without handwritng
Question #2 (2 Marks) Briefly discuss engineering standards to determine acceptable vibration amplitudes for any four mechanical systems, such as pump, compressor etc.

Answers

Answer 1

Engineering standards have a huge role to play in determining the acceptable vibration amplitudes for mechanical systems. These standards depend on factors such as the type of system, its maximum operating speed, and the type of bearings used.

Acceptable vibration amplitudes for any four mechanical systems are discussed below:

1. Pumps

Vibration standards for pumps are determined by the API 610 and ISO 13709 standards. The allowable vibration levels depend on the type of pump, its speed, and the type of bearings used. The vibration amplitude must not exceed 25 µm for horizontal pumps and 50 µm for vertical pumps.

2. Compressors

The API 617 standard determines the vibration limits for compressors. The allowable vibration amplitude depends on the type of compressor, its speed, and the type of bearings used. The allowable vibration levels are 0.25 in/sec for slow-speed compressors, 0.5 in/sec for high-speed compressors, and 0.75 in/sec for integrally geared compressors.

3. Fans

The AMCA 204 standard provides guidelines for determining vibration levels in fans. The allowable vibration levels depend on the fan type and its maximum operating speed. The allowable vibration amplitude must not exceed 0.25 in/sec.

4. Turbines

The API 611 standard determines the vibration limits for turbines. The allowable vibration levels depend on the type of turbine, its speed, and the type of bearings used. The allowable vibration amplitude levels are 0.1 in/sec for slow-speed turbines and 0.2 in/sec for high-speed turbines.

Conclusion: Thus, engineering standards have a huge role to play in determining the acceptable vibration amplitudes for mechanical systems. These standards depend on factors such as the type of system, its maximum operating speed, and the type of bearings used.

To know more about Engineering visit

https://brainly.com/question/14094488

#SPJ11


Related Questions

Explain construction and working of a magnetic drive pump. List various types of magnets that can be used for such pumps along with their advantages.

Answers

A magnetic drive pump is a type of centrifugal pump in which the impeller is driven by a magnetic coupling rather than a direct mechanical connection to the motor shaft. The magnetic coupling uses a magnetic field to transfer torque from the motor to the pump shaft.


Construction and working of a magnetic drive pump. A magnetic drive pump has two main components:

A motor and a pump. The motor is typically located outside the pump housing and drives a magnetic rotor. The pump housing contains a second magnetic rotor that is driven by the magnetic field from the motor. The two rotors are separated by a thin-walled barrier made of non-magnetic material, which allows the magnetic field to transfer torque between the two rotors while keeping the liquid being pumped completely contained within the housing.

When the motor is turned on, it generates a rotating magnetic field that induces a current in the magnetic rotor. This current generates a magnetic field of its own, which interacts with the magnetic field of the motor to create a rotating torque. This torque is transferred across the thin-walled barrier to the pump rotor, causing it to rotate and pump the liquid.

Types of magnets that can be used for such pumps along with their advantages. The most common types of magnets used in magnetic drive pumps are :

neodymium magnetssamarium cobalt magnetsceramic magnets

Each of these types has its own advantages and disadvantages.

Neodymium magnets are the strongest type of magnet available and are ideal for use in high-performance magnetic drive pumps. They are also relatively inexpensive and have a long lifespan.

Samarium cobalt magnets are slightly weaker than neodymium magnets but are more resistant to corrosion and high temperatures. They are often used in applications where the fluid being pumped is corrosive or at a high temperature.

Ceramic magnets are the least expensive type of magnet and are often used in low-cost magnetic drive pumps. they are also the weakest type of magnet and are not suitable for high-performance applications.

To know more about drive pump please refer to:

https://brainly.com/question/32078465

#SPJ11

QUESTION 4 A heat pump with the COP of 2.2 supplies heat at the rate of 219 kJ/min. Determine the rate of heat transfered from the atmosphere. Provide the answers to 3 decimal places and insert the unit symbol in kilowatts 1 points

Answers

The rate of heat transferred from the atmosphere can be determined by dividing the heat supplied by the heat pump by its COP.

We know that the rate of heat supplied by the heat pump is 219 kJ/min.The COP of the heat pump is 2.2.

So, the rate of heat transferred from the atmosphere can be determined as:

Rate of heat transferred from the atmosphere = (Rate of heat supplied by the heat pump)/COP

= 219/2.2

= 99.545 kW

Heat pumps are devices that transfer heat from a low-temperature medium to a high-temperature medium.

It operates on the principle of Carnot cycle.

The efficiency of a heat pump is expressed by its coefficient of performance (COP).

It is defined as the ratio of heat transferred from the source to the heat supplied to the pump.

The rate of heat transfer from the atmosphere can be determined using the given values of COP and the heat supplied by the heat pump.

Here, the heat supplied by the heat pump is 219 kJ/min and the COP of the heat pump is 2.2.

Using the formula,

Rate of heat transferred from the atmosphere = (Rate of heat supplied by the heat pump)/COP

= 219/2.2

= 99.545 kW

Therefore, the rate of heat transferred from the atmosphere is 99.545 kW.

To learn more about coefficient of performance

https://brainly.com/question/31460559

#SPJ11

A mild steel plate is lapped over and secured by fillet weld on the inside and the outside to form a cylinder having a diameter of 2 meters. A stress of 120 MPa and 80 MPa is allowable on the plate and on the throat side of the fillet weld respectively. Determine the thickness of the plate if the internal pressure is 15 MPa (neglecting the welded joint).

Answers

Given information: Diameter of the cylinder = 2 meters  Internal pressure = 15 MPaStress allowable on the plate = 120 MPaStress allowable on the throat side of the fillet weld = 80 MPa Formula used:

Hoop stress in a cylinder= pd/2tWhere,p = internal pressured = diameter of the cylinder,t = thickness of the cylinderThe maximum allowable hoop stress (σ) = 120 MPaThe maximum allowable stress on the throat side of the fillet weld (σw) = 80 MPaLet the thickness of the mild steel plate be t.Hoop stress in the cylinder = pd/2tσ = pd/2t = (15 × 2)/2t = 15/t ... (i)Also, as the plate is lapped over and secured by fillet weld, the section will be weaker than the solid plate and hence, the stress due to the welded joint should be taken into consideration. So, for the fillet weld,σw = 80 MPa= (Root 2 × (size of fillet weld)) / (throat side of the fillet weld)Where, Root 2 = 1.414Rearranging the above equation, we get,(Size of fillet weld) = (throat side of the fillet weld × 80) / (1.414) = (throat side of the fillet weld × 56.6) ... (ii)Putting the value of the hoop stress (σ) from equation (i) in the relation (ii), we getσ = 15 / t = (throat side of the fillet weld × 56.6)t = (56.6 × throat side of the fillet weld) / 15 = (113.2/3) × (throat side of the fillet weld)Thickness of the mild steel plate t = 37.73 mm (approx)Therefore, the thickness of the mild steel plate is approximately 37.73 mm.

To know more about  Diameter of the cylinder visit:

https://brainly.com/question/19052774

#SPJ11

A steel rotor disc of uniform thickness 50mm has an outer rim diameter 800mm and a central hole of diameter 150mm. There are 200 blades each of weight 2N at an effective radius of 420mm pitched evenly around the periphery. Determine the rotational speed at which yielding first occurs according to the maximum shear stress criterion. Yield stress= 750 MPa, v = 0.304, p = 7700 kg/m³.

