Answer:
7
Step-by-step explanation:
Answer:
x = 3
Step-by-step explanation:
Two secants drawn to a circle from an external point, then
The product of the measures of the external part and the whole of one secant is equal to the product of the external part and the whole of the other secant.
Thus
x × 12 = 4 × 9
12x = 36 ( divide both sides by 12 )
x = 3
The larger of two numbers is 33 more than the smaller. When added together, the sum of the larger number and five times the smaller number is 129. What are the two numbers? larger number = ___ smaller number = ____ Please Help!
Step-by-step explanation:
let the larger number be x and smaller number be y
according to this question
x=y+33----------(1)
y+33+5y=129----------(2)
6y+33=129
y=16
x=16+33(takimg equation (1)
x=49
Answer:
Larger number: 49.
Smaller number: 16.
Step-by-step explanation:
Let's say that the larger number is represented by y, and the smaller is represented by x.
y = 33 + x
y + 5 * x = 129
(33 + x) + 5x = 129
6x + 33 = 129
6x = 96
x = 16
y = 33 + 16
y = 49
Check our work...
49 + 5 * 16 = 49 + 80 = 129
49 = 33 + 16 = 49
Since it all works out, the larger number is 49 and the smaller number is 16.
Hope this helps!
the table shows the time it took a group of students to complete a puzzle
Answer:
Where is the table because I dont see it up here?
69/8 as a mixed number
Answer:
Hey!
69/8 as a mixed number is...
8 5/8!
To get this answer, simply divide 69 by 8, then subtract the WHOLE NUMBER from 69 and then the left over number is the numerator over 8
Hope this helps!
Answer:
8 5/8
Step-by-step explanation:
Divide and answer in simplest form: 1/5 ÷ 7
Answer: 1/35
Step-by-step explanation:
1/5 = 0.2
0.2/7= 1/35
Answer:
[tex] \frac{1}{35} [/tex]Step by step explanation
[tex] \frac{1}{5} \div 7[/tex]
Dividing is equivalent to multiplying with the reciprocal:
[tex] \frac{1}{5} \times \frac{1}{7} [/tex]
Multiply the fraction
[tex] \frac{1 \times 1}{5 \times 7} [/tex]
[tex] = \frac{1}{35} [/tex]
Hope this helps...
Good luck on your assignment.
please help pleaseeeeeeeee
━━━━━━━☆☆━━━━━━━
▹ Answer
#3. 1.89/100
▹ Step-by-Step Explanation
1.89 → hundreths place so..
1.89/100 is the correct answer
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
E = { x l x is a perfect square <36}
Answer:
E = { x l x is a perfect square <36}
And we can rewrite it taking in count the list of all the perfect squares less than 36 and we have:
1= 1*1
4= 2*2
9 = 3*3
16 =4*4
25= 5*5
And we can rewrite the set on this way:
E= {1,4,9,16,25}
Step-by-step explanation:
For this problem we have the following set:
E = { x l x is a perfect square <36}
And we can rewrite it taking in count the list of all the perfect squares less than 36 and we have:
1= 1*1
4= 2*2
9 = 3*3
16 =4*4
25= 5*5
And we can rewrite the set on this way:
E= {1,4,9,16,25}
mohsin is writing a 2400 words essay for his school project he writes 1/5 of the essay on the first day 2/3 of the remainder on the second day 220 words on third day now he has to write the conclusion how long was his conclusion
Answer: 420 words
Step-by-step explanation:
First find how much he did the first day by doing 1/5*2400=480.
Then find out how much he did the second day by doing 2400-480=1920, then doing 1920*(2/3)=1280.
Then, because he did 220 words the third day, simply do 2400-480-1280-220=420.
Hope it helps <3
Ans420 words per min
Step-by-step explanation:
What is the difference?
