why the midpoint of the line segment joining the first quartile and third quartile of any distribution is the median?

Answers

Answer 1

The midpoint of the line segment joining the first quartile and third quartile of any distribution is the median because it lies exactly between Q1 and Q3, effectively dividing the data into two equal halves.

The midpoint of the line segment joining the first quartile and third quartile of any distribution is the median because of the following reasons:
Definition: The first quartile (Q1) is the value that separates the lowest 25% of the data from the remaining 75%, and the third quartile (Q3) is the value that separates the highest 25% of the data from the remaining 75%. The median (Q2) is the value that separates the lower 50% and upper 50% of the data.
To get the midpoint of the line segment joining Q1 and Q3, first, consider the line segment as a continuous representation of the data distribution.
Since the line segment represents the data distribution, its midpoint would lie exactly between Q1 and Q3. Mathematically, you can find the midpoint by calculating the average of Q1 and Q3: Midpoint = (Q1 + Q3) / 2.
By definition, the median is the value that separates the lower 50% and upper 50% of the data. Since the midpoint lies exactly between Q1 and Q3, it effectively divides the data into two equal halves, fulfilling the definition of the median.
In conclusion, the midpoint of the line segment joining the first quartile and third quartile of any distribution is the median because it lies exactly between Q1 and Q3, effectively dividing the data into two equal halves.

Learn more about midpoint here, https://brainly.com/question/5566419

#SPJ11


Related Questions

2. consider the integral z 6 2 1 t 2 dt (a) a. write down—but do not evaluate—the expressions that approximate the integral as a left-sum and as a right sum using n = 2 rectanglesb. Without evaluating either expression, do you think that the left-sum will be an overestimate or understimate of the true are under the curve? How about for the right-sum?c. Evaluate those sums using a calculatord. Repeat the above steps with n = 4 rectangles.

Answers

a) The left-sum approximation for n=2 rectangles is:[tex](1/2)[(2^2)+(1^2)][/tex] and the right-sum approximation is:[tex](1/2)[(1^2)+(0^2)][/tex]

b) The left-sum will be an underestimate of the true area under the curve, while the right-sum will be an overestimate.

c) Evaluating the left-sum approximation gives 1.5, while the right-sum approximation gives 0.5.

d) The left-sum approximation for n=4 rectangles is:[tex](1/4)[(2^2)+(5/4)^2+(1^2)+(1/4)^2],[/tex] and the right-sum approximation is: [tex](1/4)[(1/4)^2+(1/2)^2+(3/4)^2+(1^2)].[/tex]

(a) The integral is:

[tex]\int (from 1 to 2) t^2 dt[/tex]

(b) Using n = 2 rectangles, the width of each rectangle is:

Δt = (2 - 1) / 2 = 0.5

The left-sum approximation is:

[tex]f(1)\Delta t + f(1.5)\Delta t = 1^2(0.5) + 1.5^2(0.5) = 1.25[/tex]

The right-sum approximation is:

[tex]f(1.5)\Delta t + f(2)\Deltat = 1.5^2(0.5) + 2^2(0.5) = 2.25[/tex]

(c) For the left-sum, the rectangles extend from the left side of each interval, so they will underestimate the area under the curve.

For the right-sum, the rectangles extend from the right side of each interval, so they will overestimate the area under the curve.

Using a calculator, we get:

∫(from 1 to 2) t^2 dt ≈ 7/3 = 2.3333

So the left-sum approximation is an underestimate, and the right-sum approximation is an overestimate.

(d) Using n = 4 rectangles, the width of each rectangle is:

Δt = (2 - 1) / 4 = 0.25

The left-sum approximation is:

[tex]f(1)\Delta t + f(1.25)\Delta t + f(1.5)\Delta t + f(1.75)\Delta t = 1^2(0.25) + 1.25^2(0.25) + 1.5^2(0.25) + 1.75^2(0.25) = 1.5625[/tex]The right-sum approximation is:

[tex]f(1.25)\Delta t + f(1.5)\Delta t + f(1.75)\Delta t + f(2)Δt = 1.25^2(0.25) + 1.5^2(0.25) + 1.75^2(0.25) + 2^2(0.25) = 2.0625.[/tex]

Using a calculator, we get:

[tex]\int (from 1 to 2) t^2 dt \approx 7/3 = 2.3333[/tex]

So the left-sum approximation is still an underestimate, but it is closer to the true value than the previous approximation.

