What is the slope of a line perpendicular to y=-7X?
O A.
4
B.
IN
N
O c.
4
O D.
PLZZZ HELP

Answers

Answer 1

Answer:

1/7

Step-by-step explanation:

y=-7X

The slope of this line is -7

Perpendicular lines have slopes that multiply to -1

-7 * m = -1

Divide each side by -7

m = -1 / -7

m = 1/7

The slope of the perpendicular line is 1/7

Answer 2

Answer:

1/7

Step-by-step explanation:

Perpendicular slope can be calculated by take the opposite/negative reciprocal of the given slope. This means multiply the given slope by -1 (so if it is negative it becomes positive and if it is positive then becomes negative) and then flip the numerator and denominator.

So -7 is the slope of the given equation (y = mx + b where is m is slope and b is the y-intercept).

to find perpendicular slope..

Step 1. Multiple -7 by -1 = 7

Step 2. Flip 7/1 to 1/7

Answer: 1/7 is perpendicular slope


Related Questions

16. How much money will I need to have at retirement so I can withdraw $60,000 a year for 20 years from an account earning 8% compounded annually? a. How much do you need in your account at the beginning b. How much total money will you pull out of the account? c. How much of that money is interest?

Answers

Answer:

starting balance: $636,215.95total withdrawals: $1,200,000interest withdrawn: $563,784.05

Step-by-step explanation:

a) If we assume the annual withdrawals are at the beginning of the year, we can use the formula for an annuity due to compute the necessary savings.

The principal P that must be invested at rate r for n annual withdrawals of amount A is ...

  P = A(1+r)(1 -(1 +r)^-n)/r

  P = $60,000(1.08)(1 -1.08^-20)/0.08 = $636,215.95

__

b) 20 withdrawals of $60,000 each total ...

  20×$60,000 = $1,200,000

__

c) The excess over the amount deposited is interest:

  $1,200,000 -636,215.95 = $563,784.05

SNOG PLEASE HELP! (x-1)(y+8)

Answers

Answer:

xy + 8x - y - 8

Step-by-step explanation:

We can use the FOIL method to expand these two binomials. FOIL stands for First, Outer, Inner, Last.

F: The First means that we multiply the first terms of each binomial together. In this case, that would be x · y = xy.

O: The Outer means that we multiply the outer terms, or the first term of the first binomial and the second term of the last binomial, together. In this case, that would be x · 8 = 8x.

I: The Inner means that we multiply the inner terms, or the second term of the first binomial and the first term of the second binomial, together. In this case, that would be (-1) · y = -y.

L: The Last means that we multiply the last terms of each binomial together. In this case, that would be (-1) · 8 = -8.

Adding all of these together, we get xy + 8x - y - 8 as our final answer.

Hope this helps!

Answer:

[tex]xy+8x-y-8[/tex]

Step-by-step explanation:

=> (x-1)(y+8)

Using FOIL

=> [tex]xy+8x-y-8[/tex]

The curvature of a plane parametric curve x = f(t), y = g(t) is $ \kappa = \dfrac{|\dot{x} \ddot{y} - \dot{y} \ddot{x}|}{[\dot{x}^2 + \dot{y}^2]^{3/2}}$ where the dots indicate derivatives with respect to t. Use the above formula to find the curvature. x = 6et cos(t), y = 6et sin(t)

Answers

Answer:

The curvature is modelled by [tex]\kappa = \frac{e^{-t}}{6\sqrt{2}}[/tex].