StartFraction x Over x squared + 3 x + 2 EndFraction minus StartFraction 1 Over (x + 2) (x + 1) EndFraction
StartFraction x minus 1 Over 6 x + 4 EndFraction
StartFraction negative 1 Over 4 x + 2 EndFraction
StartFraction 1 Over x + 2 EndFraction
StartFraction x minus 1 Over x squared + 3 x + 2 EndFraction
Answer:
The answer is option D.Step-by-step explanation:
First we must first find the LCM
The LCM of x² + 3x + 2 and (x + 2)(x + 1 ) is
x² + 3x + 2
So we have
[tex] \frac{x}{ {x}^{2} + 3x + 2 } - \frac{1}{(x + 2)(x + 1)} \\ \\ = \frac{x - 1}{ {x}^{2} + 3x + 2 } [/tex]
Hope this helps you
Answer:
The answer is OPTION D!
Step-by-step explanation:
HoPe ThIs HeLpS!
Trish conducts an analysis which shows that the level of alcohol consumption affects reaction times more when a person is sleep-deprived than when a person is well-rested. This is an example of ______.
a. interaction
b. confounding
c. bias
d. main effect
Answer:
a. interaction
Step-by-step explanation:
In statistics, interaction occurs when the effect of one variable depends on the value of another variable.
In this case, Trish's analysis shows that the effect of alcohol consumption in a persons reaction time also depends on that person's quality of sleep, highlighting a clear case of interaction.
Use the properties of logarithms to prove log81000= log210.
Answer:
Step-by-step explanation:
Given the expression [tex]log_81000 = log_210[/tex], to prove this expression is true using the properties of logarithm, we will follow the following steps.
Starting from the Left Hand Side:
[tex]log_81000\\[/tex]= log₈ 10³= log_ 2^3 (10³)= log₂10Select the correct answer for the blank: If everything else stays the same, the required sample size ____ as the confidence level decreases to reach the same margin of error. Answer:
Answer:
The required sample size increases.
Step-by-step explanation:
The margin of error of a confidence interval is given by:
[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]
In which z is related to the confidence level(the higher the confidence level the higher z), [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
In this question:
The confidence level decreases, so z decreases.
For the margin of error to stay the same, the sample size also has to decrease.
The required sample size increases.
The Greatest Common Factor (GCF) of 4x3 - 2x2 + 8x is:
A. 2x
B. 2.
C. X
D.None of these choices are correct.
Answer:
A. 2x
Step-by-step explanation:
Step 1: Factor out a 2
2(2x³ - x² + 4x)
Step 2: Factor out an x
2x(2x² - x + 4)
So our answer is B.
Simplify the square root of 2 times the cube root of 2.
two to the one sixth power
two to the two thirds power
two to the five sixths power
two to the seven sixths power
Answer:
2 to the 1/6 th power
Step-by-step explanation:
square root = 1/2
Cube root = 1/3
so 1/3 x 1/2= 1/6
can i please have brainlest
Answer:
2 to the 1/6 th power
Step-by-step explanation:
square root = 1/2
Cube root = 1/3
so 1/3 x 1/2= 1/6
can i please have brainlest
The measure of angle 1 is (10 x + 8) degrees and the measure of angle 3 is (12 x minus 10) degrees. 2 lines intersect to form 4 angles. From top left, clockwise, the angles are 1, 2, 3, 4. What is the measure of angle 2 in degrees?
Answer:
Measure of angle 2 = 82°
Step-by-step explanation:
m∠1 = (10 x + 8)°
m∠3 = (12 x - 10)°
2 lines are said to intersect to form 4 angles. And the labelling of the angles was done starting from top left, clockwise: the angles are 1, 2, 3, 4.
Find attached the diagram obtained from the given information.
Vertical angles are angles opposite each other when two lines intersect. As such, they are equal to each other.
