Answer:
8)5.1*10⁶
9)6.98*10 to the power of -6
10) 3.000052*10⁰
11)0.006548
The graph of y = 1/2 x2 + 2x + 3 is shown. What are the solutions to the equation 1/2 x2 + 2x + 3 = x + 7?
Answer:
Step-by-step explanation:
Let's organise our information :
the function is (1/2)x²+2x+3we want to khow the value of x that gives us : (1/2)x²+2x+3=x+7
Now the trick is to write this expression as a quadratic equation with zero at one side :
(1/2)x²+2x+3=x+7 (1/2)x²+2x+3-x-7=0(1/2)x²+x-4=0Now let's solve this equation :
a= 1/2b= 1c= -4Δ=1²-4*(1/2)*(-4)
= 9
So we have two solutions :
[tex]\left \{ {{y=\frac{-1-3}{2*0.5} } \atop {x=\frac{-1+3}{2*0.5} }} \right.[/tex]y= -4x= 2So the solutions are -4 and 2
Look at the picture for the question ........................
Answer:
53/28
Step-by-step explanation:
100 g jam
19 g strawberries53 g blackberriesSugar= 100-(19+53)= 28 gBlackberry / sugar= 53/28
Answer:
53:28Solution,
Amount of sugar=100-(19+53)
=100-72
=28 gram
Ratio of blackberries to sugar=53/28
=53:28
Hope this helps..
Good luck on your assignment..
Quadrilaterals WXYZ and BADC are congruent. In addition, WX ≅ DC and XY ≅ BC.
If AD = 4 cm and AB = 6 cm, what is the perimeter of WXYZ?
18 cm
20 cm
22 cm
24 cm
Answer: 20 cm
If quadrilaterals WXYZ and BADC are congruent, then their corresponding sides are congruent.
Given that
WX≅DC,
XY≅BC,
you can state that
YZ≅AB,
WZ≅AD.
If AD = 4 cm and AB = 6 cm, then WZ = 4 cm and YZ = 6 cm. Opposite rectangle sides are congruent, then XY = 4 cm and WX = 6 cm.
The perimeter of WXYZ is
P = WX + XY + YZ + WZ = 6 + 4 + 6 + 4 = 20 cm.
PLEASE HELP!!! You want to distribute 7 candies to 4 kids. If every kid must receive at least one candy, in how many ways can you do this?
Answer:
1140 ways.
Step-by-step explanation:
The applicable formula is: (n +r - 1)C(r-1), where n is the number of identical items (the candies), and r is the possible number of recipients (the kids).
The 17 identical candies, can be distributed among the 4 children in :
=(17 + 4 - 1)C(4–1) = 20C3 ways.
= 20!/((20–3)!*3!) ways.
= 20*19*18*17!/(17!*(3*2*1)) = 20*19*18/6 ways
= 20*19*3 ways.
=1140 ways.
How do I calculate velocity?
Answer:
v = Δs/Δt
Step-by-step explanation:
Velocity is equal to the displacement/distance (delta symbol s) over the change of time (delta symbol t).
Please answer this correctly
Answer:
1/9
Step-by-step explanation:
first, u need 9 ---> 1/3
then u need 8 ---> 1/3 also
Multiply them and get...1/9
Q‒1. [5×4 marks] a) How many three-digit numbers can be formed from the digits 0, 1, 2, 3, 4, 5, and 6? (150) b) How many three-digit numbers can be formed from the digits 0, 1, 2, 3, 4, 5, and 6 if each digit can be used only once? c) How many odd numbers can be formed from the digits 0, 1, 2, 3, 4, 5, and 6 if each digit can be used only once? d) How many three-digit numbers greater than 330 can be formed from the digits 0, 1, 2, 3, 4, 5, and 6? e) How many three-digit numbers greater than 330 can be formed from the digits 0, 1, 2, 3, 4, 5, and 6 if each digit can be used only once?
