Answer:
(x - 8)^2 + (y + 1)^2 = 68
Step-by-step explanation:
The standard form of the equation of the circle with center (8,−1) is :
(x - 8)^2 + (y + 1)^2 = R^2
If the circle passes through the point (6,7) that means that the point (6,7) is a solution of the equation and we can replace (x,y) with (6,7) to find R.
Four members from a "55"person committee are to be selected randomly to serve as chairperson, vice-chairperson, secretary, and treasurer. The first person selected is the chairperson; the second, the vice-chairperson; the third, the secretary; and the fourth, the treasurer. How many different leadership structures are possible?
Answer:
8,185,320 different leadership structures
Step-by-step explanation:
Since the order at which the members of the committee are chosen matters, this is a permutation of 4 out 55 people and it is given by:
[tex]n=\frac{55!}{(55-4)!}=55*54*53*52 \\\\n=8,185,320[/tex]
8,185,320 different leadership structures are possible.
Use the distributive property to write an
expression that is equivalent to each expression. If
you get stuck, consider drawing boxes to help
organize your work.
D. 8(-x-1/2)
e. -8(-x-3/4y+7/2
Answer:
D. -8x-4
E. 8x+6y-28
Step-by-step explanation:
D. 8(-x-1/2) = -8x-4
E. -8(-x-3/4y+7/2 = 8x+6y-28
. In statistics, a data set has the following characteristics: (Choose all that apply) A:A data set is a collection of similar data. B:A data set can contain only quantitative data. C:A data set is any piece of descriptive or quantitative information on any object of study. D:A data set contains data all of which have some common characteristic.
Answer:
A. A data set is a collection of similar data.
D. A data set contains data all of which have some common characteristic.
Melissa, Brian, and shen have a total of $85 in their wallets. Brian has 3 times what Shen has. Shen has $10 less than Melissa. How much do they have in their wallets?
Answer:
Shen has $15, Brian has $45, and Melissa has $25
Step-by-step explanation:
Let x represent how much money Shen has.
Since Brian has 3 times what Shen has, his amount can be represented by 3x.
Since Shen has $10 less than Melissa, Melissa's amount can be represented by x + 10.
Create an equation to represent the situation, and solve for x:
x + 3x + x + 10 = 85
5x + 10 = 85
5x = 75
x = 15
So, Shen has $15 in their wallet.
Find how much Brian has by multiplying this by 3:
15(3) = $45
Find how much Melissa has by adding 10 to this:
15 + 10 = $25
Shen has $15, Brian has $45, and Melissa has $25.
simplify -3(2g - 6) +4g
-3-2g+6+4g
3+2g
hope it helps
Answer:
-2g + 18
Step-by-step explanation:
-3(2g - 6) + 4g
First we use distributive property.
-3 × 2g = -6g
-3 × -6 = 18
now we have
-6g + 18 + 4g
Now we combine the like terms
-6g + 4g = -2g
Finally we have
-2g + 18
and they are not like terms so we leave them and the equation is solved.
How to solve using quadratic equations 4x^2+7x-20=0
Answer:
Step-by-step explanation:
Y = Ax2 Bx C
Enter coefficients here >>> 4 7 -20
Standard Form: y = 4x²+7x-20
1.75 0.875 0.765625 3.0625 -23.0625
Grouped Form: No valid Grouping
Graphing Form: y = 4(x+0.88)²-23.06
Factored Form: PRIME
Solution/X-Intercepts: -3.28 AND 1.53
Discriminate =369 is positive, two real solutions
VERTEX: (-0.88,-23.06) Directrix: Y=-23.13
PLEASE HELP!!! ITS DUE TONIGHT!!!!!
YOUR ASSIGNMENT: Difference of 10
Erik and Nita are playing a game with numbers. In the game, they each think of a random number from 0 to 20. If the difference between their two numbers is less than 10, then Erik wins. If the difference between their two numbers is greater than 10, then Nita wins. Use the information in the interactive and what you know about absolute value inequalities to better understand the game.