Considering our diagram
m∠1 = m∠3
m∠2 = m∠4
Sum of all four angles firmed = 360° (sum of angles at a point)
m∠1 +m∠2 + m∠3 + m∠4 = 360°
m∠1 = m∠3
(10 x + 8)°= (12 x - 10)°
10x-12x = -10-8
-2x = -18
x= 9°
Also m∠2 = m∠4, let each equal to y
(10 x + 8)°+ y + (12 x - 10)° + y = 360
10x + 12x - 10 +8 +2y = 360
Insert value of x
22(9) -2 + 2y = 360
2y = 360-196
2y = 164
y = 82°
m∠2 = m∠4 = y = 82°
Measure of angle 2 = 82°
Answer:
2 = 82°
Step-by-step explanation:
6x^2-2x=20 use ac method
Answer:
Cannot be factored
Step-by-step explanation:
Less than 51% of workers got their job through networking. Express the null and alternative hypotheses in symbolic form for this claim (enter as a percentage). H0 : p H1 : p
Use the following codes to enter the following symbols:
≥≥ enter >=
≤≤ enter <=
≠≠ enter !=
Answer:
Null Hypothesis, [tex]H_0[/tex] : p [tex]\geq[/tex] 51%
Alternate Hypothesis, [tex]H_A[/tex] : p < 51%
Step-by-step explanation:
We are given that less than 51% of workers got their job through networking. We have to express the null and alternative hypotheses in symbolic form for this claim.
Let p = population proportion of workers who got their job through networking
So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\geq[/tex] 51%
Alternate Hypothesis, [tex]H_A[/tex] : p < 51%
Here, the null hypothesis states that greater than or equal to 51% of workers got their job through networking.
On the other hand, the alternate hypothesis states that less than 51% of workers got their job through networking.
Hence, this is the appropriate hypothesis that can be used.
15. A zoo is building a glass cylindrical tank
for the small sharks. The tank is 10 feet
high and has a diameter of 16 feet. How
much water is needed to fill the tank?
(The volume of a right circular cylinder is
V = Tr?h, where r is the radius, h is the
height, and a = 3.14.)
Answer:
2009.6
Step-by-step explanation:
As we know, volume of a right cylinder is πr²h.
here, diameter is mentioned, which gives that the radius is half of the diameter.
r= 1/2*16=8 feet
height= 10 feet
π=3.14
volume= 3.14*8²*10
= 3.14*64*10
=3.14*640
= 2009.6
so, that much water is needed to fill the tank
Answer:
2,010.6192982
Step-by-step explanation:
A regression line is the line that best fits the data, but this does not mean that the fit is good. In other words, there can still be a lot of variability about the regression line. Which combination describes a regression line that is a good fit for the data?
a. Larger-sq and small Se
b. Larger-sq and large Se
c. Small r-sq and small Se
d. Smallr-sq and large Se
Answer:
The following combination describes a regression line that is a good fit for the data
a. Larger R-sq and small Se
Step-by-step explanation:
In regression analysis, we measure the goodness of fit in terms of two parameters.
1. R² ( R-squared or also called the coefficient of determination)
2. SE ( Standard Error)
1. R-squared
The R-squared indicates the relative measure of the percentage of the variance with respect to the dependent variable.
R-squared is measured in percentage so it doesn't have any unit.
The greater the R-squared percentage, the better is the goodness of fit.
2. Standard Error
The SE basically indicates that on average how far the data points are from the regression line.
The unit of the standard error is the same as the dependent variable.
The lower the SE, the better is the goodness of fit.
Therefore, the correct option is (a)
a. Larger R-sq and small Se
what is the answer for 8=22x+1
Answer:
x = 22/7Step-by-step explanation:
22x + 1 = 8
Send 1 to the right side of the equation
22x = 8 - 1
22x = 7
Divide both sides by 22
x = 7/22
Hope this helps you
The double cone is intersected by a vertical plane passing through the point where the tips of the cones meet. What is the shape of the cross section formed? HELP PLEASE ITS FOR PLATO
Answer:
B.
Step-by-step explanation:
The double cone is a cone on top of another cone. The bottom cone has the circular base on the bottom and the tip on top. The upper cone is upside down, and the two tips touch. Since the vertical plane goes through the tips of both cones, the cross section must have a shape that gets to a point at the middle of the height.
Answer: B. One triangle with the tip on top and an inverted triangle above it with the tips touching.
Answer:
B.