Answers

The rotational speed at which yielding first occurs according to the maximum shear stress criterion is approximately 5.24 rad/s.

To determine the rotational speed at which yielding first occurs according to the maximum shear stress criterion, we can use the following steps:

1. Calculate the total weight of the blades:

  Total weight = Number of blades × Weight per blade

              = 200 × 2 N

              = 400 N

2. Calculate the torque exerted by the blades:

  Torque = Total weight × Effective radius

         = 400 N × 0.42 m

         = 168 Nm

3. Calculate the polar moment of inertia of the rotor disc:

  Polar moment of inertia (J) = (π/32) × (D⁴ - d⁴)

                             = (π/32) × ((0.8 m)⁴ - (0.15 m)⁴)

                             = 0.02355 m⁴

4. Determine the maximum shear stress:

  Maximum shear stress (τ_max) = Yield stress / (2 × Safety factor)

                              = 750 MPa / (2 × 1)   (Assuming a safety factor of 1)

                              = 375 MPa

5. Use the maximum shear stress criterion equation to find the rotational speed:

  τ_max = (T × r) / J

  where T is the torque, r is the radius, and J is the polar moment of inertia.

  Rearrange the equation to solve for rotational speed (N):

  N = (τ_max × J) / T

    = (375 × 10⁶ Pa) × (0.02355 m⁴) / (168 Nm)

  Convert Pa to N/m² and simplify:

  N = 5.24 rad/s

To learn more about rotational speed, click here:

https://brainly.com/question/14391529

#SPJ11

A force F = Fxi + 8j + Fzk lb acts at a point (3, -10, 9) ft. it has a moment 34i + 50j + 40k lb · ft about the point (-2, 3, -3) ft. Find Fx and Fz.

Answers

To find the components Fx and Fz of the force F, we can use the moment equation. Hence, the values of Fx and Fz are approximately Fx = 79.76 lb and Fz = 27.6 lb, respectively.

The equation for the moment:

M = r x F

where M is the moment vector, r is the position vector from the point of reference to the point of application of the force, and F is the force vector.

Given:

Force F = Fx i + 8 j + Fz k lb

Moment M = 34 i + 50 j + 40 k lb · ft

Position vector r = (3, -10, 9) ft - (-2, 3, -3) ft = (5, -13, 12) ft

Using the equation for the moment, we can write:

M = r x F

Expanding the cross product:

34 i + 50 j + 40 k = (5 i - 13 j + 12 k) x (Fx i + 8 j + Fz k)

To find Fx and Fz, we can equate the components of the cross product:

Equating the i-components:

5Fz - 13(8) = 34

Equating the k-components:

5Fx - 13Fz = 40

Simplifying the equations:

5Fz - 104 = 34

5Fz = 138

Fz = 27.6 lb

5Fx - 13(27.6) = 40

5Fx - 358.8 = 40

5Fx = 398.8

Fx = 79.76 lb

Therefore, the values of Fx and Fz are approximately Fx = 79.76 lb and

Fz = 27.6 lb, respectively.

To learn more about moment equation, visit:

https://brainly.com/question/20292300

#SPJ11

find the transfer function and frequency response function of the 1" order LTI measurement system expressed by the following differential equation and draw out the Bode plots.

Answers

Transfer function can be defined as the frequency response of a linear time-invariant (LTI) system to a complex exponential input signal.

1st order LTI measurement system can be described by the following differential equation:[tex]y(t) = K*[x(t) - y(t)*H(s)][/tex]where,K is the system gain,x(t) is the input signal,y(t) is the output signal,and H(s) is the system's transfer function.

To get the transfer function and frequency response function of the 1st order LTI measurement system expressed by the given differential equation, we should start by rearranging the given equation to be in terms of the Laplace transform:[tex]Y(s) = K*[X(s) - Y(s)*H(s)][/tex]This equation can be simplified as follows:[tex]Y(s) + K*Y(s)*H(s) = K*X(s)[/tex]Now, we can factor out Y(s) to get it by itself on one side.

To know more about response visit:

https://brainly.com/question/9874005

#SPJ11

Draw a diagram of a MEMS capacitive sensor for acceleration and explain how it works. How does the capacitance of a parallel-plate capacitor depend on area and separation? How does its sensitivity depend on separation? If the separation between the plates in a MEMS parallel-plate capacitor decreases by 11% and the area increases by 2%, what will be the percent change of its capacitance?

Answers

A MEMS capacitive sensor for acceleration consists of two parallel plates. Its capacitance depends on area and separation, with capacitance increasing as area and decreasing as separation decrease. The sensitivity depends on separation, with smaller separations resulting in higher sensitivity.

What is the relationship between the capacitance of a parallel-plate capacitor and its area and separation? How does the sensitivity of a capacitive sensor depend on the separation distance? What will be the percent change in capacitance if the separation decreases by 11% and the area increases by 2% in a MEMS parallel-plate capacitor?

A MEMS (Microelectromechanical Systems) capacitive sensor for acceleration consists of two parallel plates separated by a small gap. One plate is fixed, while the other plate is attached to a movable structure that responds to acceleration.

When acceleration is applied, the movable plate experiences a force, causing it to move closer or farther away from the fixed plate. This movement changes the separation distance between the plates, thereby altering the capacitance of the sensor.

In a parallel-plate capacitor, the capacitance is directly proportional to the area of the plates and inversely proportional to the separation distance.

As the area of the plates increases, the capacitance also increases. Similarly, as the separation distance decreases, the capacitance increases. This dependence on area and separation allows the sensor to detect changes in acceleration.

The sensitivity of the sensor, or its ability to detect small changes in acceleration, is directly related to the separation distance.

A smaller separation distance leads to a higher sensitivity as even slight movements result in significant changes in capacitance.

If the separation between the plates in a MEMS parallel-plate capacitor decreases by 11% and the area increases by 2%, the percent change in capacitance can be calculated.

Assuming these changes are independent of each other, the percent change in capacitance can be obtained by adding the percent change due to the decrease in separation (11% increase) and the percent change due to the increase in area (2% increase).

Learn more about acceleration consists

brainly.com/question/32231519

#SPJ11

A pair of single-row, deep-groove SKF 6215 ball bearings are to support a 75mm diameter shaft (inner ring rotating) that rotates at 1500rpm for continuous operation with 90% reliability. The radial and axial loads on each bearing are 5000N and 2880N, respectively. Given that SKF ball bearings are rated at Lio= 1 million cycles and assuming light impact, determine the expected life (in hours of operation) of these bearings. From the SKF online catalog, one can read the basic dynamic load rating and basic static load rating as Cio=68.9kN and Co= 49kN, respectively.

Answers

A pair of single-row, deep-groove SKF 6215 ball bearings are to support a 75mm diameter shaft (inner ring rotating) that rotates at 1500rpm for continuous operation with 90% reliability. The radial and axial loads on each bearing are 5000N and 2880N, respectively. Given that SKF ball bearings are rated at Lio= 1 million cycles and assuming light impact, The expected life (in hours of operation) of these bearings is 103.5.