Your Player
1. Choose your player, and record the number chosen by the other player. (2 points: 1 point for each answer)
a. Which player did you select?
b. What number did the other player pick?
Modeling Ways to Win
2. Should you use an equation or an inequality to represent the ways your player can win? Why? (2 points: 1 point for an answer, 1 point for an explanation)
3. Imagine that Erik chose a 4 and Nita chose a 12. Would the winner be different if Nita chose the 4 and Erik chose the 12? (2 points: 1 point for an answer, 1 point for an explanation)
4. Is it appropriate to use an absolute value inequality to represent how a player wins this game? Why? (2 points: 1 point for an answer, 1 point for an explanation)
5. If your player is Erik, write an inequality that shows all of the ways that Erik will win if Nita chooses 7. If your player is Nita, write an inequality that shows all of the ways that Nita will win if Erik chooses 17.
Be sure to define your variable. (3 points: 1 point for defining the variable, 2 points for the correct inequality)
6. In order to graph your solutions, solve for the variable. Be sure to show your work. (2 points)
7. Sketch a graph of your solutions. (2 points: 1 point for endpoints, 1 point for the correct region)
Forming a Strategy and a New Rule
8. What is the range of numbers that will win the game for your player?
If your player is Erik, assume that Nita chooses 7.
If your player is Nita, assume that Erik chooses 17.
(Hint: Remember that Erik and Nita can choose only numbers from 0 to 20, inclusive.) (2 points)
9. Graph all the possible numbers that either player could pick. Compare this graph with your answer in question 8.
If your player is Erik, and Nita chooses 7, does Erik have a good chance of winning?
If your player is Nita, and Erik chooses 17, does Nita have a good chance of winning?
Explain your answer. (3 points: 1 point for the correct graph, 2 points for the explanation)
Answer:
it is too long send me link of it
Answer: Choose your player, and record the number chosen by the other player. (2 points: 1 point for each answer) a. Which player did you select? Erik, assume that Nita chooses 7. b. What number did the other player pick? 17
2. Should you use an equation or an inequality to represent the ways your player can
win? Why? (2 points: 1 point for an answer, 1 point for an explanation)
An algebraic statement that represents all the ways Eric will wins is
where
be the number that Eric thi
3. Imagine that Erik chose a 4 and Nita chose a 12. Would the winner be different if
Nita chose the 4 and Erik chose the 12? (2 points: 1 point for an answer, 1 point for
an explanation)
no because both nita and eric won. eric with a number less than than 10
and nita with a number more than 10.
4. Is it appropriate to use an absolute value inequality to represent how a player wins
this game? Why? (2 points: 1 point for an answer, 1 point for an explanation)
they win it remains positive the negative will be losses which will be changed due to
absolute value
5. If your player is Erik, write an inequality that shows all of the ways that Erik will win
if Nita chooses 7. If your player is Nita, write an inequality that shows all of the ways
that Nita will win if Erik chooses 17.
Be sure to define your variable. (3 points: 1 point for defining the variable, 2 points for
the correct inequality)
Step-by-step explanation:
Marco is investigating some of the business models of SureSpin, one of Faster Fidget's top competitors.
He has learned that they model their cost of production for one type of spinner with the function C(x) =13,450 + 1.28x, where x is the number of spinners produced. Interpret the model to complete the
statement.
Type the correct answer in each box. Use numerals instead of words. Based on the model, the fixed cost of production is $?
Answer:
$13,450
Step-by-step explanation:
The fixed cost of production is $13,450, this is because a fixed cost of production is the amount of cost that does not change with an increase or decrease in the amount of the goods or services produced. Fixed cost of production are paid by companies. It is one of the two component of the total cost of goods or services along with the variable cost.
In regard to the information given in the question, no matter how many spinners the company produces, the fixed cost will remain the same.