Answer:
a) 294
b) 180
c) 75
d) 174
e) 105
Step-by-step explanation:
I assume that for each problem, the first digit can't be 0.
a) There are 6 digits that can be first, 7 digits that can be second, and 7 digits that can be third.
6×7×7 = 294
b) This time, no digit can be used twice, so there are 6 digits that can be first, 6 digits that can be second, and 5 digits that can be third.
6×6×5 = 180
c) Again, each digit can only be used once, but this time, the last digit must be odd.
If only the last digit is odd, there are 3×3×3 = 27 possible numbers.
If the first and last digits are odd, there are 3×4×2 = 24 possible numbers.
If the second and last digits are odd, there are 3×3×2 = 18 possible numbers.
If all three digits are odd, there are 3×2×1 = 6 possible numbers.
The total is 27 + 24 + 18 + 6 = 75.
d) If the first digit is 3, and the second digit is 3, there are 1×1×6 = 6 possible numbers.
If the first digit is 3, and the second digit is greater than 3, there are 1×3×7 = 21 possible numbers.
If the first digit is greater than 3, there are 3×7×7 = 147 numbers.
The total is 6 + 21 + 147 = 174.
e) If the first digit is 3, and the second digit is greater than 3, then there are 1×3×5 = 15 possible numbers.
If the second digit is greater than 3, there are 3×6×5 = 90 possible numbers.
The total is 15 + 90 = 105.
In the morning, Marco sold 12 cups of lemonade for $3. By the end of the day, he had earned $9. How many cups of lemonade did he sell in all? Kaycee wrote the proportion 12/3=9/c for this situation identifly the error and give tow ways to write the proportion correctly
Answer:
36 cups
3/12 = 9/c
Step-by-step explanation
3 ÷ 12 = .25
each cup = 25 cents
9 ÷ .25 = 36
Marco sold 36 cups of lemonade.
3/12 = 9/c
Answer:
36 cups
Step-by-step explanation:
We can set up a proportion:
12/3=c/9
Cross multiply.
12*9=3*c
108=3c
Divide both sides by 3.
c=36
The error that the proportion Kaycee set up was
cups/price=price/cups
This is not proportionate.
Possible proportions include:
cups/price=cups/price
price/cups=price/cups
cups/cups=price/price
price/price=cups/cups
Two identical decks of 52 cards are mixed together, yielding a stack of 104 cards. How many different ways are there to order this stack of 104 cards?
Answer:
here the order will be 104! =[tex]1.029e^{166}[/tex]
Step-by-step explanation:
since the cards are to arranged in no particular order that is why we used combination to find the result.
Combination can simply be explained as the method of selecting items from a collection of items where the order of the selections does not matter.
Julie has three boxes of pens. The diagram shows expressions for the number of pens in each box. Look at these equations.
Equals B +12
B equals C +4
Write an equation to show the relationship between a + c
Answer:
a=c+16here,
a=b+12
b=a-12----> equation (i)
b= c+4
putting the value of b from the equation (I)
a-12=c+4
a=c+4+12
a=c+16
hope this helps...
Good luck on your assignment...
The value of a + c is 16.
What is Algebra?A branch of mathematics known as algebra deals with symbols and the mathematical operations performed on them.
Variables are the name given to these symbols because they lack set values.
In order to determine the values, these symbols are also subjected to various addition, subtraction, multiplication, and division arithmetic operations.
Given:
a=b+12
So, b=a-12 ---- equation (i)
and, b= c+4
Substitute the value of b from the equation (I)
a-12=c+4
a=c+4+12
a=c+16
Hence, the value of a+ c is 16.
Learn more about Algebra here:
https://brainly.com/question/24875240
#SPJ2
The mayor of a town has proposed a plan for the construction of an adjoining community. A political study took a sample of 900 voters in the town and found that 45% of the residents favored construction. Using the data, a political strategist wants to test the claim that the percentage of residents who favor construction is over 42%. Determine the P-value of the test statistic. Round your answer to four decimal places.