Given that, Pair of single-row, deep-groove SKF 6215 ball bearings support a 75mm diameter shaft (inner ring rotating) rotating at 1500rpm for continuous operation with 90% reliability. The radial and axial loads on each bearing are 5000N and 2880N, respectively.SKF ball bearings are rated at Lio= 1 million cycles. SKF online catalog says the basic dynamic load rating and basic static load rating as Cio=68.9kN and Co= 49kN respectively.

To determine the expected life (in hours of operation) of these bearings, we need to calculate the load rating. From the Load capacity formula for ball bearings:

F0 / C0= (C / P)^n (For ball bearings, n=3)

Where, F0 = Minimum load for ball bearings C0 = Basic static load rating for ball bearings C = Basic dynamic load rating for ball bearings P = Equivalent dynamic bearing load (assumed as radial load)Here, radial load = 5000 N.

Calculating equivalent dynamic bearing load;

P = (Xr + Y0) * Fr

Where, Xr = Radial factor = 0.5 for ball bearings

Y0 = Axial factor = 0.6 for ball bearings

Fr = Radial load = 5000 N

On substituting the values, we get;

P = (0.5 + 0.6) * 5000 N = 5500 N

Therefore, the equivalent dynamic bearing load P is 5500 N.

Now, let's calculate the load rating:

5500 / 49,000 = (68,900 / P)^(3)

Solving for P, we get:P = 4056.74 N

Since the equivalent dynamic bearing load, P = 5500 N > P = 4056.74 N, the bearings are adequate for the given load. Calculating the expected life of bearings using the following formula;

L10 = (C / P)^(3) * LioL10 = (68.9kN / 5500 N)^(3) * 1 million cyclesL10 = 9.3156 × 10^6 cyclesOperating hours = L10 / (n * 60)Where, n = Speed of rotation in rpmOperating hours = 9.3156 × 10^6 / (1500 x 60) = 103.5 hours

Therefore, the expected life (in hours of operation) of the bearings is 103.5.

For further information on Expected life visit:

https://brainly.com/question/7184917

#SPJ11

Example: Recall rect-pulse train signal, and tri-pulse train signal x(t) = ⁺[infinity]Σₙ₌-[infinity] rect = (t-nT₀/T), ⇒Xₙ= ? Example: Recall rect-pulse train signal with the basic pulse delayed y(t) ∆= x(t-T/2) = +[infinity]∑ₙ₋[infinity] rect (t - T/ 2-nT₀/T),⇒ Yₙ = Xₙ.e⁻ʲ²πⁿᶠ⁰ᵀ/² = ?

Answers

Therefore, the signal coefficients for the given signals are Xₙ= T₀/T and Yₙ = T₀/T e^(-jπn).

Recall rect-pulse train signal, and tri-pulse train signalIn a rect-pulse train signal, the pulse duration is smaller than the time interval between two pulses.

When the pulse duration is equal to the time interval between two pulses, it is called a square-wave signal.In a tri-pulse train signal, a basic pulse is convolved with a triangular signal to create the train of tri-pulses.In the given example, the signals are given below:

X(t) = ∑[n= -∞]∞ rect(t - nT₀/T)Y(t)

= ∑[n= -∞]∞ rect(t - T/2 - nT₀/T)

Let us calculate the signal coefficients: For X(t), we have

Xₙ= ∫(nT₀/T + T/2)^(nT₀/T - T/2) dt

= T₀/TFor Y(t), we have

Yₙ = Xₙ e^(-j2πnfoT/2)

= T₀/T e^(-jπn) (where fo = 1/T).

Therefore, the signal coefficients for the given signals are Xₙ= T₀/T and Yₙ = T₀/T e^(-jπn).

To know more about signal visit;

brainly.com/question/31473452

#SPJ11

A centrifugal pump impeller has diameters at inlet and outlet as 360 mm and 720 mm respectively. The flow velocity at outlet is 2.4 m/s and the vanes are set back at an angle of 45◦ at the outlet. If the manometric efficiency is 70%, you are required to calculate the minimum starting speed of the pump. 1. the power given to the runner 2. the hydraulic efficiency

Answers

Centrifugal pump is a device that transfers energy from one medium to another medium by means of centrifugal force. The centrifugal force is created by the impeller, which spins at high speed within a casing, creating pressure that propels the fluid through the piping system.

A centrifugal pump impeller has diameters at inlet and outlet as 360 mm and 720 mm respectively. The flow velocity at outlet is 2.4 m/s and the vanes are set back at an angle of 45◦ at the outlet. If the manometric efficiency is 70%, we are required to calculate the minimum starting speed of the pump.

Hence, the minimum starting speed of the pump is 17.96 rpm. The power given to the runner is 16722 W and the hydraulic efficiency is 5.4%.

To know more about medium visit:

https://brainly.com/question/28323213

#SPJ11

QUESTION 3 0.02 kg of steam at 10 bar is contained in a rigid vessel of volume 0,00565 m³ 1.1 What is the temperature of the steam? 1.2 If the vessel is cooled, at what temperature will the steam just be dry saturated? 1.3 If the cooling is continued until the pressure is 4 bar, calculate the dryness fraction of the steam. 1.4 Calculate the heat rejected between the initial and final states

Answers

In this problem, we are given the mass, pressure, and volume of steam in a rigid vessel. We need to determine the temperature of the steam, the temperature at which it becomes dry saturated, the dryness fraction when the pressure is reduced to 4 bar, and the heat rejected during the process.

1.1 To find the temperature of the steam, we can use the steam tables or the steam property equations. Since the steam is at a known pressure of 10 bar, we can look up the corresponding temperature from the steam tables or use the steam property equations to calculate it.

1.2 When the vessel is cooled, the steam will reach the temperature at which it becomes dry saturated. Dry saturated steam is at its saturation temperature for a given pressure. By looking up the saturation temperature corresponding to the pressure of the steam, we can determine the temperature at which the steam becomes dry saturated.

1.3 As the cooling continues and the pressure drops to 4 bar, we can calculate the dryness fraction of the steam. The dryness fraction represents the mass fraction of vapor in the mixture. Using the steam tables or the steam property equations, we can find the specific enthalpy of saturated liquid at 4 bar and compare it to the specific enthalpy of the actual state of the steam to determine the dryness fraction.

1.4 The heat rejected between the initial and final states can be calculated using the specific enthalpy values of the initial and final states of the steam. By finding the difference in specific enthalpy and multiplying it by the mass of the steam, we can determine the heat rejected during the process.

Learn more about enthalpy here: https://brainly.com/question/32882904

#SPJ11

V₀ = -5v₁ + Vₐ + 7 Vb
Design the circuit that accomplish the next function with Rmin =1kohm

Answers

To design a circuit that implements the given function, we can start by analyzing the equation:

V₀ = -5V₁ + Vₐ + 7Vb

Based on the equation, we can infer that there are three input voltages: V₁, Vₐ, and Vb. We need to design a circuit that combines these input voltages according to the given equation to produce the output voltage V₀.

One way to accomplish this is by using operational amplifiers (op-amps). Here's a possible circuit design using op-amps:

1. Connect the inverting terminal of the op-amp to a weighted sum of the input voltages:

  - Connect -5V₁ to the inverting terminal with a gain of -5.