Step-by-step explanation:

The equation of the curvature is:

[tex]\kappa = \frac{|\dot {x}\cdot \ddot {y}-\dot{y}\cdot \ddot{x}|}{[\dot{x}^{2}+\dot{y}^{2}]^{\frac{3}{2} }}[/tex]

The parametric componentes of the curve are:

[tex]x = 6\cdot e^{t} \cdot \cos t[/tex] and [tex]y = 6\cdot e^{t}\cdot \sin t[/tex]

The first and second derivative associated to each component are determined by differentiation rules:

First derivative

[tex]\dot{x} = 6\cdot e^{t}\cdot \cos t - 6\cdot e^{t}\cdot \sin t[/tex] and [tex]\dot {y} = 6\cdot e^{t}\cdot \sin t + 6\cdot e^{t} \cdot \cos t[/tex]

[tex]\dot x = 6\cdot e^{t} \cdot (\cos t - \sin t)[/tex] and [tex]\dot {y} = 6\cdot e^{t}\cdot (\sin t + \cos t)[/tex]

Second derivative

[tex]\ddot{x} = 6\cdot e^{t}\cdot (\cos t-\sin t)+6\cdot e^{t} \cdot (-\sin t -\cos t)[/tex]

[tex]\ddot x = -12\cdot e^{t}\cdot \sin t[/tex]

[tex]\ddot {y} = 6\cdot e^{t}\cdot (\sin t + \cos t) + 6\cdot e^{t}\cdot (\cos t - \sin t)[/tex]

[tex]\ddot{y} = 12\cdot e^{t}\cdot \cos t[/tex]

Now, each term is replaced in the the curvature equation:

[tex]\kappa = \frac{|6\cdot e^{t}\cdot (\cos t - \sin t)\cdot 12\cdot e^{t}\cdot \cos t-6\cdot e^{t}\cdot (\sin t + \cos t)\cdot (-12\cdot e^{t}\cdot \sin t)|}{\left\{\left[6\cdot e^{t}\cdot (\cos t - \sin t)\right]^{2}+\right[6\cdot e^{t}\cdot (\sin t + \cos t)\left]^{2}\right\}^{\frac{3}{2}}} }[/tex]

And the resulting expression is simplified by algebraic and trigonometric means:

[tex]\kappa = \frac{72\cdot e^{2\cdot t}\cdot \cos^{2}t-72\cdot e^{2\cdot t}\cdot \sin t\cdot \cos t + 72\cdot e^{2\cdot t}\cdot \sin^{2}t+72\cdot e^{2\cdot t}\cdot \sin t \cdot \cos t}{[36\cdot e^{2\cdot t}\cdot (\cos^{2}t -2\cdot \cos t \cdot \sin t +\sin^{2}t)+36\cdot e^{2\cdot t}\cdot (\sin^{2}t+2\cdot \cos t \cdot \sin t +\cos^{2} t)]^{\frac{3}{2} }}[/tex]

[tex]\kappa = \frac{72\cdot e^{2\cdot t}}{[72\cdot e^{2\cdot t}]^{\frac{3}{2} } }[/tex]

[tex]\kappa = [72\cdot e^{2\cdot t}]^{-\frac{1}{2} }[/tex]

[tex]\kappa = 72^{-\frac{1}{2} }\cdot e^{-t}[/tex]

[tex]\kappa = \frac{e^{-t}}{6\sqrt{2}}[/tex]

The curvature is modelled by [tex]\kappa = \frac{e^{-t}}{6\sqrt{2}}[/tex].

What is the measure of

Answers

Answer:

C. 35

55 degrees + 35 degrees= 90 degrees

a.) The perimeter of a rectangular field is 354 m. If the length of the field is 95m, what is its width? b.) The area of a rectangular painting is 8439 cm^2. If the width of the painting is 87cm, what is its length?

Answers

Answer:

a) 82

b) 97

Step-by-step explanation:

a) 354 - (95+95)

354 - 190

164

164 ÷ 2 = 82

(82+82+95+95=254)

b) 8439 cm^2 = 87x

8439 cm^2 ÷ 87 = 87x ÷ 87

97 = x

The Ball Corporation's beverage can manufacturing plant in Fort Atkinson, Wisconsin, uses a metal supplier that provides metal with a known thickness standard deviation σ = .000586 mm. Assume a random sample of 59 sheets of metal resulted in an x¯ = .2905 mm. Calculate the 95 percent confidence interval for the true mean metal thickness.