Assuming x is the variable cost which signifies the number of spinners produced, this literally implies that the cost to produce each spinner is $1.28 and the fixed cost which is independent of the production is $13,450.
Hence, the fixed cost of production is $13,450.
Jill works at a cell phone store. Jill earns $175 every week plus $45 for every phone p that she sells. if Jill makes $445 at the end of the week how many phones did she sell?
━━━━━━━☆☆━━━━━━━
▹ Answer
6 phones
▹ Step-by-Step Explanation
$445 - $175 = $270
$270 ÷ $45 = 6
6 phones
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Factor.
x2 - 7x + 10
(x - 10)(x + 1)
(x + 1)(x - 10)
(x - 5)(x - 2)
(x + 5)(x + 2)
Answer:
The answer is option C
Step-by-step explanation:
x² - 7x + 10
To factor the expression rewrite - 7x as a difference
That's
x² - 5x - 2x + 10
Factor out x from the expression
x( x - 5) - 2x + 10
Factor - 2 from the expression
x(x - 5) - 2( x - 5)
Factor out x - 5 from the expression
The final answer is
( x - 2)(x - 5)Hope this helps you
g When conducting a one-way ANOVA, the _______ the between-treatment variability is when compared to the within-treatment variability, the __________the value of the F statistic will be which gives us ________ evidence against the null. (Choose all that apply)
Answer:
One - way ANOVA, the smaller the between treatment
The smaller the value of F statistic will give us significant evidence.
Step-by-step explanation:
ANOVA is a statistical technique designed to test mean of one or more quantitative populations. In two-way ANOVA it equals the block mean. Column block means square is three-way ANOVA. It is a statistical technique designed to test mean of one or more quantitative populations. In two-way ANOVA it equals the block mean. Column block means square is three-way ANOVA.
One-way ANOVA, the smaller the between treatment
The smaller the value of F statistic will give us significant evidence.
What is ANOVA?It should be the statistical technique that are made for testing the mean for one or more than one quantitative population. In two-way ANOVA it should be equivalent to the block mean. Here the column block represent the square be the three-way ANOVA.
Therefore, One-way ANOVA, the smaller the between treatment
The smaller the value of F statistic will give us significant evidence.
Learn more about evidence here: https://brainly.com/question/6764645?referrer=searchResults
You make 85,000 per year and your company matches 50 cents for every dollar you deposit into your 401k plan, up to 8% of your salary.
Answer:
The question is incomplete, below is a possible match for the complete question:
You make $85,000 per year and your company matches 50 cents for every dollar you deposit into your 401k plan, up to 8% of your salary. Complete parts (a) through (c) below.
(a) If you contribute $200 every month to your 401k, what will your company contribute each month?
The company will contribute $ (Type an integer or a decimal rounded to two decimal places as needed.)
(b) If you contribute $830 every month to your 401k, what will your company contribute each month?
The company will contribute $ (Type an integer or a decimal rounded to two decimal places as needed.)
(c) What is the maximum amount of money the company will contribute to your 401k each year?
The maximum amount that the company will contribute each year is $
(Type an integer or a decimal rounded to two decimal places as needed.)
Answer:
a.) The company will contribute $100
b.) The company will contribute $415
c.) maximum amount the company will be willing to contribute = $6,800 per year
Step-by-step explanation:
First, let us calculate the maximum amount the company will be willing to pay into the 401k plan yearly:
Annual salary = $85,000
Monthly salary = $7083.3333
maximum amount = 8% = 8/100 = 0.08 of salary
maximum amount = 0.08 × 7083.3333 = $566.67
a.) If you contribute $200 every month.