  - Connect Vₐ to the inverting terminal with a gain of 1.

  - Connect 7Vb to the inverting terminal with a gain of 7.

2. Connect the non-inverting terminal of the op-amp to a reference voltage, such as ground (0V).

3. Connect the output of the op-amp to a load resistor (Rload) to produce the output voltage V₀.

4. Choose an appropriate operational amplifier that can handle the required voltage range and has sufficient bandwidth for the application.

By implementing this circuit design, the output voltage V₀ will be equal to the equation -5V₁ + Vₐ + 7Vb. Make sure to select resistors (Rmin = 1 kohm) and operational amplifier(s) that meet the requirements of the application and can handle the desired voltage and current levels.

Please note that this is just one possible circuit design to implement the given function. There may be alternative circuit configurations or component choices depending on specific requirements and constraints of the application.

To know more about circuit , click here:

https://brainly.com/question/12608516

#SPJ11

(a) Explain in your own words why engineers are required to exhibit highest standards of responsibility and care in their profession (b) Mention some articles from engineering codes of ethics admonishing engineers not to participate in dishonest activities.

Answers

Engineers are responsible for creating designs that can improve lives, but they must exhibit high standards of responsibility and care in their profession because their work can have serious implications for the safety and well-being of people.

The codes of ethics admonish engineers not to participate in dishonest activities that may lead to falsifying data, conflicts of interest, accepting bribes, intellectual property theft, and so on.

(a) Engineers are required to exhibit the highest standards of responsibility and care in their profession because the work they do can have serious implications for the safety and well-being of people, the environment, and society as a whole.

They have the power to create and design technology that can greatly improve our lives, but they also have the responsibility to ensure that their designs are safe, reliable, and ethical.

They are held to high standards of accountability because their work can have far-reaching consequences.

(b) The engineering codes of ethics admonish engineers not to participate in dishonest activities, including:

1. Misrepresentation of their qualifications or experience.
2. Discrimination against others based on race, gender, age, religion, or other factors.
3. Falsifying data or research findings.
4. Concealing information or misleading the public.
5. Engaging in conflicts of interest or accepting bribes.
6. Engaging in plagiarism or intellectual property theft.

To know more about plagiarism , visit:

https://brainly.com/question/30180097

#SPJ11


A tank contains 3.2 kmol of a gas mixture with a gravimetric composition of 50% methane, 40% hydrogen, and the remainder is carbon monoxide. What is the mass of carbon monoxide in the mixture? Express your answer in kg.

Answers

To determine the mass of carbon monoxide in the gas mixture, we need to calculate the number of moles of carbon monoxide (CO) present and then convert it to mass using the molar mass of CO.

Given:

Total number of moles of gas mixture = 3.2 kmol

Gravimetric composition of the mixture:

Methane (CH4) = 50%

Hydrogen (H2) = 40%

Carbon monoxide (CO) = Remaining percentage

To find the number of moles of CO, we first calculate the number of moles of methane and hydrogen:

Moles of methane = 50% of 3.2 kmol = 0.50 * 3.2 kmol

Moles of hydrogen = 40% of 3.2 kmol = 0.40 * 3.2 kmol

Next, we can find the number of moles of carbon monoxide by subtracting the moles of methane and hydrogen from the total number of moles:

Moles of carbon monoxide = Total moles - Moles of methane - Moles of hydrogen

Now, we calculate the mass of carbon monoxide by multiplying the number of moles by the molar mass of CO:

Mass of carbon monoxide = Moles of carbon monoxide * Molar mass of CO

The molar mass of CO is the sum of the atomic masses of carbon (C) and oxygen (O), which is approximately 12.01 g/mol + 16.00 g/mol = 28.01 g/mol.

Finally, we convert the mass from grams to kilograms:

Mass of carbon monoxide (in kg) = Mass of carbon monoxide (in g) / 1000

By performing the calculations, we can find the mass of carbon monoxide in the gas mixture.

To know more about molar mass visit

https://brainly.com/question/30120067?

#SPJ11

A rectangular box with no top and having a volume of 12 ft is to be constructed. The cost per square foot of the material to be used is $4 for the bottom, $3 for two of the opposite sides, and $2 for the remaining pair of opposite sides. Find the dimensions of the box that will minimize the cost

Answers

The dimensions of the box that will minimize the cost are 2 ft by 2 ft by 3 ft.

Let's assume the length, width, and height of the box are represented by L, W, and H, respectively.

The volume of the box is given as 12 ft³:

V = L * W * H

Since the box has no top, the bottom area will be equal to the base area:

Bottom area = L * W

The cost of the material for the bottom is $4 per square foot, so the cost of the bottom will be:

Cost of bottom = $4 * Bottom area = $4 * (L * W)

The box has two opposite sides with a cost of $3 per square foot, and the remaining two opposite sides have a cost of $2 per square foot. The area of each pair of opposite sides can be calculated as follows:

Area of pair with cost $3 = 2 * (H * L)

Area of pair with cost $2 = 2 * (H * W)

The total cost of the box can be calculated by summing the costs of all the sides:

Total cost = Cost of bottom + (Cost of side pair with cost $3) + (Cost of side pair with cost $2)

Total cost = $4 * (L * W) + $3 * 2 * (H * L) + $2 * 2 * (H * W)

Total cost = $4LW + $6HL + $4HW

We want to minimize the cost, which means finding the dimensions (L, W, H) that minimize the total cost while still satisfying the volume constraint.

To solve this optimization problem, we need to express the total cost in terms of a single variable. Since we have three variables (L, W, H), we can use the volume constraint to eliminate one variable.

From the volume equation, we can express L in terms of W and H:

L = 12 / (W * H)

Substituting this expression for L into the total cost equation, we get:

Total cost = $4 * (12 / (W * H)) * W + $6 * H * (12 / (W * H)) + $4 * H * W

Total cost = $48 / H + $72 / W + $4HW

To minimize the total cost, we can take the partial derivatives of the total cost equation with respect to H and W and set them equal to zero.

∂(Total cost) / ∂H = -$48 / H² + $4W = 0 --> Equation (1)

∂(Total cost) / ∂W = -$72 / W² + $4H = 0 --> Equation (2)

From Equation (1), we can solve for W in terms of H:

$48 / H² = $4W

W = $48 / (4H)

W = $12 / H

Substituting this expression for W into Equation (2), we get:

-$72 / ($12 / H)² + $4H = 0

-$72H² / $12² + $4H = 0

-6H² + $4H = 0

2H(2 - 3H) = 0

From this equation, we have two possibilities:

H = 0 (not a valid solution for the height of the box)

2 - 3H = 0

3H = 2

H = 2/3 ft

Now, substituting the value of H into the expression for W, we get:

W = $12 / (2/3)

W = $18 ft

Finally, substituting the values of W and H into the expression for L, we get:

L = 12 / (18 * 2/3)

L = 2 ft

Therefore, the dimensions of the box that will minimize the cost are 2 ft by 2 ft by 3 ft.

The dimensions of the box that will minimize the cost are 2 ft by 2 ft by 3 ft.