Step-by-step explanation:
answer: B. one triangle tip on top and invert above it with the top touching
Will give brainliest answer
Answer:
9π or 28.3 units²
Step-by-step explanation:
A = πr²
A = π(3)²
A = 9π
or
A= 28.3 units²
Hope this helps. :)
When plotting points on the coordinate plane below, which point would lie on the y-axis? A coordinate plane. (0, 1) (7, 0) (6, 8) (8, 2)
Answer:
Numbers 1,0,8,2 would lie on y-axis.
Step-by-step explanation:
This is because for example, (0,1)
we must prefer 0 as x-axis and 1 as y-axis. That's means left number or side will always be x-axis and right side will always be y-axis.
Answer: (0, 1)
Step-by-step explanation:
When the x is 0 is lies on the y axis.
An electrician earns $50 per hour, and expects to earn $5 additional per hour as each year passes. Find the electrician’s hourly wage after 8 years have elapsed.
What is the area of the sector shown in the diagram below?
A.
50 cm2
B.
11.1 cm2
C.
2.5 cm2
D.
39.3 cm2
Answer:
B
Step-by-step explanation:
A department store finds that in a random sample of 200 customers, 60% of the sampled customers had browsed its website prior to visiting the store. Based on this data, a 90% confidence interval for the population proportion of customers that browse the store’s website prior to visiting the store will be between
Answer:
between 108-110?
Step-by-step explanation:
60% or 200 = 120 people
90% of 120 = 108
question doesnt look complete so this is the best I could come up with...♀️
When individuals in a sample of 150 were asked whether or not they supported capital punishment, the following information was obtained. Do you support capital punishment? Number of individuals Yes 40 No 60 No Opinion 50 We are interested in determining whether or not the opinions of the individuals (as to Yes, No, and No Opinion) are uniformly distributed. The calculated value for the test statistic equals a. 20. b. 4. c. 2. d. -2.
Answer:
[tex]\chi^2 = \sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}[/tex]
The expected values for all the categories is :
[tex] E_i =\frac{150}{3}=50[/tex]
And then the statistic would be given by:
[tex]\chi^2 = \frac{(40-50)^2}{50}+\frac{(60-50)^2}{50}+\frac{(50-50)^2}{50}=4[/tex]
And the best option would be:
b. 4
Step-by-step explanation:
For this problem we have the following observed values:
Yes 40 No 60 No Opinion 50
And we want to test the following hypothesis:
Null hypothesis: All the opinions are uniformly distributed
Alternative hypothesis: Not All the opinions are uniformly distributed
And for this case the statistic would be given by:
[tex]\chi^2 = \sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}[/tex]
The expected values for all the categories is :
[tex] E_i =\frac{150}{3}=50[/tex]
And then the statistic would be given by:
[tex]\chi^2 = \frac{(40-50)^2}{50}+\frac{(60-50)^2}{50}+\frac{(50-50)^2}{50}=4[/tex]
And the best option would be:
b. 4
Find the mass and center of mass of the lamina that occupies the region D and has the given density function rho. D is the triangular region with vertices (0, 0), (2, 1), (0, 3); rho(x, y) = 2(x + y)
The mass of the lamina is 6 units.
The center of mass of the lamina is (X,Y) = (-3/2, 9/2).
Here,
To find the mass and center of mass of the lamina, we need to integrate the density function ρ(x, y) over the triangular region D.
The mass (M) of the lamina is given by the double integral of the density function over the region D:
M = ∬_D ρ(x, y) dA
where dA represents the differential area element.