Since $200 is less than the maximum amount that the company will be willing to contribute, let us calculate how much the company is willing to contribute:
Company matches 50 cents for every dollar you deposit
1 dollar deposited = 50 cents from company
but 1 cent = $0.01
∴ 50 cents = 0.01 × 50 = $0.5
$1 deposited = $0.5 from company
∴ $200 deposited = 0.5 × 200 = $100 contributed by company
Therefore, if you contribute $200 every month, your company will contribute $100 each month.
from this example, we can see that the company is willing to contribute half of every amount you deposit every month ($100 = half of $200), hence, subsequently, we will use this for calculations.
b.) If you contribute $830 every month, the company will be willing to contribute half this amount, which is:
half of $830 = 830 ÷ 2 = $415
Therefore, if you contribute $830 per month, your company will contribute $415 per month.
c.) The maximum amount the company will be willing to contribute each year = 8% of salary per year
= [tex]= \frac{8}{100}\times 85,000 \\ =0.08\ \times\ 85,000 = \$6,800[/tex]
Therefore, the company will be willing to contribute $6,800 per year.
The Centers for Disease Control and Prevention (CDC) report that gastroenteritis, or stomach flu, is the most frequently reported type of recreational water illness. Gastroenteritis is a viral or bacterial infection that spreads through contaminated food and water. Suppose that inspectors wish to determine if the proportion of public swimming pools nationwide that fail to meet disinfectant standards is different from 10.7%, which was the proportion of pools that failed the last time a comprehensive study was done, 2008.
A simple random sample of 30 public swimming pools was obtained nationwide. Tests conducted on these pools revealed that 26 of the 30 pools had the required pool disinfectant levels.
Does this sample meet the requirements for conducting a one-sample z ‑test for a proportion?
a. No, the requirements are not met because the population standard deviation is not known.
b. No, the requirements are not met because the sample has fewer than 10 failures, which violates the condition for approximating a normal distribution.
c. No, the requirements are not met because the sample is not random, even though the number of successes and the number of failures are both at least 10, ensuring that the distribution is approximately normal.
d. Yes, the requirements are met because the sample size is more than 30, ensuring that the distribution is approximately normal.
e. Yes, the requirements are met because the number of successes and the number of failures of this random sample are both at least 10, ensuring that the distribution is approximately normal.
b. No, the requirements are not met because the sample has fewer than 10 failures, which violates the condition for approximating a normal distribution.
Step-by-step explanation:
from the question, the number of successes is equal to 30
and it is more than the number of failures
for us to conduct this test such as the z test the data we are using should be a random sample from the population that we are interested in. the population should be at least as big as the sample by 10 times. first of all We need to check if the mean of the sample is normally distributed.
if 26 are successes out of a sample of 30, then failures would be 4. therefore option b is correct.
What is the volume of a sphere, to the nearest cubic inch, if the radius is 16 inches? Use π = 3.14.
Answer:
vol = 17,148 cu. in.
Step-by-step explanation:
vol = 4 / 3 * pi * r³
vol = 4 / 3 *3.14 * 16³
vol = 17,148 cu. in.
Answer:
The answer is
17149 cubic inchesStep-by-step explanation:
Volume of a sphere is given by
[tex]V = \frac{4}{3} \pi {r}^{3} [/tex]
where r is the radius of the sphere
π = 3.14
From the question
r = 16 inches
Volume of the sphere is
[tex]V = \frac{4}{3} (3.14) {16}^{3} [/tex]
V = 17148.586
We have the final answer as
V = 17149 cubic inches to the nearest cubic inch
Hope this helps you
Find x.
60°
45°
6
—————
Answer:
Step-by-step explanation:
Suppose that a box contains 6 cameras and that 3 of them are defective. A sample of 2 cameras is selected at random. Define the random variable X as the number of defective cameras in the sample. Write the binomial probability distribution for X . Round to two decimal places.
Answer:
X ~ Binom (n = 6, p = 0.50)
Step-by-step explanation:
We are given that a box contains 6 cameras and that 3 of them are defective.
A sample of 2 cameras is selected at random.
Let X = Number of defective cameras in the sample.