Answer:
P-value = 0.0367
Step-by-step explanation:
This is a hypothesis test for a proportion.
The claim is that the percentage of residents who favor construction is significantly over 42%.
Then, the null and alternative hypothesis are:
[tex]H_0: \pi=0.42\\\\H_a:\pi>0.42[/tex]
The sample has a size n=900.
The sample proportion is p=0.45.
The standard error of the proportion is:
[tex]\sigma_p=\sqrt{\dfrac{\pi(1-\pi)}{n}}=\sqrt{\dfrac{0.42*0.58}{900}}\\\\\\ \sigma_p=\sqrt{0.000271}=0.016[/tex]
Then, we can calculate the z-statistic as:
[tex]z=\dfrac{p-\pi-0.5/n}{\sigma_p}=\dfrac{0.45-0.42-0.5/900}{0.016}=\dfrac{0.029}{0.016}=1.79[/tex]
This test is a right-tailed test, so the P-value for this test is calculated as:
[tex]\text{P-value}=P(z>1.79)=0.0367[/tex]
Copy the diagram and oaloulate the sizes of
a bº and cº. What is the sum of the angles of
the triangle?
Answer:
sum of the angles of the triangle are 180°
Step-by-step explanation:
To find the sum of the interior angles, we use the formula( s-2*180), where s is the number of sides of the shape. If it is a pentagon, 5-2*180= 3*180= 540,
which shows that the sum of the interior angles of a pentagon is 540.
since, it is a triangle in the figure with 3 sides, 3-2*180=1*180=180.
The interior angles are unknown= a, b and c. we know that a+b+c=180 degrees and the exterior angles are mentioned. And we know that, opposite angles are equal. So, a is 40 degrees considering that 40 degrees is the opposite angle of a, b is 95 degrees whereas c is 45 degrees.
now, lets check if the angles indeed have a sum of 180 degrees,
40+95+45= 135+45 which gives 180 degrees.
Answer:
180°
Step-by-step explanation:
→ Angles in a triangles always add up to 180, we can prove this by calculating a, b and c so,
a = 40° (vertical angles are equal)
b = 95° (vertical angles are equal)
c = 45° (vertical angles are equal)
40 + 45 + 95 = 85 + 95 = 180°
Kurtis is a statistician who claims that the average salary of an employee in the city of Yarmouth is no more than $55,000 per year. Gina, his colleague, believes this to be incorrect, so she randomly selects 61 employees who work in Yarmouth and records their annual salaries. Gina calculates the sample mean income to be $56,500 per year with a sample standard deviation of 3,750. Using the alternative hypothesis Ha:μ>55,000, find the test statistic t and the p-value for the appropriate hypothesis test. Round the test statistic to two decimal places and the p-value to three decimal places.
Degrees of Freedom
0.0004 0.0014 0.0024 0.0034 0.0044 0.0054 0.0064
54 3.562 3.135 2.943 2.816 2.719 2.641 2.576
55 3.558 3.132 2.941 2.814 2.717 2.640 2.574
56 3.554 3.130 2.939 2.812 2.716 2.638 2.572
57 3.550 3.127 2.937 2.810 2.714 2.636 2.571
58 3.547 3.125 2.935 2.808 2.712 2.635 2.569
59 3.544 3.122 2.933 2.806 2.711 2.633 2.568
60 3.540 3.120 2.931 2.805 2.709 2.632 2.567
Answer:
Test statistic t = 3.12
P-value = 0.001
As the P-value (0.001) is smaller than the significance level (0.05), the effect is significant.
The null hypothesis is rejected.
There is enough evidence to support the claim that the average salary of an employee in the city of Yarmouth is is significantly greater than $55,000 per year.
Step-by-step explanation:
This is a hypothesis test for the population mean.
