Write the Maclaurin series for f(x) = x^7e^x5. (2 points) a) the summation from n equals 1 to infinity of the quotient of x to the 7th power and n factorial b) the summation from n equals 0 to infinity of the quotient of x to the 12th power and the quantity n plus 5 factorial c) the summation from n equals 0 to infinity of the quotient of x to the quantity 5 times n plus 7 power and n factorial d) the product of x raised to the 5 times n power and the summation from n equals 1 to infinity of the quotient of x to the 7th power and n factorial

Answers

Answer 1

Recall that

[tex]e^x=\displaystyle\sum_{n=0}^\infty\frac{x^n}{n!}[/tex]

Then

[tex]e^{x^5}=\displaystyle\sum_{n=0}^\infty\frac{x^{5n}}{n!}[/tex]

and

[tex]x^7e^{x^5}=\displaystyle\sum_{n=0}^\infty\frac{x^{5n+7}}{n!}[/tex]


Related Questions

Given the equation 4x - 3y = 12
1. Write the equation in slope-intercept form.

2. Identify the slope and y-intercept.

3. Graph the line.

4. Identify if it is a positive or negative slope.

Answers

Answer:

see below

Step-by-step explanation:

Slope intercept form is y = mx+b where m is the slope and b is the y intercept

4x - 3y = 12

Solve for y

Subtract 4x from each side

4x-4x - 3y =-4x+ 12

-3y = -4x+12

Divide by -3

-3y/-3 = -4x/-3 + 12/-3

y = 4/3x -4

The slope is 4/3 and the y intercept is -4

The slope is Positive

find the solution set x^2+2x-15=0

Answers

Answer:

x = 3 or x = -5

Step-by-step explanation:

x² + 2x - 15 = 0

Factor left side of equation.

(x - 3)(x + 5) = 0

Set factors equal to 0

x - 3 = 0

x = 3

x + 5 = 0

x = -5

Rebecca collected data from a random sample of 500 homeowners in her state asking whether or not they use electric heat. Based on the results, she reports that 51% of the homeowners in the nation use electric heat. Why is this statistic misleading?

Answers

Answer:

She makes conclusion about a population that is not well represented by the sample.

Step-by-step explanation:

The conclusion she is making is about a population that is not well represented by her sample: the population is the homeowners in the nation, but the sample is made of homeowners or only her state.

The population about which she can make conclusions with this sample is the homeowners of her state, given that the sampling is done right.

Answer: The sample is biased

Will give brainliest answer

Answers

Answer:

[tex]153.86 \: {units}^{2} [/tex]

Step-by-step explanation:

[tex]area = \pi {r}^{2} \\ = 3.14 \times 7 \times 7 \\ = 3.14 \times 49 \\ = 153.86 \: {units}^{2} [/tex]

Answer:

153.86 [tex]units^{2}[/tex]

Step-by-step explanation:

Areaof a circle = πr^2

[tex]\pi = 3.14[/tex](in this case)

[tex]r^{2} =7[/tex]

A = πr^2

= 49(3.14)

= 153.86

What is the measure of PSQ?​

Answers

Answer:

Do you have an image because I'm a bit confused with you just asking the measure of PSQ.

Step-by-step explanation:

A courier service company wishes to estimate the proportion of people in various states that will use its services. Suppose the true proportion is 0.050.05. If 212212 are sampled, what is the probability that the sample proportion will differ from the population proportion by less than 0.030.03

Answers

Answer:

95.44% probability that the sample proportion will differ from the population proportion by less than 0.03.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]

In this question:

[tex]p = 0.05, n = 212, \mu = 0.05, s = \sqrt{\frac{0.05*0.95}{212}} = 0.015[/tex]

What is the probability that the sample proportion will differ from the population proportion by less than 0.03?