The above situation can be represented through binomial distribution;
[tex]P(X=r)= \binom{n}{r}\times p^{r} \times (1-p)^{n-r} ;x = 0,1,2,3,......[/tex]
where, n = number of trials (samples) taken = 2 cameras
x = number of success
p = probabilitiy of success which in our question is probability that
cameras are defective, i.e. p = [tex]\frac{3}{6}[/tex] = 0.50
So, X ~ Binom (n = 2, p = 0.50)
Now, the binomial probability distribution for X is given by;
[tex]P(X=r)= \binom{6}{r}\times 0.5^{r} \times (1-0.5)^{6-r} ;r = 0,1,2[/tex]
Here, the number of success can be 0, 1, or 2 defective cameras.
What is credit?
an arrangement in which you receive money, goods, or services now in exchange for the promise of payment later
an arrangement in which you receive goods or services in exchange for other goods and services
an arrangement in which you receive money now and pay it bulk later with fees?
Help please!!! Tyyyyy
Answer:
D) 60 degree
Step-by-step explanation:
Let's connect the remaining diagonal, which forms a triangle containing angle x.
As a property of regular hexagon, all diagonals are equal.
=> The formed triangle is a regular triangle and it has three equal angles, which are 60 degrees.
what's the formula for sum of
geometric progression
Answer:
Hello,
Step-by-step explanation:
[tex]u_1\ is\ the \ first\ term\ of\ the\ gp\\q\ is \ the\ common\ ratio\\\\\\\boxed{u_n=u_1*\dfrac{q^n-1}{q-1} }[/tex]
At the beginning of a basketball season, the Spartans won 35 games out of 98 games. At this rate, how many games will they win in a normal 116 game season?
What is the solution to the linear equation?
2/5 + p = 4/5 + 3/5p
Answer:
p = 1Step-by-step explanation:
[tex] \frac{2}{5} + p = \frac{4}{5} + \frac{3}{5} p[/tex]
Multiply through by the LCM
The LCM for the equation is 5
That's
[tex]5 \times \frac{2}{5} + 5p = 5 \times \frac{4}{5} + \frac{3}{5}p \times 5[/tex]
We have
2 + 5p = 4 + 3p
Group like terms
5p - 3p = 4 - 2
2p = 2
Divide both sides by 2
We have the final answer as
p = 1Hope this helps you
Help me out!! Anyone
Answer:
4:10
Step-by-step explanation:
if they have to wait for plane B and it arrives every 10 mins then 4:10 is the anser
A string passing over a smooth pulley carries a stone at one end. While its other end is attached to a vibrating tuning fork and the string vibrates forming 8 loops. When the stone is immersed in water 10 loops are formed. The specific gravity of the stone is close to
A) 1.8
B) 4.2
C) 2.8
D) 3.2
Answer:
correct option is C) 2.8
Step-by-step explanation:
given data
string vibrates form = 8 loops
in water loop formed = 10 loops
solution
we consider mass of stone = m
string length = l
frequency of tuning = f
volume = v
density of stone = [tex]\rho[/tex]
case (1)
when 8 loop form with 2 adjacent node is [tex]\frac{\lambda }{2}[/tex]
so here
[tex]l = \frac{8 \lambda _1}{2}[/tex] ..............1
[tex]l = 4 \lambda_1\\\\\lambda_1 = \frac{l}{4}[/tex]
and we know velocity is express as
velocity = frequency × wavelength .....................2
[tex]\sqrt{\frac{Tension}{mass\ per\ unit \length }}[/tex] = f × [tex]\lambda_1[/tex]
here tension = mg
so
[tex]\sqrt{\frac{mg}{\mu}}[/tex] = f × [tex]\lambda_1[/tex] ..........................3
and
case (2)
when 8 loop form with 2 adjacent node is [tex]\frac{\lambda }{2}[/tex]
[tex]l = \frac{10 \lambda _1}{2}[/tex] ..............4
[tex]l = 5 \lambda_1\\\\\lambda_1 = \frac{l}{5}[/tex]
when block is immersed
equilibrium eq will be
Tenion + force of buoyancy = mg
T + v × [tex]\rho[/tex] × g = mg
and