The claim is that the average salary of an employee in the city of Yarmouth is is significantly greater than $55,000 per year (Gina's claim).
Then, the null and alternative hypothesis are:
[tex]H_0: \mu=55000\\\\H_a:\mu> 55000[/tex]
The significance level is 0.05.
The sample has a size n=61.
The sample mean is M=56500.
As the standard deviation of the population is not known, we estimate it with the sample standard deviation, that has a value of s=3750.
The estimated standard error of the mean is computed using the formula:
[tex]s_M=\dfrac{s}{\sqrt{n}}=\dfrac{3750}{\sqrt{61}}=480.138[/tex]
Then, we can calculate the t-statistic as:
[tex]t=\dfrac{M-\mu}{s/\sqrt{n}}=\dfrac{56500-55000}{480.138}=\dfrac{1500}{480.138}=3.12[/tex]
The degrees of freedom for this sample size are:
df=n-1=61-1=60
This test is a right-tailed test, with 60 degrees of freedom and t=3.12, so the P-value for this test is calculated as (using a t-table):
[tex]\text{P-value}=P(t>3.12)=0.001[/tex]
As the P-value (0.001) is smaller than the significance level (0.05), the effect is significant.
The null hypothesis is rejected.
There is enough evidence to support the claim that the average salary of an employee in the city of Yarmouth is is significantly greater than $55,000 per year.
A random sample of 13 items is drawn from a population whose standard deviation is unknown. The sample mean is x¯ = 950 and the sample standard deviation is s = 10. Use Appendix D to find the values of Student’s t.
1. Construct an interval estimate of mu with 99% confidence. (Round your answers to 3 decimal places.)
The 99% confidence interval is from_____ to ______ .
2. Construct an interval estimate of mu with 99% confidence, assuming that s = 20. (Round your answers to 3 decimal places.)
The 99% confidence interval is from_____ to ______ .
3. Construct an interval estimate of mu with 99% confidence, assuming that s = 40. (Round your answers to 3 decimal places.)
The 99% confidence interval is from_____ to ______ .
Answer:
1. The 99% confidence interval is from 941.527 to 958.473
2. The 99% confidence interval is from 933.054 to 966.946
3. The 99% confidence interval is from 916.108 to 983.892
Step-by-step explanation:
The confidence interval is given by
[tex]\text {confidence interval} = \bar{x} \pm MoE\\\\[/tex]
Where [tex]\bar{x}[/tex] is the sample mean and Margin of error is given by
[tex]$ MoE = t_{\alpha/2}(\frac{s}{\sqrt{n} } ) $ \\\\[/tex]
Where n is the sample size,
s is the sample standard deviation,
[tex]t_{\alpha/2[/tex] is the t-score corresponding to some confidence level
The t-score corresponding to 99% confidence level is
Significance level = α = 1 - 0.99 = 0.01/2 = 0.005
Degree of freedom = n - 1 = 13 - 1 = 12
From the t-table at α = 0.005 and DoF = 12
t-score = 3.055
1. 99% Confidence Interval when s = 10
The margin of error is
[tex]MoE = t_{\alpha/2}(\frac{s}{\sqrt{n} } ) \\\\MoE = 3.055\cdot \frac{10}{\sqrt{13} } \\\\MoE = 3.055\cdot 2.7735\\\\MoE = 8.473\\\\[/tex]
So the required 99% confidence interval is
[tex]\text {confidence interval} = \bar{x} \pm MoE\\\\\text {confidence interval} = 950 \pm 8.473\\\\\text {confidence interval} = 950 - 8.473, \: 950 + 8.473\\\\\text {confidence interval} = (941.527, \: 958.473)\\\\[/tex]
The 99% confidence interval is from 941.527 to 958.473
2. 99% Confidence Interval when s = 20
The margin of error is
[tex]MoE = t_{\alpha/2}(\frac{s}{\sqrt{n} } ) \\\\MoE = 3.055\cdot \frac{20}{\sqrt{13} } \\\\MoE = 3.055\cdot 5.547\\\\MoE = 16.946\\\\[/tex]