The center of mass (X,Y) of the lamina can be calculated using the following formulas:
X = (1/M) ∬_D xρ(x, y) dA
Y = (1/M) ∬_D yρ(x, y) dA
Now, let's proceed with the calculations:
The triangular region D has vertices (0, 0), (2, 1), and (0, 3). We can define the limits of integration for x and y as follows:
0 ≤ x ≤ 2
0 ≤ y ≤ 3 - (3/2)x
Now, let's calculate the mass (M):
M = ∬_D ρ(x, y) dA
M = ∬_D 2(x + y) dA
We need to set up the double integral over the region D:
M = ∫[0 to 2] ∫[0 to 3 - (3/2)x] 2(x + y) dy dx
Now, integrate with respect to y first:
M = ∫[0 to 2] [x(y²/2 + y)] | [0 to 3 - (3/2)x] dx
M = ∫[0 to 2] [x((3 - (3/2)x)²/2 + (3 - (3/2)x))] dx
M = ∫[0 to 2] [(3x - (3/2)x²)²/2 + (3x - (3/2)x²)] dx
Now, integrate with respect to x:
[tex]M = [(x^3 - (1/2)x^4)^2/6 + (3/2)x^2 - (1/4)x^3)] | [0 to 2]\\M = [(2^3 - (1/2)(2^4))^2/6 + (3/2)(2^2) - (1/4)(2^3)] - [(0^3 - (1/2)(0^4))^2/6 + (3/2)(0^2) - (1/4)(0^3)]\\M = [(8 - 8)^2/6 + 6 - 0] - [0]\\M = 6[/tex]
So, the mass of the lamina is 6 units.
Next, let's calculate the center of mass (X,Y):
X = (1/M) ∬_D xρ(x, y) dA
X = (1/6) ∬_D x * 2(x + y) dA
We need to set up the double integral over the region D:
X = (1/6) ∫[0 to 2] ∫[0 to 3 - (3/2)x] x * 2(x + y) dy dx
Now, integrate with respect to y first:
X = (1/6) ∫[0 to 2] [x(y² + 2xy)] | [0 to 3 - (3/2)x] dx
X = (1/6) ∫[0 to 2] [x((3 - (3/2)x)² + 2x(3 - (3/2)x))] dx
X = (1/6) ∫[0 to 2] [x(9 - 9x + (9/4)x² + 6x - (3/2)x²)] dx
X = (1/6) ∫[0 to 2] [(9/4)x³ - (3/2)x⁴ + 15x - (3/2)x³] dx
Now, integrate with respect to x:
[tex]X = [(9/16)x^4 - (3/8)x^5 + (15/2)x^2 - (3/8)x^4] | [0 to 2]\\X = [(9/16)(2)^4 - (3/8)(2)^5 + (15/2)(2)^2 - (3/8)(2)^4] - [(9/16)(0)^4 - (3/8)(0)^5 + (15/2)(0)^2 - (3/8)(0)^4]\\X = [9/2 - 12 + 15 - 0] - [0]\\X = 15/2 - 12\\X = -3/2[/tex]
Next, let's calculate Y:
Y = (1/M) ∬_D yρ(x, y) dA
Y = (1/6) ∬_D y * 2(x + y) dA
We need to set up the double integral over the region D:
Y = (1/6) ∫[0 to 2] ∫[0 to 3 - (3/2)x] y * 2(x + y) dy dx
Now, integrate with respect to y first:
Y = (1/6) ∫[0 to 2] [(xy² + 2y²)] | [0 to 3 - (3/2)x] dx
Y = (1/6) ∫[0 to 2] [x((3 - (3/2)x)²) + 2((3 - (3/2)x)²)] dx
Y= (1/6) ∫[0 to 2] [x(9 - 9x + (9/4)x²) + 2(9 - 9x + (9/4)x²)] dx
Y = (1/6) ∫[0 to 2] [(9x - 9x² + (9/4)x³) + (18 - 18x + (9/2)x²)] dx
Now, integrate with respect to x:
[tex]Y= [(9/2)x^2 - 3x^3 + (9/16)x^4) + (18x - 9x^2 + (9/6)x^3)] | [0 to 2]\\Y = [(9/2)(2)^2 - 3(2)^3 + (9/16)(2)^4) + (18(2) - 9(2)^2 + (9/6)(2)^3)] - [(9/2)(0)^2 - 3(0)^3 + (9/16)(0)^4) + (18(0) - 9(0)^2 + (9/6)(0)^3)]\\Y = [18 - 24 + 9/2 + 36 - 36 + 12] - [0]\\Y= 9/2[/tex]
So, the center of mass of the lamina is (X,Y) = (-3/2, 9/2).
