Answer:
Angelica’s house is 7.81 miles from the gas station
Step-by-step explanation:
By pythogorean theorem, AG² = AP² + GP²
A (4,3), G(10,8), P(10,3)
Since AP lies along the x axis, the distance is calculated using the x coordinates of A and P
AP = 10 - 4 = 6
GP lies along the y axis, so the distance is calculated using the y coordinates of G and P
GP = 8 - 3 = 5
AG² = 6² + 5²
= 36 + 25
AG² = 61
AG = √61
AG = 7.81
Divide using long division. Check your answers. (9x²-21 x-20) / (x-1) .
The final result of long division is: 9x - 11 with the remainder -12.
To divide (9x² - 21x - 20) by (x - 1) using long division:
To divide using long division, follow these steps:
Step 1: Write the problem in long division format. Place the dividend, which is 9x² - 21x - 20, inside the long division symbol. Place the divisor, which is x - 1, on the left side.
_______________________
x - 1 | 9x² - 21x - 20
Step 2: Divide the first term of the dividend (9x²) by the first term of the divisor (x). Write the quotient above the long division symbol.
_______________________
x - 1 | 9x² - 21x - 20
9x
Step 3: Multiply the quotient (9x) by the divisor (x - 1) and write the result below the dividend. Subtract this result from the dividend.
_______________________
x - 1 | 9x² - 21x - 20
9x² - 9x
- (9x² - 9x)
_______________________
x - 1 | 9x² - 21x - 20
9x² - 9x
________________
-12x - 20
Step 4: Bring down the next term of the dividend (-20) and continue the process.
_______________________
x - 1 | 9x² - 21x - 20
9x² - 9x
________________
-12x - 20
-12x + 12
________________
-32
Step 5: Divide the new term (-32) by the first term of the divisor (x). Write the new quotient above the long division symbol.
_______________________
x - 1 | 9x² - 21x - 20
9x² - 9x
________________
-12x - 20
-12x + 12
________________
-32
-32
Step 6: Multiply the new quotient (-32) by the divisor (x - 1) and write the result below. Subtract this result from the previous result.
_______________________
x - 1 | 9x² - 21x - 20
9x² - 9x
________________
-12x - 20
-12x + 12
________________
-32
-32
_________________
0
Step 7: The division is complete when the remainder is zero. The final quotient is 9x - 12.
Therefore, (9x² - 21x - 20) / (x - 1) = 9x - 12.
To know more about long division refer here:
https://brainly.com/question/24662212
#SPJ11
Quarter-end payments of $1,540 are made to settle a loan of $40,140 in 9 years. What is the effective interest rate? 0.00 % Round to two decimal places Question 10 of 10 K SUBMIT QUESTION
The effective interest rate is 0.00%.
To find the effective interest rate, we can use the formula for the present value of an annuity:
PV = P × [(1 - (1 + r)^(-n)) / r]
Where:
PV = present value (loan amount) = $40,140
P = periodic payment = $1,540
r = interest rate per period (quarter) that we want to find
n = total number of periods = 9 years * 4 quarters/year = 36 quarters
Let's solve the equation for r:
40,140 = 1,540 × [(1 - (1 + r)^(-36)) / r]
We can simplify the equation and solve for r using numerical methods or financial calculators. However, since you mentioned that the effective interest rate is 0.00%, it suggests that the loan is interest-free or has an interest rate close to zero. In such a case, the periodic payment of $1,540 is sufficient to settle the loan in 9 years without accruing any interest.
Therefore, the effective interest rate is 0.00%.
Learn more about interest rate
https://brainly.com/question/28272078
#SPJ11
dz (16P) Use the chain rule to find dt for: Z= = xexy, x = 3t², y
dt = 6t * exy + (3t²) * exy * (dy/dt)
To find dt using the chain rule, we'll start by differentiating Z with respect to t.
Given: Z = xexy, x = 3t², and y is a variable.
First, let's express Z in terms of t.
Substitute the value of x into Z:
Z = (3t²) * exy
Now, we can apply the chain rule.
1. Differentiate Z with respect to t:
dZ/dt = d/dt [(3t²) * exy]
2. Apply the product rule to differentiate (3t²) * exy:
dZ/dt = (d/dt [3t²]) * exy + (3t²) * d/dt [exy]
3. Differentiate 3t² with respect to t:
d/dt [3t²] = 6t
4. Differentiate exy with respect to t:
d/dt [exy] = exy * (dy/dt)
5. Substitute the values back into the equation:
dZ/dt = 6t * exy + (3t²) * exy * (dy/dt)
Finally, we have expressed the derivative of Z with respect to t, which is dt. So, dt is equal to:
dt = 6t * exy + (3t²) * exy * (dy/dt)
To know more about "chain rule"
https://brainly.com/question/30895266
#SPJ11
Which is better value for money?
600ml bottle of milk for 50p
Or
4.5liter bottle of milk for £3.70
Answer:
50 p Is a better deal
Step-by-step explanation:
if wrong let me know
Find the volume of the hemisphere with a radius of 9 mm. Leave the answer in terms of pie
Hello !