This is the pvalue of Z when X = 0.03 + 0.05 = 0.08 subtracted by the pvalue of Z when X = 0.05 - 0.03 = 0.02. So

X = 0.08

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{0.08 - 0.05}{0.015}[/tex]

[tex]Z = 2[/tex]

[tex]Z = 2[/tex] has a pvalue of 0.9772

X = 0.02

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{0.02 - 0.05}{0.015}[/tex]

[tex]Z = -2[/tex]

[tex]Z = -2[/tex] has a pvalue of 0.0228

0.9772 - 0.0228 = 0.9544

95.44% probability that the sample proportion will differ from the population proportion by less than 0.03.

the required condition for using an anova procedure on data from several populations for mean comparison is that the

Answers

Answer:

The sampled populations have equal variances

Step-by-step explanation:

ANOVA which is fully known as Analysis of variances can be defined as the collection of statistical models as well as their associated estimation procedures which enables easily and effectively analyzis of the differences among various group means in a sample reason been that ANOVA is a total variance in which the observed variance in a specific variable is been separated into components which are attributable to various sources of variation which is why ANOVA help to provides a statistical test to check whether two or more population means are equal.

Therefore the required condition for using an ANOVA procedure on data from several populations for mean comparison is that THE SAMPLED POPULATION HAVE EQUAL VARIANCE.

Stat 3309 - Statistical Analysis for Business Applications I

Consider the following data representing the starting salary (in $1,000) at some company and years of prior working experience in the same ï¬eld. The sample of 10 employees was taken and the following data is reported.

Years of experience

Starting Salary (in $1,000)
0
45

2 50
5 55
7 62
8 63
10 70
12 68
15 75
18 81
20 92
Part 1: Use the formulas provided on the 3rd formula sheet to compute the following quantities. Open an Excel spreadsheet and write the table with data given above. Add columns for x2, y2, and xy, as well as the last row for Σ. For each of the following quantities, write the formula for it in a cell and evaluate it.

(a) Find the sample correlation coeï¬cient r.

(b) Find the slope b1 of the sample regression line.

(c) Find the y-intercept b0 of the sample regression line.

(d) What is the equation of the sample regression line?

(e) Find the predicted starting salary for a person who spent 15 years working in the same ï¬eld.

(f) Find the observed starting salary for a person who spent 15 years working in the same ï¬eld.

(g) What is the diï¬erence between the observed and the predicted starting salary for a person who spent 15 years working in the same ï¬eld?

(h) Find the total sum of squares SST.

(i) Find the sum of squares error SSE.

(j) Find the sum of squares regression SSR.

(k) Use the answers from (h)-(j) to conï¬rm that SST = SSR + SSE. (l) Find the coeï¬cient of determination R2.

(m) Use your answers for (a), (b) and (l), to conï¬rm that r = ±âR2.

(n) What proportion of variation is explained using the regression model?

(o) Find the standard error of the estimate se.

(p) Find the standard error of the regression slope sb.

(q) Does the number of years of prior working experience in the same ï¬eld aï¬ect the starting salary at this company ? Use the sample provided above and the signiï¬cance level of 0.05.

(hint: perform the hypothesis test for H0 : β1 = 0 vs. H1 : β1 6= 0.)

Part 2: Find and use Excel built-in-functions to check your answers for r, b1, and b0. Next to each cell from Part 1, calculate these three quantities using Excel built-in-functions and conï¬rm your answers from Part 1.

(hint: for example, for r the Excel built-in function is "CORREL")

Part 3: Bellow your answers from Parts 1 and 2, perform the regression analysis using Excel built-in-module which can be found under "DATA" â "Data Analysis" â "Regression" and double check your answers from Part 1. Draw the scatter plot of the data and, by visually observing the graph, determine if there is a linear relationship between the number of years of prior working experience in the same ï¬eld and the starting salary at this company.

Answers

Answer:

Solved below.

Step-by-step explanation:

The data is provided for the starting salary (in $1,000) at some company and years of prior working experience in the same field for randomly selected 10 employees.

(a)

The formula to compute the correlation coefficient is:

[tex]r=~\frac{n\cdot\sum{XY} - \sum{X}\cdot\sum{Y}} {\sqrt{\left[n \sum{X^2}-\left(\sum{X}\right)^2\right] \cdot \left[n \sum{Y^2}-\left(\sum{Y}\right)^2\right]}} \\[/tex]

The required values are computed in the Excel sheet below.