So the required 99% confidence interval is
[tex]\text {confidence interval} = \bar{x} \pm MoE\\\\\text {confidence interval} = 950 \pm 16.946\\\\\text {confidence interval} = 950 - 16.946, \: 950 + 16.946\\\\\text {confidence interval} = (933.054, \: 966.946)\\\\[/tex]
The 99% confidence interval is from 933.054 to 966.946
3. 99% Confidence Interval when s = 40
The margin of error is
[tex]MoE = t_{\alpha/2}(\frac{s}{\sqrt{n} } ) \\\\MoE = 3.055\cdot \frac{40}{\sqrt{13} } \\\\MoE = 3.055\cdot 11.094\\\\MoE = 33.892\\\\[/tex]
So the required 99% confidence interval is
[tex]\text {confidence interval} = \bar{x} \pm MoE\\\\\text {confidence interval} = 950 \pm 33.892\\\\\text {confidence interval} = 950 - 33.892, \: 950 + 33.892\\\\\text {confidence interval} = (916.108, \: 983.892)\\\\[/tex]
The 99% confidence interval is from 916.108 to 983.892
As the sample standard deviation increases, the range of confidence interval also increases.
Melvin has game and education apps on his tablet. He noticed that he has 3 game apps for every 2 education apps. Which of the following is another way to write this ratio? 1:2 2:1 2:3 3:2
3:3
Answer:
3: 2
Step-by-step explanation:
game Apps: education apps:
3: 2
Could someone explain how to find square roots please?
Answer: graphing calculator!
Step-by-step explanation: if you’re looking for the square root of a # that isn’t a perfect square (ie. sqrt4, sqrt 36) then you have to use a calculator for that. however the idea behind square roots is just a # multiplied by itself to give the original #. just ask yourself “what can i multiply by itself to get the original number”. hope that helped !
Answer:
By multiplying the number by its power 2.
E.g= 4^2
helppppppppp hurryyyyyyyyyyyyyyyyyyyyyyyy
Answer:
2
Step-by-step explanation:
I would have to say it is two bc Everitt had 30% where Desery had 20%.
A department store chain is expanding into a new market, and is considering 13 different sites on which to locate 5 stores. Assuming that each site is equally likely to be chosen, in how many ways can the sites for the new stores be selected?
Answer:
Hope it helps you :)
And i hope you understand
For store 1, it can be placed on 16 sites. Store 2 can be placed on 15 sites( since store 1 is already on site 1). Store 3 can be placed on 14 sites and so on until store 5 which has 12 sites.
Therefore the number of way is
C= 16*15*14*13*12
c=524,160 possibilities
I NEED HELP PLEASE, THANKS! :)
Answer:
Option B
Step-by-step explanation:
Again, another great question! Here we are given the following system of equations, bound by quadrant 1 -
[tex]\begin{bmatrix}2x+7y\le \:70\\ 8x+4y\le \:136\end{bmatrix}[/tex]
Convert this to slope - intercept form -
[tex]\begin{bmatrix}y\le \frac{70-2x}{7}\\ y\le \:2\left(-x+17\right)\end{bmatrix}[/tex]
Now the graphed solution of this intersects at a shaded region with which there are 3 important point that lie on the border. They are the following -
( 0, 10 ),
( 15, 9 ),
( 17, 0 )
When these point are plugged into the main function f ( x, y ) = 2x + 6y, the point ( 15, 9 ) results in the greatest solution of 84. Thus, it is our maximum point -
Option B
Sales personnel for Skillings Distributors submit weekly reports listing the customer contacts made during the week. A sample of 65 weekly reports showed a sample mean of 17.5 customer contacts per week. The sample standard deviation was 4.2.
Required:
Provide 90%90% and 95%95% confidence intervals for the population mean number of weekly customer contacts for the sales personnel.