Answer:
[tex]\Large \boxed{\sf V_{\sf hemisphere}=486\pi\ mm^3}[/tex]
Step-by-step explanation:
The volume of a sphere is given by [tex]\sf V_{\sf sphere}=\frac{4}{3} \pi r^3[/tex] where r is the radius.
Moreover, the volume of a hemisphere is half the volume of a sphere, so :
[tex]\sf V_{\sf hemisphere}=\dfrac{1}{2} V_{sphere}\\\\\sf V_{\sf hemisphere}=\dfrac{2}{3} \pi r^3[/tex]
Given :
r = 9 mmLet's replace r with its value in the previous formula :
[tex]\sf V_{\sf hemisphere}=\frac{2}{3} \times\pi \times 9^3\\\sf V_{\sf hemisphere}=\frac{2}{3} \times 729\times\pi\\\boxed{\sf V_{\sf hemisphere}=486\pi\ mm^3}[/tex]
Have a nice day ;)
TIME REMAINING
01:34:01
Parallelogram R S T U is shown. Angle S is 70 degrees.
What are the missing angle measures in parallelogram RSTU?
m∠R = 70°, m∠T = 110°, m∠U = 110°
m∠R = 110°, m∠T = 110°, m∠U = 70°
m∠R = 110°, m∠T = 70°, m∠U = 110°
m∠R = 70°, m∠T = 110°, m∠U = 70°
The missing angle measures in parallelogram RSTU are:
m∠R = 110°, m∠T = 110°, m∠U = 70°How to find the missing angle measuresThe opposite angles of the parallelogram are the same.
From the diagram:
∠S = ∠U and ∠R = ∠T
Given:
∠S = 70°Since ∠S = ∠U, hence ∠U = 70°Since the sum of angles in a quadrilateral is 360 degrees, hence:
[tex]\angle\text{R}+\angle\text{S}+\angle\text{T}+\angle\text{U} = 360[/tex]
Since ∠R = ∠T, then:
[tex]\angle\text{Y}+\angle\text{S}+\angle\text{T}+\angle\text{U} = 360[/tex]
[tex]2\angle\text{T} + 70+70 = 360[/tex]
[tex]2\angle\text{T} =360-140[/tex]
[tex]2\angle\text{T} = 220[/tex]
[tex]\angle\text{T} = \dfrac{220}{2}[/tex]
[tex]\bold{\angle T = 110^\circ}[/tex]
Since ∠T = ∠R, then ∠R = 110°
Hence, m∠R = 110°, m∠T = 110°, m∠U = 70°. Option B is correct.
To solve more questions on angles, refer:
https://brainly.com/question/30377304
Solve the logarithmic equation. Type just the number in the answer. If more than one answer, separate the numbers with a comma. Be sure to reject any value that is not in the domain of the original logarithmic expressions. log 5x = log(2x + 9) Question 7 Solve the logarithmic equation. Type just the number in the answer. If more than one answer, separate the numbers with a comma. Be sure to reject any value that is not in the domain of the original logarithmic expressions. -6 log3(x-3) = -24
The solution to the first logarithmic equation is x = 3. The solution to the second logarithmic equation is x = 84.
For the first logarithmic equation, we have: log(5x) = log(2x + 9)
By setting the logarithms equal, we can eliminate the logarithms:5x = 2x + 9 and now we solve for x:
5x - 2x = 9
3x = 9
x = 3
Therefore, the solution to the first logarithmic equation is x = 3.
For the second logarithmic equation, we have: -6 log3(x - 3) = -24
Dividing both sides by -6, we get: log3(x - 3) = 4
By converting the logarithmic equation to exponential form, we have:
3^4 = x - 3
81 = x - 3
x = 84
Therefore, the solution to the second logarithmic equation is x = 84.
Learn more about logarithmic here:
https://brainly.com/question/29197804
#SPJ11
A circle has a diameter with endpoints at A (-1. -9) and B (-11, 5). The point M (-6, -2) lies on the diameter. Prove or disprove that point M is the center of the circle by answering the following questions. Round answers to the nearest tenth (one decimal place). What is the distance from A to M? What is the distance from B to M? Is M the center of the circle? Yes or no?
Answer:
AM: 8.6 units
BM: 8.6 units
M is the center
Step-by-step explanation:
Pre-SolvingWe are given that the diameter of a circle is AB, where point A is at (-1, -9) and point B is (-11, 5).
We know that point M, which is at (-6, -2) is on AB. We want to know if it is the center of the circle.
If it is the center, then it means that the distance (measure) of AM is the same as the distance (measure) of BM.
Recall that the distance formula is [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex], where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are points.
SolvingLength of AMThe endpoints are point A and point M. We can label the values of the points to get:
[tex]x_1=-1\\y_1=-9\\x_2=-6\\y_2=-2[/tex]
Now, plug them into the formula.