[tex]\begin{aligned}r~&=~\frac{n\cdot\sum{XY} - \sum{X}\cdot\sum{Y}} {\sqrt{\left[n \sum{X^2}-\left(\sum{X}\right)^2\right] \cdot \left[n \sum{Y^2}-\left(\sum{Y}\right)^2\right]}} \\r~&=~\frac{ 10 \cdot 7252 - 97 \cdot 661 } {\sqrt{\left[ 10 \cdot 1335 - 97^2 \right] \cdot \left[ 10 \cdot 45537 - 661^2 \right] }} \approx 0.9855\end{aligned}[/tex]

Thus, the sample correlation coefficient r is 0.9855.

(b)

The slope of the regression line is:

[tex]b_{1} &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} \\\\= \frac{ 10 \cdot 7252 - 97 \cdot 661 }{ 10 \cdot 1335 - \left( 97 \right)^2} \\\\\approx 2.132[/tex]

Thus, the slope of the regression line is 2.132.

(c)

The y-intercept of the line is:

[tex]b_{0} &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} \\\\= \frac{ 661 \cdot 1335 - 97 \cdot 7252}{ 10 \cdot 1335 - 97^2} \\\\\approx 45.418[/tex]

Thus, the y-intercept of the line is 45.418.

(d)

The equation of the sample regression line is:

[tex]y=45.418+2.132x[/tex]

(e)

Compute the predicted starting salary for a person who spent 15 years working in the same field as follows:

[tex]y=45.418+2.132x\\\\=45.418+(2.132\times15)\\\\=45.418+31.98\\\\=77.398\\\\\approx 77.4[/tex]

Thus, the predicted starting salary for a person who spent 15 years working in the same field is $77.4 K.

Answer:

Yes correct

Step-by-step explanation:

I think this is correct becase: 2 50

5 55

7 62

etc

these are all correct

Question 15 A party rental company has chairs and tables for rent. The total cost to rent 8 chairs and 3 tables is $38 . The total cost to rent 2 chairs and 5 tables is $35 . What is the cost to rent each chair and each table?

Answers

Answer:

Each table is $6 and each chair is $2.50

Step-by-step explanation:

The length of the rectangle is described by the function y = 3x + 6, where x is the width of the rectangle. Find the domain in this situation.

Answers

Answer:2/3

Step-by-step explanation:

Given that the length of the rectangle is described by the function y = 3x + 6, where x is the width of the rectangle. The domain of the function is (0, ∞).

What is domain of a function?

The domain of a function is the set of all possible inputs for the function. In other words, domain is the set of all possible values of x. In this question, x is the width of the rectangle. Width of a rectangle existing in two dimensional space, cannot be negative or zero. Thus it is the set of all positive real numbers, or we say, (0, ∞).

Learn more about domain of a function here

https://brainly.com/question/13113489

#SPJ2

The mean height of women in a country (ages 20-29) is 63.5 inches. A random sample of 50 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 inches? Assume the standard deviation equals 2.96.

Answers

Answer:

11.70% probability that the mean height for the sample is greater than 64 inches

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question:

[tex]\mu = 63.5, \sigma = 2.96, n = 50, s = \frac{2.96}{\sqrt{50}} = 0.4186[/tex]

What is the probability that the mean height for the sample is greater than 64 inches?

This is 1 subtracted by the pvalue of Z when X = 64.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{64 - 63.5}{0.4186}[/tex]

[tex]Z = 1.19[/tex]

[tex]Z = 1.19[/tex] has a pvalue of 0.8830

1 - 0.8830 = 0.1170

11.70% probability that the mean height for the sample is greater than 64 inches

7
х
45
Find x.
x=
V(14)
7
07/2

Answers

Answer:

7

Step-by-step explanation:

This a special 90° 45° 45° triangle and is an Isosceles triangle at the same time

