 13cm 5cm 12cm 9cm 15cm 20cm

Answers

Answer:

924 cm²

Step-by-step explanation:

The surface area is equal to the area of the two triangles + area of the three rectangles.

Area of two triangles:

12 × (9+5) × 1/2

= 84

84(2) = 168

Area of the three rectangles:

15 × 20 + 13 × 20 + 14 × 20

= 840

840 + 84

The surface area of the triangular prism is 924 cm².

Use the Remainder Theorem to determine which of the roots are roots of F(x). Show your work.
Polynomial: F(x)=x^3-x^2-4x+4
Roots: 1, -2, and 2.

Answers

Answer:    x1=1   x2=-2  and x3=2

Step-by-step explanation:

1st   x1=1 is 1 of the roots , so

F(1)=1-1-4+4=0 - true

So lets divide x^3-x^2-4x+4 by (x-x1), i.e  (x^3-x^2-4x+4) /(x-1)=(x^2-4)

x^2-4 can be factorized as (x-2)*(x+2)

So x^3-x^2-4x+4=(x-1)*(x^2-4)=(x-1)(x-2)*(x+2)

So there are 3 dofferent roots:

x1=1   x2=-2  and x3=2

The following confidence interval for the population proportion for how many U.S. adults do not get enough fruits and vegetables in their diet is constructed at what level of confidence, if there were 2050 people in the survey? (0.878,0.903)

Answers

Answer:

The interval is constructed at 93% confidence.

Step-by-step explanation:

Confidence interval concepts:

A confidence interval has two bounds, a lower bound and an upper bound.

A confidence interval is symmetric, which means that the point estimate used is the mid point between these two bounds, that is, the mean of the two bounds.

The margin of error is the difference between these two bounds, divided by 2.

Confidence interval of proportions concepts:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

The margin of error is:

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In this problem, we have that:

2050 people, so n = 2050.

Lower bound: 0.878

Upper bound: 0.903

[tex]\pi = \frac{0.878 + 0.903}{2} = 0.8905[/tex]

[tex]M = \frac{0.903 - 0.878}{2} = 0.0125[/tex]

Confidence level:

We have to find z.

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

[tex]0.0125 = z\sqrt{\frac{0.8905*0.1095}{2050}}[/tex]

[tex]0.0069z = 0.0125[/tex]

[tex]z = \frac{0.0125}{0.0069}[/tex]

[tex]z = 1.81[/tex]

[tex]z = 1.81[/tex] has a pvalue of 0.965.

That is:

[tex]]1 - \frac{\alpha}{2} = 0.965[/tex]

[tex]\frac{\alpha}{2} = 0.035[/tex]

[tex]\alpha = 2*0.035[/tex]

[tex]\alpha = 0.07[/tex]

Finally

[tex]1 - \alpha = 1 - 0.07 = 0.93[/tex]

The interval is constructed at 93% confidence.

Susan decides to take a job as a transcriptionist so that she can work part time from home. To get started, she has to buy a computer, headphones, and some special software. The equipment and software together cost her $1000. The company pays her $0.004 per word, and Susan can type 90 words per minute. How many hours must Susan work to break even, that is, to make enough to cover her $1000 start-up cost? If Susan works 4 hours a day, 3days a week, how much will she earn in a month.

Answers

Answer:

46.3 hours of work to break even.

$1036.8 per month (4 weeks)

Step-by-step explanation:

First let's find how much Susan earns per hour.

She earns $0.004 per word, and she does 90 words per minute, so she will earn per minute:

0.004 * 90 = $0.36

Then, per hour, she will earn:

0.36 * 60 = $21.6

Now, to find how many hours she needs to work to earn $1000, we just need to divide this value by the amount she earns per hour:

1000 / 21.6 = 46.3 hours.

She works 4 hours a day and 3 days a week, so she works 4*3 = 12 hours a week.

If a month has 4 weeks, she will work 12*4 = 48 hours a month, so she will earn:

48 * 21.6 = $1036.8

Answer:

46.3 hours of work to break even.

$1036.8 per month (4 weeks)

Step-by-step explanation:

what is the product?
(x-3)(2x²-5x+1)
C) 2x³-11x²+16x-3 ​

Answers

Answer:

2x^3-11x^2+16x-3

Step-by-step explanation:

1) multiply each term inside the parentheses with all other terms:

(x*2x^2)=2x^3

x*-5x=-5x^2

x*1=x

-3*2x^2=-6x^2

-3*-5x=15x

and

-3*1=-3

so

2x^3-5x^2+x-6x^2+15x-3

is our equation

to simplify:

2x^3-11x^2+16x-3 is the answer

Anyone can help me with my math homework please?