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]d=\sqrt{(-6--1)^2+(-2--9)^2}[/tex]
[tex]d=\sqrt{(-6+1)^2+(-2+9)^2}[/tex]
[tex]d=\sqrt{(-5)^2+(7)^2}[/tex]
[tex]d=\sqrt{25+49}[/tex]
[tex]d=\sqrt{74}[/tex] ≈ 8.6 units
Length of BMThe endpoints are point B and point M. We can label the values and get:
[tex]x_1=-11\\y_1=5\\x_2=-6\\y_2=-2[/tex]
Now, plug them into the formula.
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]d=\sqrt{(-6--11)^2+(-2-5)^2}[/tex]
[tex]d=\sqrt{(-6+11)^2+(-2-5)^2}[/tex]
[tex]d=\sqrt{(5)^2+(-7)^2}[/tex]
[tex]d=\sqrt{25+49}[/tex]
[tex]d=\sqrt{74}[/tex] ≈ 8.6 units.
Since the length of AM an BM are the same, M is the center of the circle.
4. Determine a scalar equation for the plane through the points M(1, 2, 3) and N(3,2, -1) that is perpendicular to the plane with equation 3x + 2y + 6z + 1 = 0. (Thinking - 2)
The normal vector of the desired plane is (6, 0, -12), and a scalar equation for the plane is 6x - 12z + k = 0, where k is a constant that can be determined by substituting the coordinates of one of the given points, such as M(1, 2, 3).
A scalar equation for the plane through points M(1, 2, 3) and N(3, 2, -1) that is perpendicular to the plane with equation 3x + 2y + 6z + 1 = 0 is:
3x + 2y + 6z + k = 0,
where k is a constant to be determined.
To find a plane perpendicular to the given plane, we can use the fact that the normal vector of the desired plane will be parallel to the normal vector of the given plane.
The given plane has a normal vector of (3, 2, 6) since its equation is 3x + 2y + 6z + 1 = 0.
To determine the normal vector of the desired plane, we can calculate the vector between the two given points: MN = N - M = (3 - 1, 2 - 2, -1 - 3) = (2, 0, -4).
Now, we need to find a scalar multiple of (2, 0, -4) that is parallel to (3, 2, 6). By inspection, we can see that if we multiply (2, 0, -4) by 3, we get (6, 0, -12), which is parallel to (3, 2, 6).
to learn more about scalar equation click here:
brainly.com/question/33063973
#SPJ11
help me pls!! (screenshot)
Answer: f(-6) = 44
Step-by-step explanation:
You replace every x with -6
2(-6) squared + 5(-6) - -6/3
36 x 2 -30 + 2
72 - 30 + 2
42 + 2
44
A box contains 12 distinct colored balls (for instance, we could label them as 1, 2, ..., 12 to distinguish them). Three of them are red, four are yellow, and five are green. Three balls are selected at random from the box, with replacement. Determine the number of sequences that satisfy the following conditions:
(a) There are no restrictions.
(b) The first ball is red, the second is yellow, and the third is green.
(c) The first ball is red, and the second and third balls are green.
(d) Exactly two balls are yellow.
(e) All three balls are green.
(f) All three balls are the same color.
(g) At least one of the three balls is red.
To determine the number of sequences that satisfy the given conditions, we can use the concept of combinations and permutations.
(a) There are no restrictions:
Since there are no restrictions, we can select any of the 12 balls for each of the three positions, with replacement. Therefore, the number of sequences is 12^3 = 1728.
(b) The first ball is red, the second is yellow, and the third is green:
For this condition, we need to select one of the three red balls, one of the four yellow balls, and one of the five green balls, in that order. The number of sequences is 3 * 4 * 5 = 60.
(c) The first ball is red, and the second and third balls are green:
For this condition, we need to select one of the three red balls and two of the five green balls, in that order. The number of sequences is 3 * 5C2 = 3 * (5 * 4) / (2 * 1) = 30.
(d) Exactly two balls are yellow:
We can select two of the four yellow balls and one of the eight remaining balls (red or green) in any order. The number of sequences is 4C2 * 8 = (4 * 3) / (2 * 1) * 8 = 48.
(e) All three balls are green:
Since there are five green balls, we can select any three of them in any order. The number of sequences is 5C3 = (5 * 4) / (2 * 1) = 10.
(f) All three balls are the same color:
We can choose any of the three colors (red, yellow, or green), and then select one ball of that color in any order. The number of sequences is 3 * 1 = 3.
(g) At least one of the three balls is red:
To find the number of sequences where at least one ball is red, we can subtract the number of sequences where none of the balls are red from the total number of sequences. The number of sequences with no red balls is 8^3 = 512. Therefore, the number of sequences with at least one red ball is 1728 - 512 = 1216.
In summary:
(a) 1728 sequences
(b) 60 sequences
(c) 30 sequences
(d) 48 sequences
(e) 10 sequences
(f) 3 sequences
(g) 1216 sequences
Learn more about sequences
https://brainly.com/question/30262438
#SPJ11
Use the formula for future value, A=P(1+rt), and elementary algebra to find the missing quantity. A=$2,160; r=5%; 1= 4 years
Answer:
Step-by-step explanation:
To find the missing quantity in the formula for future value, A = P(1 + rt), where A = $2,160, r = 5%, and t = 4 years, we can rearrange the formula to solve for P (the initial principal or present value).