To know more about dimensions visit

https://brainly.com/question/28107004

#SPJ11

The foundation for a gas engine with a vertical cylinder and vertically oscillating parts has the following data: Total weight of the machine = 50kN Speed of rotation = 300rpm Weight of block = 250kN Weight of the participating soil = 200kN Spring stiffness = 60×104kN/m Determine the natural frequency and maximum amplitude. Take D, the value of damping factor C/Cc=0.1. The unbalanced vertical force is 12kN.

Answers

The natural frequency of the system is approximately 13.27 rad/s, and the maximum amplitude is approximately 0.0106 meters.

To calculate the natural frequency (ω) of the system, we can use the formula:

ω = √((k - (C/Cc * 2 * m * ω)) / m)

where k is the spring stiffness, C is the damping factor, Cc is the critical damping factor, and m is the effective mass of the system. The effective mass is the sum of the machine weight, block weight, and participating soil weight. Thus:

m = machine weight + block weight + soil weight

= 50kN + 250kN + 200kN

= 500kN

To find the critical damping factor (Cc), we use the formula:

Cc = 2 * √(k * m)

Plugging in the values, we get:

Cc = 2 * √(60×10^4 kN/m * 500kN)

≈ 692.82 kN·s/m

Given the damping factor (C/Cc = 0.1), we can rewrite the formula for ω as:

ω = √((k - 0.1 * 2 * m * ω) / m)

Now, we need to solve this equation numerically to find the value of ω. Once we have ω, we can calculate the maximum amplitude (A) using the formula:

A = unbalanced vertical force / (m * (ω² - (C/Cc * 2 * ω)))

Plugging in the values, we get:

A = 12kN / (500kN * (ω² - (0.1 * 2 * ω)))

Solving these equations numerically will provide the values for the natural frequency (ω) and maximum amplitude (A) of the system.

To learn more about amplitude click here

brainly.com/question/9525052

#SPJ11

Calculate the Yield strength if x is 110 MPa and y is 17.0 %

Answers

The approximate yield strength is 94.02 MPa.

To calculate the yield strength, we need the values of the stress (x) and strain (y). The yield strength (σ_y) is given by the formula:

σ_y = x / (1 + (y/100))

Substituting the given values:

σ_y = 110 MPa / (1 + (17.0/100))

= 110 MPa / (1 + 0.17)

= 110 MPa / 1.17

≈ 94.02 MPa

Yield strength is a mechanical property of a material that represents the maximum stress it can withstand before it starts to deform permanently, or in other words, before it undergoes plastic deformation. It is a measure of the material's ability to resist deformation under applied loads.When a material is subjected to increasing stress, it initially undergoes elastic deformation, which means it returns to its original shape once the stress is removed. However, as the stress continues to increase, there comes a point where the material undergoes plastic deformation, resulting in permanent changes in its shape and dimensions.The yield strength is the stress value at which this transition from elastic to plastic deformation occurs. It is often determined through mechanical testing, such as tensile testing, where a material sample is subjected to increasing stress until it starts to exhibit plastic deformation.

To know more about yield strength, visit:

https://brainly.com/question/30904383

#SPJ11

Establishing product architecture is the first place where resource budgeting can be accomplished. Propose THREE (3) processes for establishing product architecture.

Answers

Product architecture establishes the foundation of a product and describes how its various components relate to one another.

The product architecture lays the groundwork for resource allocation and budgeting, which are critical activities. A well-planned product architecture can help businesses manage their limited resources effectively. The following are the three processes for establishing product architecture:

1. Definition of requirements: This stage necessitates the identification of functional and performance requirements. It includes understanding the product's main purpose, how it will be used, the user's needs, the necessary features and specifications, the target market, and regulatory requirements, among other things. It serves as the basis for the product architecture's design and development, allowing businesses to prioritize resources based on the product's requirements.

2. Design and Development: During the design and development stage, businesses can create the product architecture by incorporating the requirements into a product design. This stage includes defining the product's high-level structure, components, and subsystems, as well as the interactions between them. This stage is critical because it serves as the basis for resource budgeting. Companies must strike a balance between delivering high-quality products while staying within their resource constraints.

3. Testing and Evaluation: During the testing and evaluation stage, the product architecture is evaluated against functional and performance requirements. This stage allows businesses to identify problems and make changes to the product architecture, as well as adjust their resource allocation accordingly. In addition, this stage helps businesses improve the product's quality, reliability, and usability.

In conclusion, establishing product architecture is the first step in resource budgeting. To do so effectively, businesses must engage in three key processes: definition of requirements, design and development, and testing and evaluation. These processes ensure that businesses have a comprehensive understanding of their product's requirements, can design a product architecture that meets those requirements while balancing resource constraints, and evaluate the product architecture to identify problems and make changes as necessary. By following these processes, businesses can manage their limited resources effectively, deliver high-quality products, and remain competitive in the marketplace.

To know more about requirements visit:

brainly.com/question/2929431

#SPJ11

For equilibrium of a rigid body in two dimensions write the required equations:

Answers

The equations required for the equilibrium of a rigid body in two dimensions are: ΣF_x = 0, ΣF_y = 0, and Στ = 0.

To ensure the equilibrium of a rigid body in two dimensions, three equations need to be satisfied:

1. ΣF_x = 0: The sum of all the horizontal forces acting on the body should be equal to zero. This equation ensures that there is no net horizontal force causing linear acceleration in the x-direction.

2. ΣF_y = 0: The sum of all the vertical forces acting on the body should be equal to zero. This equation ensures that there is no net vertical force causing linear acceleration in the y-direction.

3. Στ = 0: The sum of all the torques (moments) acting on the body about any point should be equal to zero. This equation ensures that there is no net rotational force causing angular acceleration.

By satisfying these three equations, the rigid body can be in a state of equilibrium, where it remains stationary or continues to move with constant velocity and without any rotational acceleration in two dimensions.

It is important to note that these equations are based on the principles of Newton's laws of motion and the concept of torque.

To learn more about equilibrium  Click Here: brainly.com/question/30694482

#SPJ11

A centrifugal pump having having external and internal diameters of 1.25 meter and 0.5 meter respectively. is discharging water 2000 litres/sec. against a head of 16 meters when running at 300 rpm. The vanes are curved back at an angle 30 degree with the tangent at outlet and velocity of flow is constant at 2.5 meters/sec. find i) efficiency of pump ii horse power required for the pump and minimum speed to start pumping

Answers

The minimum speed to start pumping is another aspect requiring additional details on the pump's design and operation characteristics.

Calculating the efficiency of the pump requires knowledge of the actual head developed by the pump and the head imparted by the pump's impeller. In an ideal case, they should be equal, but due to hydraulic, mechanical, and volumetric losses, the actual head is typically less than the theoretical head. As for the horsepower, it is found using the equation HP = Q*H/76.2*Efficiency, where Q is the flow rate, H is the head, and Efficiency is the pump's efficiency. The minimum speed to start pumping would depend on the pump's specific speed, which is a function of the pump design. Typically, pumps are designed to operate efficiently within a certain range of speeds, beyond which performance may decline significantly.