Answers

Answer:

The 95 percent confidence interval for the true mean metal thickness is between 0.2903 mm and 0.2907 mm

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1-0.95}{2} = 0.025[/tex]

Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].

So it is z with a pvalue of [tex]1-0.025 = 0.975[/tex], so [tex]z = 1.96[/tex]

Now, find the margin of error M as such

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

[tex]M = 1.96\frac{0.000586}{\sqrt{59}} = 0.0002[/tex]

The lower end of the interval is the sample mean subtracted by M. So it is 0.2905 - 0.0002 = 0.2903 mm

The upper end of the interval is the sample mean added to M. So it is 0.2905 + 0.0002 = 0.2907 mm

The 95 percent confidence interval for the true mean metal thickness is between 0.2903 mm and 0.2907 mm

what is the gfc of 16 and 8​

Answers

Answer:

Greatest common factor of 16 and 8 is 8 .....

Basic factoring. Please help!

Answers

Answer:

-1(3 - y)

Step-by-step explanation:

If you factor out a negative 1, you will get the opposite signs you already have, so -1(3 - y). To check, we can simply distribute again:

-3 + y

So our answer is 2nd Choice.

Please answer this correctly

Answers

Answer:

1/5

Step-by-step explanation:

The number 5 or greater than 4 is 5.

1 number out of 5 total parts.

= 1/5

P(5 or greater than 4) = 1/5

A normally distributed data set with a mean of 35 and a standard deviation of 5 is represented by the normal curve. What is the z–score corresponding to 45?

Answers

Answer:

The z–score corresponding to 45 is z=2.

Step-by-step explanation:

We have a random variable X represented by a normal distribution, with mean 35 and standard deviation 5.

The z-score represents the value X relative to the standard normal distribution. This allows us to calculate probabilities for any given normal distribution with the same table.

The z-score for X=45 can be calculated as:

[tex]z=\dfrac{X-\mu}{\sigma}=\dfrac{45-35}{5}=\dfrac{10}{5}=2[/tex]

The z–score corresponding to 45 is z=2.

A 12 sided die is rolled the set of equally likely outcomes is 123 456-789-10 11 and 12 find the probability of rolling a number greater than three

Answers

Answer:

6

Step-by-step explanation:

nerd physics

Help me with this problem, thank you<3

Answers

Answer:

1,050 workers

Step-by-step explanation:

25% = 0.25

0.25 × 1400 = 350

1400 - 350 = 1050

Hope this helps.

Explain the importance of factoring.

Answers

Answer:

Factoring is a useful skill in real life. Common applications include: dividing something into equal pieces, exchanging money, comparing prices, understanding time, and making calculations during travel.

Sorry if this is a little wordy, I can get carried away with this sort of thing

anyway, hope this helped and answered your question :)

Perform the indicated operation.

Answers

Answer:

√75 = 5√3 and √12 = 2√3 so √75 + √12 = 5√3 + 2√3 = 7√3.

Answer:

[tex] 7\sqrt{3} [/tex]

Step-by-step explanation:

[tex] \sqrt{12} \: can \: be \: simplified \: as \: 2 \sqrt{3} \: and \: \sqrt{75} \: canbe \: simplified \: as \: 5 \sqrt{3} \\ after \: simplifying \: we \: can \: add \: them \: up \\ 2 \sqrt{3} + 5 \sqrt{3} = 7 \sqrt{3} [/tex]

The vector matrix[ 27 ]is dilated by a factor of 1.5 and then reflected across the X axis if the resulting matrix is a B then a equals an VE

Answers

Correct question:

The vector matrix [ [tex] \left[\begin{array}{ccc}2\\7\end{array}\right] [/tex] is dilated by a factor of 1.5 and then reflected across the x axis. If the resulting matrix is [a/b] then a=??? and b=???