Learn more about mass here
brainly.com/question/17137444
#SPJ4
Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0).
Answer:
for us to be able to ascertain whether a function has no limit we approach from two points which are from zero and infinity.
Step-by-step explanation:
the two best path to approach a function is to approach from zero and approach from infinity, literary what we are trying to do is approach from the smallest to the greatest and it each point we can conclude with certainty whether the function has a limit or not.
Triangle L M N is shown. Angle L M N is a right angle. Angles N L M and L M N are 45 degrees. The length of L N is x. Which statements are true regarding triangle LMN? Check all that apply. NM = x NM = LM = x StartRoot 2 EndRoot tan(45°) = StartFraction StartRoot 2 EndRoot Over 2 EndFraction tan(45°) = 1
Answer:
A.) NM= x
C.) LM = x√2
E.) tan (45°) = 1
Step-by-step explanation:
If the legs are both x, then the hypotenuse is equal to [tex]x\sqrt{2[/tex]
Therefore, LM= [tex]x\sqrt{2[/tex] is correct and MN= x
Disclaimer: The sum is done according to the picture attached as the question given is wrong.
The true statements regarding the given isosceles right triangle ΔLMN are:
NM = xLM = x√2tan 45° = 1.What are isosceles right triangles?An isosceles triangle is a triangle where two sides and their corresponding angles are equal.
A right triangle is a triangle with one angle = 90°.
An isosceles right triangle is a right-angled triangle with two legs including the right angle are equal. Their corresponding angles are equal and each of them = 45°. So, the three angles of an isosceles right triangle are 45°, 45°, and 90°, always.
How do we solve the given question?In the figure, we can see that we have a ΔLMN, with ∠L = 45°, ∠M = 45°, and ∠N = 90°. Also, we can see that LN = x.
The given angles of ΔLMN determine that it is an isosceles right triangle with a right angle at N.
Since, the two legs involving the right angle, that is N, are equal, we can say that, NM = LN = x.
The hypotenuse of the ΔLMN, that is the side opposite to ∠N, that is LM, can be found using the Pythagoras theorem, by which in a right-angled triangle,
Hypotenuse² = Base² + Perpendicular².
∴ LM² = LN² + NM² = x² + x² = 2x².
or, LM = √(2x²) = x√2.
The tangent of an angle ∅, that is, tan ∅ is computed using the formula,
tan ∅ = Perpendicular/Base.
To calculate tan 45°, that is, tangent to ∠L, we take Perpendicular = NM and Base = LN.
∴ tan 45° = NM/LN = x/x = 1.
Now, we check all the given options:
NM = x. TRUE (computed)NM = x√2. FALSE (∵ NM = x)LM = x√2. TRUE (computed)tan 45° = √2/2. FALSE (∵ tan 45° = 1)tan 45° = 1. TRUE (computed)∴ The true statements regarding the given isosceles right triangle ΔLMN are:
NM = xLM = x√2tan 45° = 1.Learn more about isosceles right triangle at
https://brainly.com/question/691225
#SPJ2
A retail store sells two types of shoes, sneakers and sandals. The store owner pays $8 for the sneakers and $14 for the sandals. The sneakers can be sold for $10 and the sandals can be sold for $17. The owner of the store estimates that she won't sell more than 200 shoes each month, and doesn't plan to invest more that $2,000 on inventory of the shoes. Let x= the number of sneakers in stock, and y=the number of sandals in stock. Write an equation to show the profit she will make on sneakers and sandals. P = [answer0]
Answer:
The equation that shows the profit: P = 2x + 3y
Step-by-step explanation:
The number of sneaker = x
The number of sandals = y
Cost of sneaker = 8 dollars.
Cost of sandals = 14 dollars.
Selling price of sneaker = $10
Selling price of sandals = $17
Total revenue = $10x + $17y
Total cost = $8x + $14y
Profit (P) = Total revenue - Total cost.
Profit = ($10x + $17y) – ($8x + $14y)
P = 10x +17y – 8x – 14y
P = 2x + 3y