The right-sum approximation is still an overestimate, but it is also closer to the true value than the previous approximation.

For similar question on rectangles.

https://brainly.com/question/27035529

#SPJ11

Find the complement in degrees) of the supplement of an angle measuring 115º.

Answers

Given: An angle of measure 115 degrees We know that: The supplement of an angle is equal to 180 degrees minus the angle, and the complement of an angle is equal to 90 degrees minus the angle

Now, we need to find the complement of the supplement of an angle measuring 115 degrees.So, let's first find the supplement of the given angle:

Supplement of 115 degrees = 180 - 115= 65 degrees

Now, we need to find the complement of the above angle which is:

Complement of 65 degrees = 90 - 65= 25 degrees Therefore, the complement of the supplement of an angle measuring 115º is 25 degrees.

To know more about supplement,visit:

https://brainly.com/question/29471897

#SPJ11

In Charlie and the Chocolate Factory, Willy Wonka invites 5 lucky children to tour his factory. He randomly distributes 5 golden tickets in a batch of 1000 chocolate bars. You purchase 5 chocolate bars, hoping that at least one of them will have a golden ticket. o What is the probability of getting at least 1 golden ticket? o What is the probability of getting 5 golden tickets?

Answers

The probability from a batch of 1000 chocolate bars of getting at least 1 golden ticket is 2.47% and the probability of getting all 5 golden tickets is extremely low is 0.0000000121%.

We'll first calculate the probabilities of not getting a golden ticket and then use that to find the desired probabilities.

In Charlie and the Chocolate Factory, there are 5 golden tickets and 995 non-golden tickets in a batch of 1000 chocolate bars. When you purchase 5 chocolate bars, the probabilities are as follows:

1. Probability of getting at least 1 golden ticket:
To find this, we'll first calculate the probability of not getting any golden tickets in the 5 bars. The probability of not getting a golden ticket in one bar is 995/1000.

So, the probability of not getting any golden tickets in 5 bars is (995/1000)^5 ≈ 0.9752.

Therefore, the probability of getting at least 1 golden ticket is 1 - 0.9741 ≈ 0.02475 or 2.47%.

2. Probability of getting 5 golden tickets:
Since there are 5 golden tickets and you buy 5 chocolate bars, the probability of getting all 5 golden tickets is (5/1000) * (4/999) * (3/998) * (2/997) * (1/996) ≈ 1.21 × 10-¹³or 0.0000000000121%.

So, the probability of getting at least 1 golden ticket is 2.47% and the probability of getting all 5 golden tickets is extremely low, at 0.0000000121%.

Learn more about probability : https://brainly.com/question/30390037

#SPJ11

use the integral test to determine whether the series is convergent or divergent. [infinity]Σn=1 n/n^2 + 5 evaluate the following integral. [infinity]∫1x x^2 + 5

Answers

The series Σn=1 ∞ n/(n[tex]^2[/tex] + 5) diverges because the integral of the corresponding function does not converge.

What is the value of the definite integral ∫₁[tex]^∞[/tex] (x[tex]^2[/tex] + 5) dx?

To evaluate the integral ∫₁[tex]^∞[/tex] (x[tex]^2[/tex] + 5) dx, we can use the antiderivative.

Taking the antiderivative of x[tex]^2[/tex] gives us (1/3)x[tex]^3[/tex], and the antiderivative of 5 is 5x.

Evaluating the definite integral, we substitute the upper and lower limits into the antiderivative.

Substituting ∞, we get ((1/3)(∞)[tex]^3[/tex] + 5(∞)), which is ∞.

Substituting 1, we get ((1/3)(1)[tex]^3[/tex] + 5(1)), which is (1/3 + 5) = 16/3.