Learn more about centrifugal pumps here:

https://brainly.com/question/30730610

#SPJ11

Determine the electric flux density in spherical coordinates if
pv = 5r C/m^3

Answers

Given that  pv = 5r C/m^3 where, pv = electric flux density Therefore, electric flux density (pv) = 5r C/m^3`Now, we know that Electric flux density in spherical coordinates is given as pv = ro Er where, ro is the permittivity of free space in the vacuum, Er  is the radial component of the electric field.

The electric flux density in spherical coordinates will be`pv = roEr Multiply both sides by `r` to get the equation in the required form.`pv * r = roEr * r Again, we know that Electric field in spherical coordinates is given as`Er = Qr / (4*pi*e*r^2)`Where,`Qr` is the charge enclosed by a spherical surface of radius `r` centered at the origin.`e` is the permittivity of free space in the vacuum. Substituting `Er` in `pv * r = roEr * r` we get,`pv * r = ro * Qr / (4*pi*e*r)`Rearranging we get,`pv = Qr / (4*pi*e*r^2) Substituting `pv = 5r C/m^3` we get,`5r = Qr / (4*pi*e*r^2)`On cross multiplying we get,`Qr = 20*pi*e*r^3 C.

The electric flux density in spherical coordinates is `pv = 5r C/m^3` and `Qr = 20*pi*e*r^3 C`.

To know more about electric flux visit:

https://brainly.com/question/30409677

#SPJ11

food An ammonia (R717) heat pump is used to heat hot water for CIP (cleaning) fluid, for a manufacturing facility. The heat pump will heat water from 50°C to 90° and provide 1 MW of heating. The heat pump will operate with an evaporation temperature of 10°C and a condensing temperature of 100°C. What is evaporation temperature of water in the evaporator (at that pressure)? [2 Marks] The refrigerant is subcooled to 60°C in the condenser, and the compressor has an isentropic efficiency of 0.6. There is zero superheat in the evaporator, and the system is a simple direct expansion system. Assume that the expansion valve is isenthalpic. What is the real COP of the heat pump?

Answers

A refrigerant known as ammonia (R717) heat pump is used to heat hot water for cleaning (CIP) fluid in a manufacturing facility. The water will be heated from 50°C to 90°C and provide 1 MW of heating.Therefore, the evaporation temperature of water in the evaporator is -50°C, and the real COP of the heat pump is 1.67.

The heat pump operates at an evaporation temperature of 10°C and a condensing temperature of 100°C.The evaporation temperature of water in the evaporator (at that pressure) is calculated as follows:

Condenser outlet temperature (condensing temperature)

= 100 °C

Condenser subcooling = 60 °C

The real COP of the heat pump can be calculated as follows:

Effective COP = useful heating / work input

Effective COP = 1 MW / W input

Let's first find the work input:

W input = useful heating / COP

COP = Effective COP / (Isentropic efficiency * motor efficiency)

COP = 1 / [(Effective COP / Isentropic efficiency) * motor efficiency]

COP = 1 / [(1 / 0.6) * 0.9]COP = 1.67W

input = 1 MW / 1.67W

input = 0.6 MW

Effective COP = useful heating / work input

Effective COP = 1 MW / 0.6 MW

Effective COP = 1.67

To know more about temperature visit:

https://brainly.com/question/7510619

#SPJ11

A pipe with an inner diameter of 12.0 inches and a wall thickness of 0.15 inches inch is pressured from 0 psi to 950 psi find the yield factor of safety (2 decimal places). Just use the tangential stress for the analysis. Sᵤₜ=80000psi,Sᵧ=40000psi,Sₑ=22000psi

Answers

The yield factor of safety, also known as the safety factor or factor of safety, is a measure used in engineering to determine the margin of safety in a design or structure.

To find the yield factor of safety for the given pipe, we need to calculate the maximum tangential stress and compare it to the yield strength of the material.

Given:

Inner diameter of the pipe (D) = 12.0 inches

Wall thickness (t) = 0.15 inches

Pressure change (ΔP) = 950 psi

Yield strength (Sᵤₜ) = 80000 psi

First, let's calculate the maximum tangential stress (σ_max) using the formula:

σ_max = (P * D) / (2 * t)

Where P is the pressure change.

σ_max = (950 * 12.0) / (2 * 0.15)

= 76000 psi

Now, we can calculate the yield factor of safety (FOS) using the formula:

FOS = Sᵤₜ / σ_max

FOS = 80000 / 76000

= 1.05 (approx.)

Therefore, the yield factor of safety for the given pipe is approximately 1.05 (rounded to 2 decimal places).

To know more about the Yield Factor of Safety visit:

https://brainly.com/question/31857073

#SPJ11

can
i have dome help explaining this and what effects it
thanks in advance
Task \( 1 \mathbf{B} \) Explain what "Natural Frequency of Vibration" is and what affects it.

Answers

Understanding the natural frequency of vibration and its effects is essential in designing and analyzing a variety of systems.

Natural frequency of vibration refers to the frequency at which a physical system oscillates freely after being displaced from its equilibrium position and then released without any external force. The term “natural” implies that the frequency is determined by the system's inherent physical properties, including its mass, stiffness, and damping. This frequency is expressed in hertz (Hz) and is denoted by the symbol “ωn”.The natural frequency of vibration is determined by three main factors:1. Mass: The larger the mass of the system, the lower the natural frequency.2. Stiffness: The higher the stiffness of the system, the higher the natural frequency.3. Damping: The higher the damping of the system, the lower the natural frequency.

The effects of the natural frequency of vibration are seen in various systems. In the case of bridges and buildings, the natural frequency of vibration is crucial since these structures must be designed to withstand the forces generated by wind, seismic activity, and other external forces. If the frequency of the external force matches the natural frequency of the structure, resonance can occur, causing the structure to oscillate excessively and potentially causing damage. In contrast, in musical instruments, the natural frequency of vibration is desired, as it produces the desired tone. Therefore, understanding the natural frequency of vibration and its effects is essential in designing and analyzing a variety of systems.

Learn more about stiffness :

https://brainly.com/question/31172851

#SPJ11

Q.3: A 7kVA, 750/300-V, 50-Hz, single-phase transformer, the open and short circuit tests data are as following: O.C test: 300 V, 1.3 A, 320 W (L.V. side) S.C. test: 25 V, 20 A, 350 W (H.V. side) i. Obtain the parameters of the equivalent circuit, ii. Find the full-load copper and iron losses. iii. Calculate the efficiency of 60% of full-load at power factor 0.8 lagging. iv. Find the full-load voltage regulation at power factor 0.8 leading.

Answers

Equivalent circuit parameters: Core loss resistance R = I2 × R / W = (1.3)2 × 25 / 320 = 0.132 ΩLV winding resistance R1 = 300 / 1.3  = 230.76 ΩHence, X1 = √((300/1.3)² - 0.132²) = 708.7 Ω

The resistance R2 = 25 / 20 = 1.25 ΩX2 = √((750 / 300)² × 1.25² - 1.25²) = 1.935 ΩTherefore, the equivalent circuit parameters of the transformer are R1 = 230.76 Ω, X1 = 708.7 Ω, R2 = 1.25 Ω, X2 = 1.935 Ω and R = 0.132 ΩFull-load copper loss. The total current drawn by the transformer on full-load.

is, I2 = 7000 / 300 = 23.33 ASo, full-load copper loss = I2 × R2 = 23.33² × 1.25 = 683 W Full-load iron loss Full-load iron loss = W = 320 + 350 = 670 W Efficiency Efficiency of transformer at 60% load at a power factor of 0.8 lagging is given by,η = Output / Input Output = (0.6) × 7000 = 4200 W.