Answer:

a = 3

b = 10.5

Step-by-step explanation:

Given:

Vector matrix = [tex] \left[\begin{array}{ccc}2\\7\end{array}\right] [/tex]

Dilation factor = 1.5

Since the vector matrix is dilated by 1.5, we have:

[tex] \left[\begin{array}{ccc}1.5 * 2\\1.5 * 7\end{array}\right] [/tex]

= [tex] \left[\begin{array}{ccc}3\\10.5\end{array}\right] [/tex]

Here, we are told the vector is reflected on the x axis.

Therefore,

a = 3

b = 10.5

Answer:

a = 3

b = -10.5

Step-by-step explanation:

got a 100% on PLATO

We are standing on the top of a 320 foot tall building and launch a small object upward. The object's vertical altitude, measured in feet, after t seconds is h ( t ) = − 16 t 2 + 128 t + 320 . What is the highest altitude that the object reaches?

Answers

Answer:

The highest altitude that the object reaches is 576 feet.

Step-by-step explanation:

The maximum altitude reached by the object can be found by using the first and second derivatives of the given function. (First and Second Derivative Tests). Let be [tex]h(t) = -16\cdot t^{2} + 128\cdot t + 320[/tex], the first and second derivatives are, respectively:

First Derivative

[tex]h'(t) = -32\cdot t +128[/tex]

Second Derivative

[tex]h''(t) = -32[/tex]

Then, the First and Second Derivative Test can be performed as follows. Let equalize the first derivative to zero and solve the resultant expression:

[tex]-32\cdot t +128 = 0[/tex]

[tex]t = \frac{128}{32}\,s[/tex]

[tex]t = 4\,s[/tex] (Critical value)

The second derivative of the second-order polynomial presented above is a constant function and a negative number, which means that critical values leads to an absolute maximum, that is, the highest altitude reached by the object. Then, let is evaluate the function at the critical value:

[tex]h(4\,s) = -16\cdot (4\,s)^{2}+128\cdot (4\,s) +320[/tex]

[tex]h(4\,s) = 576\,ft[/tex]

The highest altitude that the object reaches is 576 feet.

11. If 4 < x < 14, what is the range for -x - 4?

Answers

Answer:

-18 < -x-4 < -8

Step-by-step explanation:

We start with the initial range as:

4 < x < 14

we multiplicate the inequation by -1, as:

-4 > -x > -14

if we multiply by a negative number, we need to change the symbols < to >.

Then, we sum the number -4, as:

-4-4> -x-4 > -14-4

-8 > -x-4 > -18

Finally, the range for -x-4 is:

-18 < -x-4 < -8

Please answer this correctly

Answers

Answer:

[tex] \frac{1}{6} [/tex]

Step-by-step explanation:

the ways of choosing 2 cards out of 4, is calculator by

[tex] \binom{4}{2} = 6[/tex]

so, 6 ways to select 2 cards.

but in only one way we can have 2 even cards. thus, the answer is

[tex] \frac{1}{6} [/tex]

of the following fractions which is 50% greater than 3/7

Answers

Answer:

9/14

Step-by-step explanation:

3/7 + 50%×3/7 =

= 3/7 + 1/2×3/7

= 3/7 + 3/14

= 6/14 + 3/14

= 9/14

The required fraction which 50% grater than 3/7 is 9/14.


Fraction to determine that 50% grater than 3/7.


What is fraction?

Fraction of the values is number represent in form of Numerator and denominator.


Here, fraction = 50% grater than 3/7
                     
= 1.5 x 3/7
                    = 4.5/7
                     =  45/70
                     
= 9/14

Thus, The required fraction which 50% grater than 3/7 is 9/14.