Of one of the equal side is 7 than the other one too must be 7

Please answer this correctly

Answers

Step-by-step explanation:

pnotgrt8rthan4 = 3 ÷ 7 × 100

= 42.8571428571 / 43%

For the functions f(x)=3x−1 and g(x)=4x−3, find (f∘g)(x) and (g∘f)(x)

Answers

(f°g)(x)=12x-10

(g°f)(x)= 12x-7

Hope this helps

An athletics coach states that the distribution of player run times (in seconds) for a 100-meter dash is normally distributed with a mean equal to 13.00 and a standard deviation equal to 0.2 seconds. What percentage of players on the team run the 100-meter dash in 13.36 seconds or faster

Answers

Answer:

96.41% of players on the team run the 100-meter dash in 13.36 seconds or faster

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:

[tex]\mu = 13, \sigma = 0.2[/tex]

What percentage of players on the team run the 100-meter dash in 13.36 seconds or faster

We have to find the pvalue of Z when X = 13.36.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{13.36 - 13}{0.2}[/tex]

[tex]Z = 1.8[/tex]

[tex]Z = 1.8[/tex] has a pvalue of 0.9641

96.41% of players on the team run the 100-meter dash in 13.36 seconds or faster

Please answer this correctly

Answers

Answer:

2/3

Step-by-step explanation:

There are 2 numbers out of 3 that fit the rule, 1 and 3. There is a 2/3 chance picking one of them.

Answer:

2/3

Step-by-step explanation:

This is the answer because one number that is select is one. A number greater than 2 is 3. SO it is 2/3.

A veterinarian is enclosing a rectangular outdoor running area against his building for the dogs he cares for. He needs to maximize the area using 100 feet of fencing. The quadratic function A(x)=x(100−2x) gives the area, A, of the dog run for the length, x, of the building that will border the dog run. Find the length of the building that should border the dog run to give the maximum area, and then find the maximum area of the dog run.

Answers

Answer:

a) The length of the building that should border the dog run to give the maximum area = 25feet

b)    The maximum area of the dog run  = 1250 s q feet²

Step-by-step explanation:

Step(i):-

Given function

                       A(x) = x (100-2x)

                      A (x) = 100x - 2x²...(i)

Differentiating equation (i) with respective to 'x'

             [tex]\frac{dA}{dx} = 100 (1) - 2 (2x)[/tex]

     ⇒    [tex]\frac{dA}{dx} = 100 - 4 x[/tex]      ...(ii)

Equating  zero

         ⇒ 100 - 4x =0

         ⇒  100 = 4x

Dividing '4' on both sides , we get

             x = 25

Step(ii):-

Again differentiating equation (ii) with respective to 'x' , we get

    [tex]\frac{d^{2} A}{dx^{2} } = -4 (1) < 0[/tex]

Therefore The maximum value at x = 25

The length of the building that should border the dog run to give the maximum area = 25

Step(iii)

  Given  A (x) = x ( 100 -2 x)

substitute  'x' = 25 feet

             A(x) = 25 ( 100 - 2(25))

                    = 25(50)

                   = 1250

Conclusion:-

   The maximum area of the dog run  = 12 50  s q feet²

 

                       

if 7 is added to a number then it becomes at least 15 what is the number?​

Answers

You’re answer will be 8 ;)

Step-by-step explanation:

yeah,when 15-7=8

the number is 8

Use the given information to find the P-value. Also, use a 0.05 significance level and state the conclusion about the null hypothesis (reject the null hypothesis or fail to reject the null hypothesis).

The test statistic in a two-tailed test is z = -1.63.

a. 0.1031; fail to reject the null hypothesis
b. 0.0516; reject the null hypothesis
c. 0.9484; fail to reject the null hypothesis
d. 0.0516; fail to reject the null hypothesis

Answers

Answer: a. 0.1031; fail to reject the null hypothesis

Step-by-step explanation:

Given: Significance level : [tex]\alpha=0.05[/tex]

The test statistic in a two-tailed test is z = -1.63.