To know more about parameters visit:

https://brainly.com/question/29911057

#SPJ11

The standard unit for cyclical frequency is the hertz (1 Hz = 1 cycle/s). Calculate the angular frequency of a signal that has a cyclic frequency f of 20 Hz. 3.18 rad/s 31.8 rad/s 126 rad/s 168 rad/s

Answers

The angular frequency of a signal that has a cyclic frequency of 20 Hz is approximately 125.66 rad/s.

Angular frequency = 2πf where f is the cyclic frequency in hertz and π is the mathematical constant pi. Using this formula and plugging in the given value of 20 Hz, we get: angular frequency = 2π(20)

= 40π

radians/s ≈ 125.66 radians/s Therefore, the angular frequency of the signal is approximately 125.66 rad/s.Answer: 125.66 rad/s (rounded to two decimal places) The angular frequency of a signal is the rate at which an object or a particle rotates around an axis. The angular frequency is measured in radians per second (rad/s).

The formula to calculate the angular frequency is angular frequency = 2πf, where f is the cyclic frequency of the signal. The standard unit for cyclical frequency is hertz (Hz). Therefore, the angular frequency of a signal that has a cyclic frequency of 20 Hz is approximately 125.66 rad/s.

To know more about Cyclic Frequency visit-

https://brainly.com/question/16681804

#SPJ11

A triangular duct, 7 cm on a side, with 4 kg/s of water at 42°C, has a constant surface temperature of 90°C. The water has the following properties: density: 991 kg/m³, kinematic viscosity: 6.37E-7 m²/s, k=0.634 W/m K, Pr = 4.16. The surface roughness of the duct is 0.2 mm. What is the heat transfer coefficient of the water? h= Number W/m²K

Answers

The heat transfer coefficient of the water is 14.83 W/m²K.

The heat transfer coefficient of the water is required. The given parameters include the following:

Triangular duct, side = 7 cm, Mass flow rate (m) = 4 kg/s, T1 = 42°C, T2 = 90°C, Density (ρ) = 991 kg/m³, Kinematic viscosity (ν) = 6.37E-7 m²/s, Thermal conductivity (k) = 0.634 W/mK, Prandtl number (Pr) = 4.16, Surface roughness of duct = 0.2 mm.

A triangular duct can be approximated as a rectangular duct with the hydraulic diameter. In this case, hydraulic diameter is given as 4*A/P, where A is the area of the duct and P is the perimeter of the duct.

Therefore, hydraulic diameter of triangular duct is given as:

D_h = 4*A/P = 4*(√3/4*(0.07)^2)/(3*0.07) = 0.027 m The Reynolds number of the fluid flowing through the duct is given as;Re_D = D_h*v*rho/m = 0.027*4/(6.37*10^-7*991) = 11418

Therefore, the flow is turbulent.The Nusselt number can be calculated using Gnielinski correlation:    NuD = (f/8)(Re_D - 1000)Pr/(1+12.7((f/8)^0.5)((Pr^(2/3)-1)))(1+(D_h/4.44)((Re_DPrD_h/f)^0.5))

The equation is complex and requires the calculation of friction factor using the Colebrook-White equation.

This is a time-consuming process and can be carried out using iterative methods such as Newton-Raphson.

The heat transfer coefficient is given as;h = k*Nu_D/D_h = 0.634*NuD/0.027 = 14.83 W/m²K.

Reynolds Number, Re_D = 11418 Hydraulic diameter, D_h = 0.027 m Nusselt Number, Nu_D = 140.14 Heat transfer coefficient, h = 14.83 W/m²K.

Therefore, the heat transfer coefficient of the water is 14.83 W/m²K.

To know more about Colebrook-White equation. visit:

https://brainly.com/question/31826355

#SPJ11

Rankine Cycle Example: Calculate heat and work transfer in different processes of Rankine cycle if it operates between 30 bar and 0.04 bar Also calculate efficiency and SSC. Consider all the efficiencies of compressor and turbine to be 0.8.

Answers

A Rankine cycle is a thermodynamic cycle that helps to generate power and is widely used in power plants. It has four main processes, including the Heat addition in a boilerHeat rejection in a condenserExpansion in a turbine Compression in a pump.

A Rankine cycle system comprises a boiler, a pump, a turbine, and a condenser. The working fluid is water in most cases. Steam produced in the boiler at high temperature and pressure drives the turbine and expands, producing work output. A condenser then converts the low-pressure steam into liquid form, and the pump increases the pressure to a high-pressure level before returning it to the boiler.

The amount of work output is then calculated using the following formula:W = h1 - h2 - (h4 - h3) = 2544.6 kJ/kg.The amount of heat supplied can be determined as follows:qin = h1 - h4 = 464.9 kJ/kg.The amount of heat rejected is calculated using the following formula:qout = h2 - h3 = 366.8 kJ/kg.The efficiency of the cycle can be calculated as follows:Efficiency = W/qin = 0.82 SSC = qout/qin = 0.79.

To know more about generate visit:

https://brainly.com/question/12841996

#SPJ11

What is the value of Ucompressible/Uincompressible for air at a
pressure ratio of Po/P of 2.4. Assume a temperature of 300 K.

Answers

The value of Incompressible/Uincompressible for air at a pressure ratio of Po/P of 2.4 is approximately 1.23.

Here is how to solve for it: Ucompressible/Uincompressible can be given by the following formula; Ucompressible/Uincompressible = (T1/T2)½ x (1 + γ - 1 / 2 * M2²) / (γ + 1 / 2 * (γ - 1) * M2²)½

Where T1 is the inlet temperature.T2 is the outlet temperature. γ is the specific heat ratio. M2 is the outlet Mach number. The inlet Mach number is assumed to be equal to zero. To calculate the value of Ucompressible/Uincompressible for air at a pressure ratio of Po/P of 2.4, we use the following parameters:

Pressure ratio, Po/P = 2.4

Inlet temperature, T1 = 300 K

Specific heat ratio, γ = 1.4

Since the inlet Mach number is zero, we can assume that the outlet Mach number, M2 is also zero. Substituting these values into the formula for Ucompressible/Uincompressible, we get;

Ucompressible/Uincompressible = (300/T2)½ x (1 + 0.4/2 x 0²) / (1.4 + 1 / 2 * (1.4 - 1) x 0²)½

Simplifying the expression further, we get; Ucompressible/Uincompressible = (300/T2)½ x 1 / 1.2½

Ucompressible/Uincompressible = (300/T2)½ x 0.7887

Where Ucompressible/Uincompressible is approximately 1.23.

You can learn more about pressure ratio at: brainly.com/question/12950762

#SPJ11

Tank B is enclosed inside Tank A. Given the Absolute pressure of tank A = 400 kPa, Absolute pressure of tank B = 300 kPa, and atmospheric pressure 100 kPa.
Find the gauge pressure reading of Tank A in kPa

Answers

The gauge pressure reading of Tank A in kPa is 300 kPa.