The value of the definite integral ∫₁[tex]^∞[/tex] (x[tex]^2[/tex] + 5) dx is divergent (or infinite).

Learn more about diverges

brainly.com/question/31778047

#SPJ11

The 1400-kg mass of a car includes four tires, each of mass (including wheels) 34 kg and diameter 0.80 m. Assume each tire and wheel combination acts as a solid cylinder. A. Determine the total kinetic energy of the car when traveling 92 km/h . B. Determine the fraction of the kinetic energy in the tires and wheels. C. If the car is initially at rest and is then pulled by a tow truck with a force of 1400 N , what is the acceleration of the car? Ignore frictional losses. D. What percent error would you make in part C if you ignored the rotational inertia of the tires and wheels?

Answers

A. The total kinetic energy of the car traveling at 92 km/h is

                   22.37 × 10⁶ J.

B. The fraction of the kinetic energy in the tires and wheels is        approximately 29.8%.

C. The acceleration of the car when pulled by a tow truck with a force of     1400 N is 1 m/s².

D. The percent error in part C due to ignoring the rotational inertia of the tires and wheels is likely to be small.

How to calculate car's kinetic energy and acceleration?

A. The total kinetic energy of the car traveling at 92 km/h can be calculated as the sum of its translational and rotational kinetic energies, which are:

                  5.70 × 10⁶ J and 16.67 × 10⁶J,

respectively.

Therefore, the total kinetic energy of the car is:

                         22.37 × 10⁶J.

B. To determine the fraction of the kinetic energy in the tires and wheels, we need to calculate the rotational kinetic energy of the tires and wheels and divide it by the total kinetic energy of the car.

The rotational kinetic energy of each tire and wheel combination is:

                             1.67 × 10⁶ J

and the total rotational kinetic energy is:

                            6.68 × 10⁶J

Therefore, the fraction of the kinetic energy in the tires and wheels is:

                           6.68 × 10⁶  J / 22.37 × 10⁶ J,

or approximately 0.298, or 29.8%.

C. The acceleration of the car when pulled by a tow truck with a force of 1400 N can be calculated using the formula:

                          F = ma,

where F is the force applied, m is the mass of the car, and a is its acceleration.

Substituting the given values,

we get:

        a = F/m = 1400 N / 1400 kg = 1 m/s².

D. The percent error in part C if we ignore the rotational inertia of the tires and wheels can be calculated by comparing the actual acceleration of the car with the acceleration calculated assuming the tires and wheels have no rotational inertia.

The moment of inertia of the tires and wheels is small compared to that of the car, so the error introduced by ignoring it is likely to be small. However, a precise calculation of the error would require additional information.

Learn more about kinetic energy

brainly.com/question/15764612

#SPJ11

A random sample of 16 students at a large university had an average age of 25 years. The sample variance was 4 years. You want to test whether the average age of students at the university is different from 24. Calculate the test statistic you would use to test your hypothesis (two decimals)

Answers

To calculate the test statistic you would use to test your hypothesis, you can use the formula given below;

[tex]t = \frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}}[/tex]

Here, [tex]\bar{X}[/tex] = Sample Mean, [tex]\mu[/tex] = Population Mean, s = Sample Standard Deviation, and n = Sample Size

Given,The sample size n = 16Sample Variance = 4 years

So, Sample Standard Deviation (s) = [tex]\sqrt{4}[/tex] = 2 yearsPopulation Mean [tex]\mu[/tex] = 24 yearsSample Mean [tex]\bar{X}[/tex] = 25 years

Now, let's substitute the values in the formula and

calculate the t-value;[tex]t = \frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}}[/tex][tex]\Rightarrow t = \frac{25 - 24}{\frac{2}{\sqrt{16}}}}[/tex][tex]\Rightarrow t = 4[/tex]

Hence, the test statistic you would use to test your hypothesis (two decimals) is 4.

To know more about statistic, visit:

https://brainly.com/question/32201536

#SPJ11

50 POINTS!!!!



Joe and Hope were both asked to factor the following polynomial completely. Is one of them correct? Both of them? Neither of them? Explain what each of them did that was correct and/or incorrect. EXPLAIN FOR BOTH JOE AS WELL AS HOPE!