Answer:
Since the Confidence is 0.90 or 90%, the value of [tex]\alpha=0.1[/tex] and [tex]\alpha/2 =0.05[/tex], and the critical value would be [tex]t_{\alpha/2}=1.669[/tex]
And replacing we got
[tex]17.5-1.669\frac{4.2}{\sqrt{65}}=16.63[/tex]
[tex]17.5+1.669\frac{4.2}{\sqrt{65}}=18.37[/tex]
For the 95% confidence the critical value is [tex]t_{\alpha/2}=1.998[/tex]
[tex]17.5-1.998\frac{4.2}{\sqrt{65}}=16.46[/tex]
[tex]17.5+1.998\frac{4.2}{\sqrt{65}}=18.54[/tex]
Step-by-step explanation:
Information given
[tex]\bar X¿ 17.5[/tex] represent the sample mean
[tex]\mu[/tex] population mean (variable of interest)
s¿4.2 represent the sample standard deviation
n¿65 represent the sample size
Confidence interval
The confidence interval for the mean is given by the following formula:
[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)
The degrees of freedom are given by:
[tex]df=n-1=65-1=64[/tex]
Since the Confidence is 0.90 or 90%, the value of [tex]\alpha=0.1[/tex] and [tex]\alpha/2 =0.05[/tex], and the critical value would be [tex]t_{\alpha/2}=1.669[/tex]
And replacing we got
[tex]17.5-1.669\frac{4.2}{\sqrt{65}}=16.63[/tex]
[tex]17.5+1.669\frac{4.2}{\sqrt{65}}=18.37[/tex]
For the 95% confidence the critical value is [tex]t_{\alpha/2}=1.998[/tex]
[tex]17.5-1.998\frac{4.2}{\sqrt{65}}=16.46[/tex]
[tex]17.5+1.998\frac{4.2}{\sqrt{65}}=18.54[/tex]
Juanita wants to buy 12.5 pounds of stones to decorate her garden. The stone normally sells for $1.80 a pound. The salesman offers her a total price of $21.25. How much is she saving per pound with the salesman’s offer? Round to the nearest hundredth.
Answer:
She is saving 10 cents per pound
Step-by-step explanation:
First, we need to find how much she would pay without the sale:
12.5(1.8) = 22.5
Now, we can calculate how much she saved:
22.5 - 21.25 = 1.25
To find how much she's saving per pound, we divide the difference by the number of pounds:
1.25/12.5 = 0.1
She is saving 10 cents per pound
Answer:
A
Step-by-step explanation:
I took the test and got it right
what 4.2 times 0.7 /a is 294 /b is 2.94 /c 29.4
Answer:
29.4
Step-by-step explanation:
Answer:
2.94
Step-by-step explanation:
4.2 × 0.7 = 2.94
Evaluate. Write your answer as a fraction or whole number without exponents. 3^–3 =
Answer:
The answer is 1/27
Step-by-step explanation:
According to the rules of indices
a^-b can be written as 1/a^b
So 3^- 3 can be written as 1/3³
And
1/3³ = 1/27
Hope this helps you
Tammy and Lawrence like to bike competitively. Tammy biked seven less than three times the number of miles that Lawrence biked. If c represents the number of miles Lawrence biked, write an expression for the number of miles Tammy biked.
Answer:
3c - 7
Step-by-step explanation:
c - the number of miles Lawrence biked
Tammy biked seven less than three times the number of miles that Lawrence biked.
So, 3 x c (the # of miles Lawrence biked) - 7 (she biked seven less)
The answer is 3c - 7.
Calculate
(14x5x4) / (28 x 2)
Answer:
5
Step-by-step explanation:
(14 × 5 × 4) ÷ (28 × 2)
Solve brackets.
280 ÷ 56
Divide.
= 5
Which two equations are the equations of vertical asymptotes of the function y = 5∕3 tan(3∕4x)?