T = v × [tex]\rho[/tex] - v × [tex]\rho[/tex] × g
from equation 2
f × [tex]\lambda_2[/tex] = f × [tex]\frac{1}{5}[/tex]
[tex]\sqrt{\frac{v\rho _{stone} g - v\rho _{water} g}{\mu}} = f \times \frac{1}{5}[/tex] .......................5
now we divide eq 5 by the eq 3
[tex]\sqrt{\frac{vg (\rho _{stone} - \rho _{water})}{\mu vg \times \rho _{stone}}} = \frac{fl}{5} \times \frac{4}{fl}[/tex]
solve irt we get
[tex]1 - \frac{\rho _{stone}}{\rho _{water}} = \frac{16}{25}[/tex]
so
relative density [tex]\frac{\rho _{stone}}{\rho _{water}} = \frac{25}{9}[/tex]
relative density = 2.78 ≈ 2.8
so correct option is C) 2.8
According to the United States Golf Association, the diameter of a golf ball should not be less than 42.67 millimeters. What is the estimate of this value rounded to the nearest tenth of a millimeter?
Answer:
42.7 mm
Step-by-step explanation:
To the nearest tenth of a mm, 42.67 mm would be 42.7 mm.
After estimate of this value rounded to the nearest tenth of a millimeter,
⇒ 42.67 ≈ 42.7
We have to given that,
According to the United States Golf Association, the diameter of a golf ball should not be less than 42.67 millimeters.
Hence, After estimate of this value rounded to the nearest tenth of a millimeter, we get;
⇒ 42.67
As, 7 is grater than 5, so we can add 1 to the tenth place.
⇒ 42.67 ≈ 42.7
Therefore, After estimate of this value rounded to the nearest tenth of a millimeter,
⇒ 42.67 ≈ 42.7
Learn more about the rounding number visit:
brainly.com/question/27207159
#SPJ2
A recent survey of 1090 U.S. adults selected at random showed that 623 consider the occupation of firefighter to have very great prestige. Estimate the probability (to the nearest hundredth) that a U.S. adult selected at random thinks the occupation of firefighter has very great prestige.
Answer:
0.572
Step-by-step explanation:
From the question,
We have
n = 1090 of US adults
x = 623 selected from this population at random who consider the occupation to be one of great prestige
So we have that
The probability of X = x/n
= 623/1090
= 0.572
We conclude that 0.572 is the probability that a US adult selected at random thinks the occupation has great prestige.
Find A when =$275 , R=0,09 and T=4 in the formula A=prt
Answer:
A = $99
Step-by-step explanation:
Substitute the values for the variables and multiply them together.
[tex]A=prt\\A=(275)(0.09)(4)\\A=99[/tex]
A baseball player has a batting average of 0.26. What is the probability that he has exactly 2 hits in his next 7 at bats
Answer:
The probability is [tex]P(2) = 0.426[/tex]
Step-by-step explanation:
From the question we are told that
The probability of success is [tex]p = 0.26[/tex]
The number of hits is n = 7
Generally this probability follows a binomial distribution given there can only be two outcome i.e the probability of success and the probability of failure
The probability of failure is [tex]q = 1- p[/tex]
substituting values
[tex]q = 1 - 0.26[/tex]
[tex]q = 0.74[/tex]
Now the probability of exactly 2 hits in his next 7 at bats is mathematically evaluated as
[tex]P(2) = \left n} \atop {}} \right. C_2 *p^{2} * q^{n- 2}[/tex]
substituting values
[tex]P(2) = \left 7} \atop {}} \right. C_2 *p^{2} * q^{7- 2}[/tex]
Here [tex]\left 7} \atop {}} \right. C_2[/tex] means 7 combination 2 and using a calculator(reference calculator soup website) to compute, the value obtained is
[tex]\left 7} \atop {}} \right. C_2 =21[/tex]
So
[tex]P(2) = 21 *(0.26)^{2} * (0.74)^{5}[/tex]
[tex]P(2) = 0.426[/tex]
Determine two pairs of polar coordinates for the point (4, -4) with 0° ≤ θ < 360°.