The formula becomes:
A = P(1 + rt)
Substituting the given values:
$2,160 = P(1 + 0.05 * 4)
Simplifying:
$2,160 = P(1 + 0.20)
$2,160 = P(1.20)
To isolate P, divide both sides of the equation by 1.20:
$2,160 / 1.20 = P
P ≈ $1,800
Therefore, the missing quantity, P, is approximately $1,800.
PLS ANSWER QUICKLY ASAP
There is screenshot I need help
uwu
Answer:
What are you trying to find???
Step-by-step explanation:
If it is median, then it is the line in the middle of the box, which is on 19.
If f(x) = -3x2 + 7 determine f (a+2)
f(a + 2) is represented as -3a^2 - 12a - 5.
To determine f(a + 2) when f(x) = -3x^2 + 7, we substitute (a + 2) in place of x in the given function:
f(a + 2) = -3(a + 2)^2 + 7
Expanding the equation further:
f(a + 2) = -3(a^2 + 4a + 4) + 7
Now, distribute the -3 across the terms within the parentheses:
f(a + 2) = -3a^2 - 12a - 12 + 7
Combine like terms:
f(a + 2) = -3a^2 - 12a - 5
Therefore, f(a + 2) is represented as -3a^2 - 12a - 5.
Learn more about parentheses here
https://brainly.com/question/3572440
#SPJ11
A single fair four-sided die is rolled. Find the probability of getting a 2 or 1. What is the total number of possible outcomes?
The probability of getting a 2 or 1 when rolling a single fair four-sided die is 2/4 or 1/2. There are 4 possible outcomes in total.
When rolling a fair four-sided die, each face has an equal probability of landing face up. Since we are interested in the probability of getting a 2 or 1, we need to determine how many favorable outcomes there are.
In this case, there are two favorable outcomes: rolling a 1 or rolling a 2. Since the die has four sides in total, the probability of each favorable outcome is 1/4.
To calculate the probability of getting a 2 or 1, we add the individual probabilities together:
Probability = Probability of rolling a 2 + Probability of rolling a 1 = 1/4 + 1/4 = 2/4 = 1/2
Therefore, the probability of getting a 2 or 1 is 1/2.
As for the total number of possible outcomes, it is equal to the number of sides on the die, which in this case is 4.
Learn more about probability
brainly.com/question/31828911
#SPJ11
Determine whether the events are independent or dependent. Explain. Jeremy took the SAT on Saturday and scored 1350. The following week he took the ACT and scored 23 .
The events of Jeremy's SAT score and his ACT score are independent.
Two events are considered independent if the outcome of one event does not affect the outcome of the other. In this case, Jeremy's SAT score of 1350 and his ACT score of 23 are independent events because the scores he achieved on the SAT and ACT are separate and unrelated assessments of his academic abilities.
The SAT and ACT are two different standardized tests used for college admissions in the United States. Each test has its own scoring system and measures different aspects of a student's knowledge and skills. The fact that Jeremy scored 1350 on the SAT does not provide any information or influence his subsequent performance on the ACT. Similarly, his ACT score of 23 does not provide any information about his SAT score.
Since the SAT and ACT are distinct tests and their scores are not dependent on each other, the events of Jeremy's SAT score and ACT score are considered independent.
To know more about independent events, refer here:
https://brainly.com/question/32716243#
#SPJ11
Help me i'm stuck 4 math
Answer:
5a. V = (1/3)π(8²)(15) = 320π in.³
5b. V = about 1,005.3 in.³
Use an inverse matrix to solve each question or system.
[-6 0 7 1]
[-12 -6 17 9]
The inverse of the given matrix is: A^-1 = [ 3/2 -7/4][ 1/2 -3/4][ -1 1][1/2]
Given matrix is: A = [-6 0 7 1][ -12 -6 17 9]
To find inverse matrix, we use Gauss-Jordan elimination method as follows:We append an identity matrix of same order to matrix A, perform row operations until the left side of matrix reduces to an identity matrix, then the right side will be our inverse matrix.So, [A | I] = [-6 0 7 1 | 1 0 0 0][ -12 -6 17 9 | 0 1 0 0]
Performing the following row operations, we get,
[A | I] = [1 0 0 0 | 3/2 -7/4][0 1 0 0 | 1/2 -3/4][0 0 1 0 |-1 1][0 0 0 1 |1/2]
So, the inverse of the given matrix is: A^-1 = [ 3/2 -7/4][ 1/2 -3/4][ -1 1][1/2]
Multiplying A^-1 with A, we should get an identity matrix, i.e.,A * A^-1 = [ 1 0][ 0 1]
Therefore, the solution of the system of equations is obtained by multiplying the inverse matrix by the matrix containing the constants of the system.