The P-value for two-tailed test : [tex]2P(Z>|z|)=2P(Z>|-1.63|)=0.1031[/tex] [By p-value table]

Since, 0.1031 > 0.05

i.e. p-value > [tex]\alpha[/tex]

So, we fail to reject the null hypothesis. [When p<[tex]\alpha[/tex] then we reject null hypothesis  ]

So, the correct option is a. 0.1031; fail to reject the null hypothesis.

The weight of a chocolate bar is 4.4 ounces, but can vary. Let W be a random variable that represents the weight of a chocolate bar. The probability density function of Wis given below. If the shaded portion of the graph of the continuous probability density function below is 0.42739, what is the probability that a chocolate bar is at least 4 ounces, but no more than 7 ounces?

Answers

Answer:

Ans) 42.7%

Step-by-step explanation:

For a continuous probability distribution, a curve known as probability density function contains information about these probabilities.

in the given range -

The probability that a continuous random variable = equal to the area under the probability density function curve

The probability that the value of a random variable is equal to 'something' is 1.

As per the diagram,

Weight of chocolate bar between 4 ounces and 7 ounces is highlighted in the blue part. That area is said to be 0.42739 and the total area under the curve is 1.

Hence required probability

=0.42739/1=0.42739

Ans) 42.7%

Round to nearest tenth of a percent

what is the solution for the inequality l2x-6l<4

Answers

Answer:

x < 5 or x > 1

Step-by-step explanation:

2x - 6 < 4

2x < 4 + 6

2x < 10

x < 10/2

x < 5

2x - 6 > - 4

2x > - 4 + 6

2x > 2

x > 2/2

x > 1

What steps are used to solve the equation? g – 8 = 14 Complete the statements. First, both sides of the equation. The solution of the equation is . Check the solution by substituting for g and simplifying.

Answers

Answer:

g=22

Step-by-step explanation:

add 8 to both sides

g-8=14

g-8+8=14+8

g=14+8

g=22

The solution of expression g - 8 = 14 is,

⇒ g = 22

What is an expression?

Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.

Given that;

The equation is,

⇒ g - 8 = 14

Now, We can simplify as,

⇒ g - 8 = 14

Add 8 both side,

⇒ g - 8 + 8 = 14 + 8

⇒ g = 22

Thus, The solution of expression g - 8 = 14 is,

⇒ g = 22

Learn more about the mathematical expression visit:

brainly.com/question/1859113

#SPJ3

About ____% of the area is between z= -2 and z= 2 (or within 2 standard deviations of the mean)

Answers

Answer:

The percentage of area is between Z =-2 and Z=2

P( -2 ≤Z ≤2) = 0.9544 or 95%

Step-by-step explanation:

Explanation:-

Given data Z = -2 and Z =2

The probability that

P( -2 ≤Z ≤2) = P( Z≤2) - P(Z≤-2)

                   = 0.5 + A(2) - ( 0.5 - A(-2))

                  = A (2) + A(-2)

                 = 2 × A(2)     (∵ A(-2) = A(2)

                = 2×0.4772

              = 0.9544

The percentage of area is between Z =-2 and Z=2

P( -2 ≤Z ≤2) = 0.9544 or 95%

What is the equation of the line which passes through (-0.5,-5) and (2,5)

Answers

Answer:

by using distance formula

d=[tex]\sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]

by putting the values of coordinates

[tex]d=\sqrt{(2-(-0.5))^2+(5-(-5))^2}[/tex]

[tex]d=\sqrt{(2+0.5)^2+(5+5)^2}[/tex]

[tex]d=\sqrt{(2.5)^2+(10)^2}[/tex]

[tex]d=\sqrt{6.25+100}[/tex]

[tex]d=\sqrt{106.25}[/tex]

[tex]d=10.3[/tex]

Step-by-step explanation:

i hope this will help you :)

A child is 2 -1/2 feet tall. The child’s mother is twice as tall as the child. How tall is the child’s mother

Answers

Answer:

  5 feet

Step-by-step explanation:

"Twice as tall" means "2 times as tall".

  2 × (2 1/2 ft) = (2 × 2 ft) +(2 × (1/2 ft)) = 4 ft + 1 ft = 5 ft

The child's mother is 5 feet tall.