Answer:
[tex] \sqrt{4 {}^{2} + ( - 4) {}^{2} } [/tex]
[tex] \sqrt{32} [/tex]
and the angle
[tex] \tan( \alpha ) = - 4 \div 4 = - 1[/tex]
and since the sin component is -ve, we have our angle on 4th quadrant, which equals 315 degrees
Options:
Determine two pairs of polar coordinates for the point (-4, 4) with 0° ≤ θ < 360°. (5 points)
Group of answer choices
(4 , 135°), (-4 , 315°)
(4 , 45°), (-4 , 225°)
(4 , 315°), (-4 , 135°)
(4 , 225°), (-4 , 45°)
Step-by-step explanation:
The guy asking forgot to provide the options you can comment the awnswe in the comments just do it before brainly turns off comments to try and prevent people from learning
Kelvin wants to know whether he skied without falling more than twice as long as anyone else in his family. His dad tells him that he can check by using the inequality 2f < 223, where f is the time skied in seconds for each person. Plug the values for the time skied by each person into the inequality to find the answer.
Lori 55
Vanessa 265
Devon 172
Celia 112
Arnold 356
Answer:
Kelvin did not skied without falling more than twice as long as anyone else in his family.
Step-by-step explanation:
The inequality representing the event where Kelvin skied without falling more than twice as long as anyone else in his family is:
[tex]2f<223[/tex]
Here 223 is the time for Kelvin.
Check for Lori as follows:[tex]2f<223[/tex]
[tex]2\times 55=110<223[/tex]
Kelvin skied without falling more than twice as long as Lori.
Check for Vanessa as follows:[tex]2f<223[/tex]
[tex]2\times 265=530>223[/tex]
Kelvin skied without falling less than twice as long as Vanessa.
Check for Devon as follows:[tex]2f<223[/tex]
[tex]2\times 172=344>223[/tex]
Kelvin skied without falling less than twice as long as Devon.
Check for Celia as follows:[tex]2f<223[/tex]
[tex]2\times 112=224>223[/tex]
Kelvin skied without falling less than twice as long as Celia.
Check for Arnold as follows:[tex]2f<223[/tex]
[tex]2\times 356=712>223[/tex]
Kelvin skied without falling less than twice as long as Arnold.
Thus, Kelvin did not skied without falling more than twice as long as anyone else in his family.
Answer:
Yes, Kevin skied 2x as long as Lori.
Step-by-step explanation:
Kevin's time was 223 seconds; Lori's time was 110 seconds.
110^2 = 220 or 110 multiplied by 2 equals 220 or 110 x 2 = 220 or
110 * 2 = 220
Thus, Kevin indeed, skied twice as long as Lori.
Twelve apples cost $2.00. How much will 50 apples cost?
Answer:
$8.33
Step-by-step explanation:
[tex]Solve \:using \: proportion\\\\12\:apples = \$ 2\\50\:apples = \$ x\\Cross \: Multiply\\\\12x = 100\\\\\\\frac{12x}{12} = \frac{100}{12} \\\\x = \$ 8.333[/tex]
Answer:
About $8.33.
Step-by-step explanation:
Write a proportion. Make sure the values line up horizontally:
[tex]\frac{12\text{ apples}}{\$2} =\frac{50\text{ apples}}{\$x}[/tex]
Cross multiply:
[tex]100=12x\\x=25/3\approx\$8.33[/tex]