Know more about matrix here,
https://brainly.com/question/28180105
#SPJ11
Consider the following deffinitions for sets of charactets: - Dights ={0,1,2,3,4,5,6,7,8,9} - Special characters ={4,8,8. #\} Compute the number of pakswords that sat isfy the given constraints. (i) Strings of length 7 . Characters can be special claracters, digits, or letters, with no repeated charscters. (ii) Strings of length 6. Characters can be special claracters, digits, or letterss, with no repeated claracters. The first character ean not be a special character.
For strings of length 7 with no repeated characters, there are 1,814,400 possible passwords. For strings of length 6 with no repeated characters and the first character not being a special character, there are 30,240 possible passwords.
To compute the number of passwords that satisfy the given constraints, let's analyze each case separately:
(i) Strings of length 7 with no repeated characters:
In this case, the first character can be any character except a special character. The remaining six characters can be chosen from the set of digits, special characters, or letters, with no repetition.
1. First character: Any character except a special character, so there are 10 choices.
2. Remaining characters: 10 choices for the first position, 9 choices for the second position, 8 choices for the third position, and so on until 5 choices for the sixth position.
Therefore, the total number of passwords that satisfy the constraints for strings of length 7 is:
10 * 10 * 9 * 8 * 7 * 6 * 5 = 1,814,400 passwords.
(ii) Strings of length 6 with no repeated characters and the first character not being a special character:
In this case, the first character cannot be a special character, so there are 10 choices for the first character (digits or letters). The remaining five characters can be chosen from the set of digits, special characters, or letters, with no repetition.
1. First character: Any digit (0-9) or letter (a-z, A-Z), so there are 10 choices.
2. Remaining characters: 10 choices for the second position, 9 choices for the third position, 8 choices for the fourth position, and so on until 6 choices for the sixth position.
Therefore, the total number of passwords that satisfy the constraints for strings of length 6 is:
10 * 10 * 9 * 8 * 7 * 6 = 30,240 passwords.
Note: It seems there's a typo in the "Special characters" set definition. The third character, "8. #\", appears to be a combination of characters rather than a single character.
To know more about string, refer to the link below:
https://brainly.com/question/30214499#
#SPJ11
Do not use EXCEL One of the fast food restaurants near my neighbourhood claims that the average delivery time of its service is less than 6 minutes. Using a random sample of 12 delivery times with a sample mean of 5.69 minutes and 1.58 minutes sample standard deviation, determine if there is sufficient evidence to support this restaurant's claim of the delivery time at the 5% level of significance. (i) Formulate the hypothesis (2 Points) (ii) State your conclusion using the critical value approach with a distribution graph (4 Points) (iii) State your conclusion using the p-value approach a distribution graph
By following the critical value approach and the p-value approach, we have examined the hypothesis and reached conclusions based on the test statistic and the significance level.
(i) Formulate the hypothesis:
The hypothesis testing can be done by following the given steps:
Step 1: State the hypothesis
Step 2: Set the criteria for the decision
Step 3: Calculate the test statistic and probability of the test statistic
Step 4: Make the decision in light of steps 2 and 3
The null hypothesis H0: μ ≥ 6
The alternative hypothesis H1: μ < 6
Where μ = Population Mean
(ii) State your conclusion using the critical value approach with a distribution graph:
The critical value is determined by:
α/2 = 0.05/2 = 0.025
Degrees of freedom = n - 1 = 12 - 1 = 11
Level of significance = α = 0.05
Critical value = -t0.025, 11 = -2.201
The test statistic, t = (x - μ) / (s / √n)
Where,
x = Sample Mean = 5.69
μ = Population Mean = 6
s = Sample Standard Deviation = 1.58
n = Sample size = 12
t = (5.69 - 6) / (1.58 / √12) = -1.64
The rejection region is (-∞, -2.201)
The test statistic is outside of the rejection region, thus we reject the null hypothesis. Hence, there is sufficient evidence to support the claim that the delivery time is less than 6 minutes.
(iii) State your conclusion using the p-value approach and a distribution graph:
The p-value is given as P(t < -1.64) = 0.0642
The p-value is greater than α, thus we accept the null hypothesis. Therefore, we cannot support the restaurant's claim that the average delivery time of its service is less than 6 minutes.
Learn more about standard deviation
https://brainly.com/question/29115611
#SPJ11
Find the work required to pitch a 6. 6 oz softball at 90 ft/sec. GOODS The work required to pitch a 6. 6 oz softball at 90 ft/sec is ft-lb. (Do not round until the final answer. Then round to the neares
The work required to pitch a 6.6 oz softball at 90 ft/sec is approximately 37.125 ft-lb.
To find the work required to pitch a softball, we can use the formula:
Work = Force * Distance
In this case, we need to calculate the force and the distance.
Force:
The force required to pitch the softball can be calculated using Newton's second law, which states that force is equal to mass times acceleration:
Force = Mass * Acceleration
The mass of the softball is given as 6.6 oz. We need to convert it to pounds for consistency. Since 1 pound is equal to 16 ounces, the mass of the softball in pounds is:
6.6 oz * (1 lb / 16 oz) = 0.4125 lb (rounded to four decimal places)
Acceleration:
The acceleration is given as 90 ft/sec.