Learn more about fraction here:
https://brainly.com/question/10354322

#SPJ5


CAN SOMEONE HELP ME ASAP







A. 5
B. 53‾√53
C. 10
D. 103√3

Answers

Answer:

n = 5

Step-by-step explanation:

Since this is a right triangle, we can use trig functions

tan theta = opp/ adj

tan 30 = n/ 5 sqrt(3)

5 sqrt(3) tan 30 = n

5 sqrt(3) * 1/ sqrt(3) = n

5 = n

A boat that can travel 18 mph in still water can travel 21 miles downstream in the same amount of time that it can travel 15 miles upstream. Find the speed (in mph) of the current in the river.

Answers

Hey there! I'm happy to help!

We see that if the river isn't moving at all the boat can move at 18 mph (most likely because it has an engine propelling it.)

We want to set up a proportion where our 21 miles downstream time is equal to our 15 miles upstream time so we can find the speed. A proportion is basically showing that two ratios are equal. Since our downstream distance and upstream distance can be done in the same amount of time, we will write it as a proportion.

We want to find the speed of the river. We will use r to represent the speed of the river. When going downstream, the boat will go faster, so it will have a higher mph. So, our speed going down is 18+r. When you are going upstream, it's the opposite, so it will be 18-r.

[tex]\frac{distance}{speed} =\frac{21}{18+r} = \frac{15}{18-r}[/tex]

So, how do we figure out what r is now? Well, one nice thing to know about proportions is that the product of the items diagonal from each other equals the product of the other items. Basically, that means that 15(18+r) is equal to 21(18-r). This is a very nice trick to solve proportions quickly. We see that we have made an equation and now we can solve it!

15(18+r)=21(18-r)

We use the distributive property to undo the parentheses.

270+15r=378-21r

We subtract 270 from both sides.

15r=108-21

We add 21 to both sides.

36r=108

We divide both sides by 36.

r=3

Therefore, the speed of the river is 3 mph.

You also could have noticed that 18mph to 21 mph is +3, and 18mph to 15 mph -3 in -3 mph, so the speed of the river is 3 mph. That would have been a quicker way to solve it XD!

Have a wonderful day!

The first card selected from a standard 52-card deck was a king. If it is returned to the deck, what is the probability that a king will be drawn on the second selection

Answers

Answer:

[tex]\frac{1}{13}[/tex]

Step-by-step explanation:

The probability P(A) that an event A will occur is given by;

P(A) = [tex]\frac{number-of-possible-outcomes-of-event-A}{total-number-of-sample-space}[/tex]

From the question,

=>The event A is selecting a king the second time from a 52-card deck.

=> In the card deck, there are 4 king cards. After the first selection which was a king, the king was returned. This makes the number of king cards return back to 4. Therefore,

number-of-possible-outcomes-of-event-A = 4

=> Since there are 52 cards in total,

total-number-of-sample-space = 52

Substitute these values into equation above;

P(Selecting a king the second time) = [tex]\frac{4}{52}[/tex] = [tex]\frac{1}{13}[/tex]

Select the correct answer from each drop-down menu.
The given equation has been solved in the table.

Answers

Answer: a) additive inverse (addition)

              b) multiplicative inverse (division)

Step-by-step explanation:

Step 2: 6 is being added to both sides

Step 4: (3/4) is being divided from both sides

It is difficult to know what options are provided in the drop-down menu without seeing them. If I was to complete a proof and justify each step, then the following justifications would be used:

Step 2: Addition Property of Equality

Step 4: Division Property of Equality

I paid twice as much by not waiting for a sale and not ordering on line. Which ofthe following statements is also true?
(a) I paid 200% more than I could have online and on sale.
(b) I paid 100% of what I could have online and on sale.
(c) I paid 200% of what I could have online and on sale.
(d) I paid 3 times what I could have online and on sale.

Answers

Answer:

Option (c).

Step-by-step explanation:

It is given that, I paid twice as much by not waiting for a sale and not ordering online.

Let the cost of items ordering online be x.