Answers

Answer:

Step-by-step explanation:

hello,

so we know y in terms of t and x in terms of t and we need to find y in terms of x

[tex]x=21t^2<=>\sqrt{x}=\sqrt{21}*t \ \ as \ \ t>=0 \ \ So\\t=\sqrt{\dfrac{x}{21}}[/tex]

and then

[tex]y=f(x)=3\sqrt{\dfrac{x}{21}}+5=\sqrt{\dfrac{9x}{21}}+5=\sqrt{\dfrac{3x}{7}}+5[/tex]

hope this helps

Other Questions
In a school the the duration of primary section is 40 min and senior section is hour if the bell rings at 9 am together when will the next bell ring together Artificial intelligence is the tool of education in the near future. Do you agree? 3. Because plants dont have interior or exterior skeletons, they rely on their cell walls to give them structural support. Did you see evidence of this cell structure in plants? How was it different from the animal cells (the blood cells, cardiac muscle, and skin)? 4.The paramecium was the only unicellular organism that Stella viewed through her microscope. All the other organisms were multicellular. How was the unicellular specimen different from the multicellular organisms? 6. Why do you think electron microscopes allow for greater magnification than compound microscopes? F(x)3x+5/x what is f(a+2) A: 3a+5/a+2 B:3(a+2)+5/a+2 C:3(f(a))+5/f(a)+2 How would the anti-bullying club support the needs and rights of students with regard to their social and mental health? the tax rate is 3.9%. What is the tax on $42? PLEASE AWNSER SOON!!! IM ALMOST OUT OF TIME!!!!!!!Rectangle JKLM is rotated 90 clockwise about the origin. On a coordinate plane, rectangle J K L M has points (negative 4, 1), (negative 1, 1), (negative 1, negative 1), (negative 4, negative 1). What are the coordinates of J? J(1, 4) J(4, 1) J(1, 4) J(4, 1) Step 1: Calculate the measures of center for Mrs. Hampton's data in the dot plot (round your answer to the nearest tenths place). Show your work and briefly explain each step. (Measures of Center are the Mean and Median of a data set) Kiemanh is solving the equation 15 r minus 6 r = 36. What is the value of r? For this activity, you can either create a video or write a dialogue. Create a scene with some kind of conflict. It can be as simple as a disagreement among friends or a mistake with a meal ordered in a restaurant. Or choose your own scenario. Create two versions of the scenario, one using the techniques for good communication, such as assertive communication and I messaging, and another with less productive styles, like aggressive communication or passive communication. When you have completed both versions of the scene, explain how good communication can benefit health and poor communication can negatively impact it. You can do this in a brief monologue at the end of the video or a paragraph at the end of the written dialogue. If you create a video, make sure that the video and audio portions are clear. If you write out your script, make sure its free of grammatical errors. It should be formatted like a play so that its clear who is speaking. A body is sent out in space. Which of the following statements is true of this body as it moves away from Earth? A. The body's mass and weight remain equal. B. The body's mass remains constant, and its weight decreases. C. The body's mass decreases, and its weight remains constant. The speed of a sound wave in air is 343m/s. If the density of the air is 1.2kg/m3, find the bulk modulus. Approximately how many calories are in 1 gram of fat? The following quadrilateral is a parallelogram.ZW100?XYAngle Y measures _ degrees. Which details are important to consider when analyzing nuance in a text? Select two options. The quarrel between the Capulets and Mantagues has been going on for a long time when the play opens.OTrueO False The side, s, of a square with area A square feet is given by the formula s = square root A. Find the perimeter of a square with an area of 36 square feet. ______________ ft You find that the bid and ask prices for a stock are $14.25 and $15.45, respectively. If you purchase or sell the stock, you must pay a flat commission of $30. If you buy 100 shares of the stock and immediately sell them, what is your total implied and actual transaction cost in dollars 3. Compare corresponding sides that include thecorresponding, congruent angles to show they are inproportion.Help please Find the solution to the system of equations: x + 3y = 7 and 2x + 4y = 81. Isolate x in the first equation:2. Substitute the value for x into the second equation:3. Solve for y:4. Substitute y into either original equation:5. Write the solution as an ordered pair:x = 7 3y2(7 3y) + 4y = 814 6y + 4y = 814 2y = 82y = 6y = 3x + 3(3) = 7(, )