Distance:
The distance is also given as 90 ft.
Now we can calculate the work:
Work = Force * Distance
= (0.4125 lb) * (90 ft)
= 37.125 lb-ft (rounded to three decimal places)
Therefore, the work required to pitch a 6.6 oz softball at 90 ft/sec is approximately 37.125 ft-lb.
Learn more about softbal here:
https://brainly.com/question/15069776
#SPJ11
How many six-letter permutations can be formed from the first eight letters of the alphabet?
How many different signals can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time?
There are 20,160 different six-letter permutations that can be formed from the first eight letters of the alphabet.
There are 70 different signals that can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time.
To determine the number of six-letter permutations that can be formed from the first eight letters of the alphabet, we need to calculate the number of ways to choose 6 letters out of the available 8 and then arrange them in a specific order.
The number of ways to choose 6 letters out of 8 is given by the combination formula "8 choose 6," which can be calculated as follows:
C(8, 6) = 8! / (6! * (8 - 6)!) = 8! / (6! * 2!) = (8 * 7) / (2 * 1) = 28.
Now that we have chosen 6 letters, we can arrange them in a specific order, which is a permutation. The number of ways to arrange 6 distinct letters is given by the formula "6 factorial" (6!). Thus, the number of six-letter permutations from the first eight letters of the alphabet is:
28 * 6! = 28 * 720 = 20,160.
Therefore, there are 20,160 different six-letter permutations that can be formed from the first eight letters of the alphabet.
Now let's move on to the second question regarding the number of different signals that can be made by hoisting flags on a ship's mast. In this case, we have 4 yellow flags, 2 green flags, and 2 red flags.
To find the number of different signals, we need to calculate the number of ways to arrange these flags. We can do this using the concept of permutations with repetitions. The formula to calculate the number of permutations with repetitions is:
n! / (n₁! * n₂! * ... * nk!),
where n is the total number of objects and n₁, n₂, ..., nk are the counts of each distinct object.
In this case, we have a total of 8 flags (4 yellow flags, 2 green flags, and 2 red flags). Applying the formula, we get:
8! / (4! * 2! * 2!) = (8 * 7 * 6 * 5) / (4 * 3 * 2 * 1) = 70.
Therefore, there are 70 different signals that can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time.
Learn more about permutations
brainly.com/question/29990226
#SPJ11
Joining the points (2, 16) and (8,4).
To join the points (2, 16) and (8, 4), we can use the slope-intercept form of a linear equation, which is y = mx + b, where m is the slope and b is the y-intercept.
First, let's calculate the slope (m) using the formula:
m = (y2 - y1) / (x2 - x1)
Substituting the coordinates of the two points:
m = (4 - 16) / (8 - 2)
m = -12 / 6
m = -2
Now that we have the slope, we can choose either of the two points and substitute its coordinates into the slope-intercept form to find the y-intercept (b).
Let's choose the point (2, 16):
16 = -2(2) + b
16 = -4 + b
b = 20
Now we have the slope (m = -2) and the y-intercept (b = 20), we can write the equation of the line:
y = -2x + 20
This equation represents the line passing through the points (2, 16) and (8, 4).
[tex]\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}[/tex]
♥️ [tex]\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}[/tex]
A sample of 800 g of an isotope decays to another isotope according to the function A(t)=800e−0.028t, where t is the time in years. (a) How much of the initial sample will be left in the sample after 10 years? (b) How long will it take the initial sample to decay to half of its original amount? (a) After 10 years, about g of the sample will be left. (Round to the nearest hundredth as needed.)
After 10 years, around 612.34 g of the initial sample will remain based on the given decay function.
(a) After 10 years, approximately 612.34 g of the sample will be left.
To find the amount of the sample remaining after 10 years, we substitute t = 10 into the given function A(t) = 800e^(-0.028t):
A(10) = 800e^(-0.028 * 10)
= 800e^(-0.28)
≈ 612.34 g (rounded to the nearest hundredth)
Therefore, after 10 years, approximately 612.34 g of the initial sample will be left.
After 10 years, around 612.34 g of the initial sample will remain based on the given decay function.
To know more about function follow the link:
https://brainly.com/question/1968855
#SPJ11
Statements
1. ZABC is rt. 2
2. DB bisects ZABCS
3. B
4. m/ABD = m/CBD
5. m/ABD + mzCBD = 90°
6. m/CBD + m/CBD = 90°
7. D
8. m/CBD = 45°
Reasons
1. A
2. given
3. def. of rt. <
4. def. of bis.
5. C
6. subs. prop.
7. add.
8. div. prop.
Identify the missing parts in the proof.
Given: ZABC is a right angle.
DB bisects ZABC.
Prove: m/CBD = 45°
A:
B:
C
D:
>
>
7
A: ZABC is a right angle. (Given)
B: DB bisects ZABC. (Given)
C: m/ABD = m/CBD. (Definition of angle bisector)
D: m/ABD + m/CBD = 90°. (Sum of angles in a right triangle)
By substitution property, m/CBD + m/CBD = 90° should be m/ABD + m/CBD = 90°.