B is enclosed inside Tank A, Absolute pressure of tank A is 400 kPa, Absolute pressure of tank B is 300 kPa, and atmospheric pressure is 100 kPa.

The question asks us to find the gauge pressure reading of Tank A in kPa. Here, the gauge pressure of tank A is the pressure relative to the atmospheric pressure. The gauge pressure is the difference between the absolute pressure and the atmospheric pressure.

We can calculate the gauge pressure of tank A using the formula: gauge pressure = absolute pressure - atmospheric pressure Given that the absolute pressure of tank A is 400 kPa and atmospheric pressure is 100 kPa, the gauge pressure of tank A is given by gauge pressure = 400 kPa - 100 kPa= 300 kPa

Therefore, the gauge pressure reading of Tank A in kPa is 300 kPa.

To know more about gauge pressure visit:

https://brainly.com/question/30698101

#SPJ11

Other Questions
A temperate phage such as lambda phage O replicates viruses using the lysogenic life cycle replicates viruses in the lytic life cycle replicates viruses in both the lytic and lysogenic life cycles O only are infectious when shed from the infected bacterial cell all of the above are correct 1 pts Question 22 3 pts In Severe Combined Immunodeficiency disease, where there are no functioning lymphocytes, which of the following key step(s) in the inflammation process is/are NOT working in a person with this condition? 1.Tight junctions between endothelial cells are disrupted, allowing fluid to leak from the vessels into the tissue. 2. The phagocytes bind to the endothelial cells and exit the blood vessel by a process called diapedesis. 3. Once in the tissues, phagocytic cells engulf and destroy any microbial invaders. 4.The increase of fluids in the tissues causes the swelling and pain associated with inflammation. 5. The diameter of local blood vessels increases due to the action of inflammatory mediators. In acute infections, the infectious virions are _____. a) produced for a specific amount of time, often short duration b) primarily produced during reactivation of the virus. c) produced continuously at very low levels. d) continually produced and released slowly by budding. e) present before symptoms and for a short time after disease ends f) all of the choices are correct How does the Bohr effect change the oxyhemoglobin disassociation curve? (5 points) Which of the following antibiotics inhibit(s) protein synthesis?Group of answer choicesAll the antibiotics inhibit protein synthesis.SulfisoxazoleAmpicillinNeomycinVancomycin A turbine uses 100,000lbm/hr ( 50,000kg/hr) of steam that enters with an enthalpy of 1400 BTU/Ibm (3300 KJ/kg) and essentially zero entrance velocity. 10,000 horsepower (7.5 Kw) are developed. The exit velocity of the steam is 50 ft/sec (150 m/s). Expansion is adiabatic. What is the enthalpy? What are 3 types of linear dynamic analyses? In considering any structural dynamic analysis, what analysis is always important to run first and why? What are similar laws to HIPAA called and how do theyoperate? Explain Kingian nonviolence. Explain why civildisobedience (including Kingian nonviolence) is essential fordemocracy according to Howard Zinn and MLK. How well can tele-health, e-health, and/or m-health can address the issue below:Issues: Young people are less likely to seek help for mental health issues from others, particularly professional help.(500 words)(1500 words)Outline an intervention that uses one of these alternative delivery methods and has been found to be effective in addressing this problem. Provide a brief synthesis of the evidence of its effectiveness. Briefly explain why an economic evaluation of this intervention is needed/would be beneficial and describe the possible impact of this evaluation on decision-making and/or policy design. Finally outline the design of this economic evaluation by stating the comparison, perspective, outcome parameters and timeframe you would use. when deciding whether substantive procedures are to be performed at an interim date, the auditor should consider the Research Objective During the course of our study, we would like to focus on computer-aided engineering. CAE simulation benefits initial stage development for product design, and our objectives are: 1. To differential between conventional vs. integrating CAE into product design development. 2. To measure the benefits of using CAE for the initial stage of product development. 3. To analyse how the iterative CAE simulation process accelerates the initial stage of development for product design. Behaviors and beliefs that violate social expectations and attract negative sanctions are known as: a) Strain Ob) Disorganization Oc) Deviance d) Anomie Imagine the state of Utah passed a law that stipulated only aspecific number of special food cart permits would be awarded.Permits could be traded or sold, but no new permits would beissued. If I a Consider the isoparametric parent element below, which can be used for a general 12-node cubic quadrilateral element. The isoparametric domain below spans the usual square domain 1, 2 [1, 1]. The nodes are evenly spaced along each of the edges of the element.Write the shape function for node 1. Be sure to demonstrate your methodology/explain your reasoning to support your solution. One end of a u-tube is oriented directly into the flow so that the velocity of the stream is zero at this point. The pressure at a point in the flow that has been stopped in this way is called stagnation pressure. The other end of the u-tube measures the undisturbed pressure at that section in the flow. Neglecting friction, determine the volume of water in the pipe. Jason's lungs sounded wet on auscultation. Explain the physiology behind the fluid found in his lungs. How would this fluid affect PaO2 and PaCO2? "Continue considering Firm UVW. Suppose Firm UVW is considering investing in a new project of urban development. The cost of the project is $10 Millions of USD. Firm UVW expects that the non-incremental yearly cash flows from the project are \$3 Million of USD for the next five years; e.g. that is $3 Million of USD each year. Using the calculated WACC in the previous question, what is the Net Present Value (NPV) of the project? Note: Express your answers in strictly numerical terms. For example, if the answer is five million dollars, write 5000000 as an answer." "Firm UVW has a face debt value of $50 Million USDs trading at 85% with a pre-tax weighted cost of 8%. Firm UVW's common equity for the year was valued at $100 Million of USDS and preferred equity for $10 Million of USDs. The Preferred equity rate was calculated to be 20%. However, the common equity was to be calculated using CAPM approach, with a 2\% risk free rate and a 8.5% market risk premium rate, assuming a Beta of 1.5. If the tax rate is 35%, what is Firm UVW s WACC? Express your answers in strictly numerical terms. For example, if the answer is 5%, write 0.05 " To attend school, Arianna deposits $280at the end of every quarter for five and one-half years. What is the accumulated value of the deposits if interest is 2%compounded anually ? the accumulated value is ? A piston-cylinder device initially contains 0.6 kg of water at an absolute pressure of 10bar occupying a volume of 0.1 m 3 (State 1 ). The cylinder is connected to a large supply line that carries steam at an absolute pressure of 40 bar and a temperature of 500 C. The valve between the supply line and the cylinder is opened and the valve is left open until water in the cylinder is at an absolute pressure of 10 bar and a temperature of 240 C occupying a volume of 0.2 m 3 (State 2). Pressure remains constant while piston moves in the cylinder. Assume the boundary temperature is 300 C. Determine entropy generation during the process, in kJ/K. In a steam heating system, air is heated by being passed over heat exchanger tubes through which steam flows steadily. Steam enters the heat exchanger at 40 psia and 400F at a rate of 15 lbm/min and leaves at 25 psia and 212F. Air enters at 14.7 psia and 80F and leaves at 140F. (a) Determine the volume flow rate of air at the inlet, in ft/min, and (b) (5 points, Extra Credit) the rate of heat transfer to the air, in Btu/min.