Answer:

The mother is 5ft tall

Step-by-step explanation:

2 1/2 + 2 1/2 = 5ft

2ft+2ft = 4ft

1/2+1/2= 1ft

4ft+1ft = 5ft

After scoring a touchdown, a football team may elect to attempt a two-point conversion, by running or passing the ball into the end zone. If successful, the team scores two points. For a certain football team, the probability that this play is successful is 0.40.

a.â Let X =1 if successful, X= 0 if not. Find the mean and variance of X.

b.â If the conversion is successful, the team scores 2 points; if not the team scores 0 points. Let Y be the number of points scored. Does Y have a Bernoulli distribution? If so, find the success probability. If not, explain why not.

c.â Find the mean and variance of Y.

Answers

Answer:

a) Mean of X = 0.40

Variance of X = 0.24

b) Y is a Bernoulli's distribution. Check Explanation for reasons.

c) Mean of Y = 0.80 points

Variance of Y = 0.96

Step-by-step explanation:

a) The probability that play is successful is 0.40. Hence, the probability that play isn't successful is then 1 - 0.40 = 0.60.

Random variable X represents when play is successful or not, X = 1 when play is successful and X = 0 when play isn't successful.

The probability mass function of X is then

X | Probability of X

0 | 0.60

1 | 0.40

The mean is given in terms of the expected value, which is expressed as

E(X) = Σ xᵢpᵢ

xᵢ = each variable

pᵢ = probability of each variable

Mean = E(X) = (0 × 0.60) + (1 × 0.40) = 0.40

Variance = Var(X) = Σx²p − μ²

μ = mean = E(X) = 0.40

Σx²p = (0² × 0.60) + (1² × 0.40) = 0.40

Variance = Var(X) = 0.40 - 0.40² = 0.24

b) If the conversion is successful, the team scores 2 points; if not the team scores 0 points. If Y ia the number of points that team scores.Y can take on values of 2 and 0 only.

A Bernoulli distribution is a discrete distribution with only two possible outcomes in which success occurs with probability of p and failure occurs with probability of (1 - p).

Since the probability of a successful conversion and subsequent 2 points is 0.40 and the probability of failure and subsequent 0 point is 0.60, it is evident that Y is a Bernoulli's distribution.

The probability mass function for Y is then

Y | Probability of Y

0 | 0.60

2 | 0.40

c) Mean and Variance of Y

Mean = E(Y)

E(Y) = Σ yᵢpᵢ

yᵢ = each variable

pᵢ = probability of each variable

E(Y) = (0 × 0.60) + (2 × 0.40) = 0.80 points

Variance = Var(Y) = Σy²p − μ²

μ = mean = E(Y) = 0.80

Σy²p = (0² × 0.60) + (2² × 0.40) = 1.60

Variance = Var(Y) = 1.60 - 0.80² = 0.96

Hope this Helps!!!

WWW
3.
The expression "5 FACTORIAL" equals
3-A
125
3-B
120
3-C
25
3-D
10
* Select Answer Below​

Answers

Answer:

5! = 120

Step-by-step explanation:

5! is basically 5(4)(3)(2)(1).

Find the fourth term in the expansion of the binomial
(4x + y)^4
a) 16xy^3
b) 256x^4
c) 64y^4
d) 4xy^3

Answers

Answer:

a) 16xy³

Step-by-step explanation:

For a binomial expansion (a + b)ⁿ, the r+1 term is:

nCr aⁿ⁻ʳ bʳ

Here, a = 4x, b = y, and n = 4.

For the fourth term, r = 3.

₄C₃ (4x)⁴⁻³ (y)³

4 (4x) (y)³

16xy³

which of the following has a value less than 0?
A.4
B. |4|
C. |-4|
D. -4


Answers

Answer:

D

Step-by-step explanation:

The numbers that are less than 0 are negative. Negative numbers have the "-" sign in front of them so the answer is D.

Answer:

d

Step-by-step explanation:

The other ones will always be positive four

Josh and Lucy share some money in the ratio 3:7. What fraction of the money does Josh receive?