A) x-2pi/3 and x=-2pi/3
B) x=0 and x=2pi/3
C) x=4pi/3 and x =4pi/3
D) x=0 and x=4pi/3
I did not know how to paste the pi symbol so I used the letters (pi)
Answer:
A)x=2pi/3 and x=-2pi/3
Step-by-step explanation:
The function [tex]y=\frac{5}{3}tan(\frac{3}{4}x)[/tex] has vertical asymptotes in the values where the tan(a) has vertical asymptotes.
we know that tan(a) has vertical asymptotes in [tex]a=\frac{\pi }{2}[/tex] and [tex]a=\frac{-\pi }{2}[/tex], if we made [tex]a=\frac{3x}{4}[/tex] and solve for x, we get:
for [tex]a=\frac{\pi }{2}[/tex]
[tex]\frac{\pi }{2} =\frac{3x}{4}\\x = \frac{2\pi }{3}[/tex]
for [tex]a=\frac{-\pi }{2}[/tex]
[tex]\frac{-\pi }{2} =\frac{3x}{4}\\x = \frac{-2\pi }{3}[/tex]
Finally, the function [tex]y=\frac{5}{3}tan(\frac{3}{4}x)[/tex] has vertical asymptotes in the values x=2pi/3 and x=-2pi/3
Answer:
A
Step-by-step explanation:
Diane's bank is offering 5% interest, compounded monthly. If Diane invests $10,500 and wants $20,000 when she withdrawals, how long should she keep her money in for? Round to the nearest tenth of a year.
Answer:
The time period is 13 years.
Step-by-step explanation:
Interest rate (r )= 5% or 5%/12 = 0.42% per months
The investment amount (Present value) = $10500
Final expected amount (future value) = $20000
Since we have given the initial amount and final amount. Therefore we have to calculate the time period for which the initial amount is kept in the bank.
Use the below formula to find the time period.
Future value = present value (1 + r )^n
20000 = 10500(1+0.0042)^n
1.9047619 = (1+0.0042)^n
1.9047619 = 1.0042^n
n = 153.74 months.
Time in years = 153.74 / 12 = 12.8 years or 13 years (round off)
What is the measure of angle S?
480
56°
930
101°
Answer:
m∠s = 93°
Step-by-step explanation:
We know that any quadrilateral's sum of angles adds up to 360°. In that case,
360 - (56 + 132 + 79) = m∠s
m∠s = 93°
Answer:
S° = 93 °
Step-by-step explanation:
[tex]The- diagram- is- a- trapezoid (quadrilateral)\\Sum- of- angles-in a- quadrilateral = 360\\ 132\° + 56\° + 79\° + x\° = 360\° \\267\° + x\° = 360\° \\x = 360 \° - 267 \° \\x\° = 93\°[/tex]
ALGEBRA Identify the similar triangles. Then find each measure.
FG
S
G
6
х
R
4
T
F
10
H
ARST - AFGHFG = 11
ARST - AFGHFG = 14
ARST - AFGH FG = 15
ARST- AFGH FG = 18
Answer:
fg t f h 10
Step-by-step explanation:
Please help I don’t understand And I need an explanation
Hey there! :)
Answer:
56 m².
Step-by-step explanation:
To find the area, simply split the figure into a triangle and rectangle. Solve for the areas separately:
Solve for the rectangle: (A = l × w)
A = 8 × 5
A = 40 m²
Solve for the triangle: (A = 1/2 (bh))
A = 1/2(4 · 8)
A = 1/2(32)
A = 16 m².
Add up the two areas:
40 + 16 = 56 m².
Answer:
Area of triangle+ the area of rectangle
Step-by-step explanation:
Since, area of triangle is 1/2×base×height in right angled triangle, 1/2×4×8: 1/2×32= 16m²
Area of rectangle is length × breadth= 5×8: 40 m²
Area of the shape is 40m²+16m²= 56m²