So, now i am paying twice of x = 2x

Now, we have find 2x is what percent of x.

[tex]Percent =\dfrac{2x}{x}\times 100=200\%[/tex]

It means, I paid 200% of what I could have online and on sale.

Therefore, the correct option is (c).

Which graph represents the function?

Answers

the answer is the bottom left option

which of the following statements is false?

Answers

Answer:

A.

Step-by-step explanation:

It's the first one. The angles are supplementary not complementary.

Answer:

I would have to say A

Step-by-step explanation:

i-Ready
Sofia
The area of a rectangle is 7/9 square feet. The width of the rectangle is 2 1/3 feet. What is the length of the rectangle?

Answers

Answer:

1/3 feet.

Step-by-step explanation:

The length = area / width

= 7/9 / 2 1/3

= 7/9 / 7/3

= 7/9 * 3/7

= 3/9

= 1/3 feet,

Convert 2 1/3 into an improper fraction

Now divide 7/9 with 7/3

Answer: 1/3

Check: 1/3*7/3=7/9

PLEASE ANSWER FAST, THANKS! :)

Answers

Answer:

Step-by-step explanation:

k = 3 ; 2k + 2 = 2*3 + 2 = 6 + 2 = 8

k = 4;  2k + 2 = 2*4 + 2 = 8 +2 = 10

k =5; 2k + 2 = 2*5 +2 = 10+2 = 12

k=6;  2k +2 = 2*6 + 2 = 12+2 = 14

k = 7 ; 2k + 2 = 2*7 +2 = 14 +2 = 16

k = 8 ; 2k + 2 = 2*8 + 2 = 16 +2 = 18

∑ (2k + 2) = 8 + 10 + 12 + 14 + 16 + 18 = 78

The point P(7, −2) lies on the curve y = 2/(6 − x). (a) If Q is the point (x, 2/(6 − x)), use your calculator to find the slope mPQ of the secant line PQ (correct to six decimal places) for the following values of x.
(i) 6.9
mPQ = 1
(ii) 6.99
mPQ = 2
(iii) 6.999
mPQ = 3
(iv) 6.9999
mPQ = 4
(v) 7.1
mPQ = 5
(vi) 7.01
mPQ = 6
(vii) 7.001
mPQ = 7
(viii) 7.000
mPQ = 8
(b) Using the results of part (a), guess the value of the slope m of the tangent line to the curve at
P(7, −2).
m = 9
(c) Using the slope from part (b), find an equation of the tangent line to the curve at
P(7, −2).

Answers

The equation of the tangent line to the curve at P(7, -2) is y = 2x -16.

For each given value of x, we substitute the coordinates of P and Q into the slope formula to find the slope mPQ.

(i) For x = 6.9:

mPQ = (2/(6 - 6.9) - (-2)) / (6.9 - 7)

= 2.22

(ii) For x = 6.99:

mPQ = (2/(6 - 6.99) - (-2)) / (6.99 - 7)

= 2.020

(iii) For x = 6.999:

mPQ = (2/(6 - 6.999) - (-2)) / (6.999 - 7)

= 2.002002

(iv) For x = 6.9999:

mPQ = (2/(6 - 6.9999) - (-2)) / (6.9999 - 7)

= 2.000200

(v) For x = 7.1:

mPQ = (2/(6 - 7.1) - (-2)) / (7.1 - 7)

= 1.818182

(vi) For x = 7.01:

mPQ = (2/(6 - 7.01) - (-2)) / (7.01 - 7)

= 1.980198

(vii) For x = 7.001:

mPQ = (2/(6 - 7.001) - (-2)) / (7.001 - 7)

= 1.998002

(viii) For x = 7.0001:

mPQ = (2/(6 - 7.0001) - (-2)) / (7.0001 - 7)

= 1.999800

By observing the pattern in the calculated slopes, we can see that as x approaches 7, the slope of the secant line PQ approaches 2.