Answers

Answer:

3/10ths of the money

Step-by-step explanation:

Add together the two numbers to get the total.

Josh gets 30 percent and Lucy gets 70 percent.

3/10

Answer:

3/10

Step-by-step explanation:

3+7=10  

Josh=3

Lucy=7

Other Questions
Dysfunction tends to create social change. true or false? What is the measure of 13 lb 14oz + 30 lb 12 oz = lb. oz lant cells can synthesize energy-rich organic molecules, and later break them down to extract that energy for performing life processes where does it occur?. Why did Churchill oppose the appeasement of Hitler in 1938 (pp. 390-392)? How did this influence his proposed foreign policy with regard to the Soviet Union after the war in "The Iron Curtain" (pp. 452-453)? Ayer fui a nuestra primera clase del ao y el profesor _______ habl de las reglas de la universidad.A. lesB. leC. nosD. me Find the value of x needed to make the equation below true. 1.5(2x-4)=2(4x+2) What value from the set {2, 4, 6, 8} can be substituted for x to make an inequality x > 7 true? On a coordinate plane, polygon GHIJ translates 8 units to the left to form polygon G'H'I'J'. Which of the following equations is not necessarily true? A. GH = G'H' B. G'G = 8 units C. mHIJ = mH'I'J' D. mHI'J = mH'IJ' The Punnett square shows the results when two parent cows are crossed.R represents the allele for red hair, and r represents the allele for white hair. Which best describes this inheritance pattern? A) Incomplete dominance because the intermediate form of the trait is chosenB) Co-dominance because the intermediate form of the trait is chosen C) Incomplete dominance because the offspring display alleles for both hair colors D) Co-dominance because the offspring display alleles for both hair colors You illuminate a slit with a width of 77.7 m with a light of wavelength 721 nm and observe the resulting diffraction pattern on a screen that is situated 2.83 m from the slit. What is the width, in centimeters, of the pattern's central maximum The blank function returns to the first character or characters in a text string based on the number of characters specified??? A. PROPER B. MID C. LEN D. LEFT Has anyone read "the future of us" by jay asher??plzzz answer so i can give further instructions!!!! Mark the incorrect word in each sentence.5. All shopping are paid by credit card only. A B C D E6. You can is helped by our employees. A B C D E7. My cell phone is took from my bag. A B C D E8. This email is sent for Joe. A B C D E Suppose that the number of square feet per house are normally distributed with an unknown mean and standard deviation. A random sample of 22 houses is taken and gives a sample mean of 1500 square feet and a sample standard deviation of 151 square feet. 1. The EBM, margin of error, for a 95% confidence interval estimate for the population mean using the Student's t. distribution is 66.96.2. Find a 95% confidence interval estimate for the population mean using the Student's t-distribution. The relationship between the number of hours a plumber works and the total work fee she charges is proportional. Her fee for 5 hours of work is $350. Which of the fallowing could be combination of values for the plumbers work hours and total work fee she charges ? Q: Research about Bill gates and Albert Einstein. Also make a comparison information board on them?Will make the ans as brainliest Jay Seago is suing the manufacturer of his car for $3.5 million because of a defect that he believes caused him to have an accident. The accident kept him out of work for a year. The company has offered him a settlement of $700,000, of which Jay would receive $600,000 after attorneys fees. His attorney has advised him that he has a 50% chance of winning his case. If he loses, he will incur attorneys fees and court costs of $75,000. If he wins, he is not guaranteed his full requested settlement. His attorney believes that there is a 50% chance he could receive the full settlement, in which case Jay would realize $2 million after his attorney takes her cut, and a 50% chance that the jury will award him a lesser amount of $1 million, of which Jay would get $500,000. Using decision tree analysis, decide whether Jay should proceed with his lawsuit against the manufacturer. Find the area of the followingparallelogram:1.5 cm2.5 cm2.25 cmA= [?] cm Herschel uses an app on his smartphone to keep track of his daily calories from meals. One day his calories from breakfast were more than his calories from lunch, and his calories from dinner were less than twice his calories from lunch. If his total caloric intake from meals was , determine his calories for each meal.