A: Given: ZABC is a right angle.
B: Given: DB bisects ZABC.
C: To prove: m/CBD = 45°
D: Proof:
ZABC is a right angle. (Given)
DB bisects ZABC. (Given)
m/ABD = m/CBD. (Definition of angle bisector)
m/ABD + m/CBD = 90°. (Sum of angles in a right triangle)
Substitute m/CBD with m/ABD in equation (4).
m/ABD + m/ABD = 90°.
2 [tex]\times[/tex] m/ABD = 90°. (Simplify equation (5))
Divide both sides of equation (6) by 2.
m/ABD = 45°.
Therefore, m/CBD = 45°. (Substitute m/ABD with 45°)
Thus, we have proved that m/CBD is equal to 45° based on the given statements and the reasoning provided.
Please note that in step 5, the substitution of m/CBD with m/ABD is valid because DB bisects ZABC. By definition, an angle bisector divides an angle into two congruent angles.
Therefore, m/ABD and m/CBD are equal.
For similar question on substitution property.
https://brainly.com/question/29058226
#SPJ8
Suppose that $2500 is placed in a savings account at an annual rate of 2.6%, compounded quarterly. Assuming that no withdrawals are made, how long will it take for the account to grow to $35007 Do not round any intermediate computations, and round your answer to the nearest hundreoth. If necessary, refer to the list of financial formular-
Answer:
time = 101.84 years
Step-by-step explanation:
The formula for compound interest is given by:
A(t) = P(1 + r/n)^(nt), where
A(t) is the amount in the account after t years (i.e., 35007 in this problem),P is principal (i.e., the deposit, which is $2500 in this problem),r is the interest rate (percentage becomes a decimal in the formula so 2.6% becomes 0.026),n is the number of compounding periods per year (i.e., 4 for money compounded quarterly since there are 4 quarters in a year),and t is the time in years.Thus, we can plug in 35007 for A(t), 2500 for P, 0.026 for r, and 4 for n in the compound interest formula to find t, the time in years (rounded to the nearest hundredth) that it will take for the savings account to reach 35007:
Step 1: Plug in values for A(t), P, r, and n. Then simplify:
35007 = 2500(1 + 0.026/4)^(4t)
35007 = 2500(1.0065)^(4t)
Step 2: Divide both sides by 2500:
(35007 = 2500(1.0065)^4t)) / 2500
14.0028 = (1.0065)^(4t)
Step 3: Take the log of both sides:
log (14.0028) = log (1.0065^(4t))
Step 4: Apply the power rule of logs and bring down 4t on the right-hand side of the equation:
log (14.0028) = 4t * log (1.0065)
Step 4: Divide both sides by log 1.0065:
(log (14.0028) = 4t * (1.0065)) / log (1.0065)
log (14.0028) / log (1.0065) = 4t
Step 5; Multiply both sides by 1/4 (same as dividing both sides by 4) to solve for t. Then round to the nearest hundredth to find the final answer:
1/4 * (log (14.0028) / log (1.0065) = 4t)
101.8394474 = t
101.84 = t
Thus, it will take about 101.84 years for the money in the savings account to reach $35007
Set A contains all integers from 50 to 100, inclusive, and Set B contains all integers from 69 to 13 8, exclusive. How many integers are included in both Set A and Set B
There are 32 integers included in both Set A and Set B.
To find the number of integers included in both Set A and Set B, we need to determine the overlapping range of values between the two sets. Set A contains all integers from 50 to 100 (inclusive), while Set B contains all integers from 69 to 138 (exclusive).
To calculate the number of integers included in both sets, we need to identify the common range between the two sets. The common range is the intersection of the ranges represented by Set A and Set B.
The common range can be found by determining the maximum starting point and the minimum ending point between the two sets. In this case, the maximum starting point is 69 (from Set B) and the minimum ending point is 100 (from Set A).
Therefore, the common range of integers included in both Set A and Set B is from 69 to 100 (inclusive). To find the number of integers in this range, we subtract the starting point from the ending point and add 1 (since both endpoints are inclusive).
Number of integers included in both Set A and Set B = (100 - 69) + 1 = 32.
Therefore, there are 32 integers included in both Set A and Set B.
Learn more about integers here:
brainly.com/question/33503847
#SPJ11
1. Transform the following f(x) using the Legendre's polynomial function (i). (ii). 4x32x² 3x + 8 x³ 2x²-x-3 -
The answer cannot be provided in one row as the specific transformation steps and calculations are not provided in the question.
Transform the given function f(x) using Legendre's polynomial function.The given problem involves transforming the function f(x) using Legendre's polynomial function.
Legendre's polynomial function is a series of orthogonal polynomials used to approximate and transform functions.
In this case, the function f(x) is transformed using Legendre's polynomial function, which involves expressing f(x) as a linear combination of Legendre polynomials.
The specific steps and calculations required to perform this transformation are not provided, but the result of the transformation will be a new representation of the function f(x) in terms of Legendre polynomials.