Using the point-slope form, we have:

y - y₁ = m(x - x₁)

Substituting the values of P(7, -2), we have:

y - (-2) = 2(x - 7)

y = 2x -16

Therefore, the equation of the tangent line to the curve at P(7, -2) is y = 2x -16.

Learn more about the equation of the tangent line here:

https://brainly.com/question/31583945

#SPJ12

If x is a binomial random variable with n trials and success probability p , then as n gets smaller, the distribution of x becomes

Answers

Answer:

If the value of n gests smaller then the distribution of X would be more skewed, that's a property of the binomial distribution

Step-by-step explanation:

For this problem we are assumeing that the random variable X is :

[tex] X \sim Bin(n,p)[/tex]

If the value of n gests smaller then the distribution of X would be more skewed, that's a property of the binomial distribution and if we don't satisfy this two conditions:

[tex] n p>10[/tex]

[tex]n(1-p) >10[/tex]

Then we can't use the normal approximation

Other Questions
Subtracting Rational Numbers Simplify 3 1. Please answer this question now in two minutes Read the lines from "Harlem."Maybe it just sagslike a heavy load.Read the lines from The Weary Blues."He did a lazy sway...He did a lazy sway.Which best describes the relationship between these lines?The lines from "Harlem" provide sensory details, and the lines from "The Weary Blues" do not.The lines from "Harlem" and the lines from "The Weary Blues" both provide details through personification.The lines from "Harlem" provide details using the sense of sight, and the lines from "The Weary Blues" providedetails using the sense of touch.The lines from "Harlem" and the lines from "The Weary Blues" both provide details using the sense of sight.MarathisandremSave and FyitThe answer is B on Edgenutity Fill in the blank with the correct pronoun Est ce que tu connais ce metteur en scene?Non, je ne ______ connais pas. Dont know this one Select the correct answer. A normal appearing couple is found to be heterozygous recessive for albinism. Both have the genotype Aa. The gene responsible for albinism is recessive to the normal pigment-producing gene. What are the chances of their children being albino? A. 3:4 children will be albino. B. All children will be albino. C. 1:4 children will be albino. A slender rod of length L has a varying mass-per-unit-length from the left end (x=0) according to dm/dx=Cx where C has units kg/m2. Find the total mass in terms of C and L, and then calculate the moment of inertia of the rod for an axis at the left end note: you need the total mass in order to get the answer in terms of ML^2 assume the graph of a function of the form y=asin(k(x+b)) is given below. which of the following are possible values for a, k, and b? Plsss help I will mark u as the Brainliest !! ASAP 20 PTS What other areas of cultural diversity besides religion, interpersonal behavior, and family organization influence the way healthcare providers interact with patients? festivals language social experiences artistic expression 31.7+42.8+26.4+x/4=39.1 100.9+x/4 ga political candidate has asked you to conduct a poll to determine what percentage of people support her. if the candidate only wants a 8% margin of error at a 95% cnofidence level, what size of sample is needed ? of 72 = 45 (answer in fraction) On January 1, the Matthews Band pays $65,800 for sound equipment. The band estimates it will use this equipment for four years and perform 200 concerts. It estimates that after four years it can sell the equipment for $2,000. During the first year, the band performs 45 concerts. Compute the first-year depreciation using the units-of-production method. g Convert the fraction 19/20 into a decimal What fraction of the students are girls give your answer in its simplest form 8Do not writeoutside thebox9A company sells housesThe line graph shows the number sold per week for 30 weeks.Houses sold987Number 6of weeks 543210051 2 3 4Number of houses9 (a)Work out the range of the number of houses sold per week.[2 marks] What is the domain of this function What is the specific heat of a 85.01 g piece of an unknown metal that exhibits a 45.2C temperature change upon absorbing 1870 J of heat? At what minimum speed must a roller coaster be traveling when upside down at the top of a 7.4 m radius loop-the-loop circle so the passengers will not fall out?