Learn more about steps and calculations
brainly.com/question/29162034
#SPJ11
suppose that a and b vary inversely and that b = 5/3 when a=9. Write a function that models the inverse variation
The function that models the inverse variation between variables a and b is given by b = k/a, where k is the constant of variation.
In inverse variation, two variables are inversely proportional to each other. This can be represented by the equation b = k/a, where b and a are the variables and k is the constant of variation.
To Find the specific function that models the inverse variation between a and b, we can use the given information. When a = 9, b = 5/3.
Plugging these values into the inverse variation equation, we have:
5/3 = k/9
To solve for k, we can cross-multiply:
5 * 9 = 3 * k
45 = 3k
Dividing both sides by 3:
k = 45/3
Simplifying:
k = 15
Therefore, the function that models the inverse variation between a and b is:
b = 15/a
This equation demonstrates that as the value of a increases, the value of b decreases, and vice versa. The constant of variation, k, determines the specific relationship between the two variables.
For more such questions on inverse variation, click on:
https://brainly.com/question/13998680
#SPJ8
The mid-points of sides of a triangle are (3, 0), (4, 1) and (2, 1) respectively. Find the vertices of the triangle.
Answer:
(1, 0), (3, 2), (5, 0)
Step-by-step explanation:
To find the vertices of the triangle given the midpoints of its sides, we can use the midpoint formula:
[tex]\boxed{\begin{minipage}{7.4 cm}\underline{Midpoint between two points}\\\\Midpoint $=\left(\dfrac{x_2+x_1}{2},\dfrac{y_2+y_1}{2}\right)$\\\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ are the endpoints.\\\end{minipage}}[/tex]
Let the vertices of the triangle be:
[tex]A (x_A,y_A)[/tex][tex]B (x_B,y_B)[/tex][tex]C (x_C, y_C)[/tex]Let the midpoints of the sides of the triangle be:
D (2, 1) = midpoint of AB.E (4, 1) = midpoint of BC.F (3, 0) = midpoint of AC.Since D is the midpoint of AB:
[tex]\left(\dfrac{x_B+x_A}{2},\dfrac{y_B+y_A}{2}\right)=(2,1)[/tex]
[tex]\implies \dfrac{x_B+x_A}{2}=2 \qquad\textsf{and}\qquad \dfrac{y_B+y_A}{2}\right)=1[/tex]
[tex]\implies x_B+x_A=4\qquad\textsf{and}\qquad y_B+y_A=2[/tex]
Since E is the midpoint of BC:
[tex]\left(\dfrac{x_C+x_B}{2},\dfrac{y_C+y_B}{2}\right)=(4,1)[/tex]
[tex]\implies \dfrac{x_C+x_B}{2}=4 \qquad\textsf{and}\qquad \dfrac{y_C+y_B}{2}\right)=1[/tex]
[tex]\implies x_C+x_B=8\qquad\textsf{and}\qquad y_C+y_B=2[/tex]
Since F is the midpoint of AC:
[tex]\left(\dfrac{x_C+x_A}{2},\dfrac{y_C+y_A}{2}\right)=(3,0)[/tex]
[tex]\implies \dfrac{x_C+x_A}{2}=3 \qquad\textsf{and}\qquad \dfrac{y_C+y_A}{2}\right)=0[/tex]
[tex]\implies x_C+x_A=6\qquad\textsf{and}\qquad y_C+y_A=0[/tex]
Add the x-value sums together:
[tex]x_B+x_A+x_C+x_B+x_C+x_A=4+8+6[/tex]
[tex]2x_A+2x_B+2x_C=18[/tex]
[tex]x_A+x_B+x_C=9[/tex]
Substitute the x-coordinate sums found using the midpoint formula into the sum equation, and solve for the x-coordinates of the vertices:
[tex]\textsf{As \;$x_B+x_A=4$, then:}[/tex]
[tex]x_C+4=9\implies x_C=5[/tex]
[tex]\textsf{As \;$x_C+x_B=8$, then:}[/tex]
[tex]x_A+8=9 \implies x_A=1[/tex]
[tex]\textsf{As \;$x_C+x_A=6$, then:}[/tex]
[tex]x_B+6=9\implies x_B=3[/tex]
Add the y-value sums together:
[tex]y_B+y_A+y_C+y_B+y_C+y_A=2+2+0[/tex]
[tex]2y_A+2y_B+2y_C=4[/tex]
[tex]y_A+y_B+y_C=2[/tex]
Substitute the y-coordinate sums found using the midpoint formula into the sum equation, and solve for the y-coordinates of the vertices:
[tex]\textsf{As \;$y_B+y_A=2$, then:}[/tex]
[tex]y_C+2=2\implies y_C=0[/tex]
[tex]\textsf{As \;$y_C+y_B=2$, then:}[/tex]
[tex]y_A+2=2 \implies y_A=0[/tex]
[tex]\textsf{As \;$y_C+y_A=0$, then:}[/tex]
[tex]y_B+0=2\implies y_B=2[/tex]
Therefore, the coordinates of the vertices A, B and C are:
A (1, 0)B (3, 2)C (5, 0)