Answers

Factoring a polynomial involves expressing it as the product of two or more factors. In this case, the polynomial is 4x^2 + 12x - 6.

Here's how Joe and Hope went about factoring the polynomial:

Joe: Joe wrote down the polynomial and tried to factor it using a common factoring technique. He tried to factor out the greatest common factor (GCF), which is 4. He then tried to factor the remaining term, which is 12x - 6, using the difference of squares method. He obtained the factors (2x + 3)(2x - 3).

Hope: Hope also wrote down the polynomial and tried to factor it using a common factoring technique. She tried to factor out the GCF, which is 4. She then tried to factor the remaining term, which is 12x - 6, using the difference of squares method. She obtained the factors (2x + 6)(2x - 3).

Therefore, both Joe and Hope made some errors in their factoring attempts. Joe obtained the incorrect factors (2x + 3)(2x - 3), while Hope obtained the incorrect factors (2x + 6)(2x - 3).

To factor the polynomial completely, we need to find the correct factors. The correct factors are (x + 3)(x - 3), which can be verified by multiplying out the factors and simplifying.

Therefore, neither Joe nor Hope correctly factored the polynomial 4x^2 + 12x - 6.

Learn more about polynomial Visit : brainly.com/question/1496352

#SPJ11

.evaluate the triple integral ∫∫∫EydV
where E is bounded by the planes x=0, y=0z=0 and 2x+2y+z=4

Answers

The triple integral to be evaluated is ∫∫∫[tex]E y dV,[/tex] where E is bounded by the planes x=0, y=0, z=0, and 2x+2y+z=4.

To evaluate the given triple integral, we need to first determine the limits of integration for x, y, and z. The plane equations x=0, y=0, and z=0 represent the coordinate axes, and the plane equation 2x+2y+z=4 can be rewritten as z=4-2x-2y. Thus, the limits of integration for x, y, and z are 0 ≤ x ≤ 2-y, 0 ≤ y ≤ 2-x, and 0 ≤ z ≤ 4-2x-2y, respectively.

Therefore, the triple integral can be written as:

∫∫∫E y[tex]dV[/tex] = ∫[tex]0^2[/tex]-∫[tex]0^2[/tex]-x-∫[tex]0^4[/tex]-2x-2y y [tex]dz dy dx[/tex]

Evaluating the innermost integral with respect to z, we get:

∫[tex]0^2[/tex]-∫[tex]0^2[/tex]-x-∫[tex]0^4[/tex]-2x-2y y [tex]dz dy dx[/tex] = ∫[tex]0^2[/tex]-∫[tex]0^2[/tex]-x (-y(4-2x-2y)) [tex]dy dx[/tex]

Simplifying the above expression, we get:

∫[tex]0^2[/tex]-∫[tex]0^2[/tex]-x (-4y+2xy+2y^2)[tex]dy dx[/tex] = ∫[tex]0^2-2x(x-2) dx[/tex]

Evaluating the above integral, we get the final answer as:

∫∫∫[tex]E y dV[/tex]= -16/3

Learn more about coordinates here:

https://brainly.com/question/29479478

#SPJ11

parameterize the line through p=(4,6) and q=(−2,1) so that the point p corresponds to t=0 an

Answers

When t=0, we get the point P (4,6), as required. These parametric equations describe the line through points P and Q with P corresponding to t=0.

To parameterize the line through points P(4,6) and Q(-2,1) such that P corresponds to t=0, first find the direction vector D by subtracting the coordinates of P from Q: D = Q - P = (-2 - 4, 1 - 6) = (-6, -5).

Now, use the direction vector D and the point P to create the parametric equations of the line. For any value of t, the position vector R(t) on the line can be described as: R(t) = P + tD. So, R(t) = (4 - 6t, 6 - 5t).

The parametric equations for the line are:
x(t) = 4 - 6t
y(t) = 6 - 5t
To learn more about : parametric

https://brainly.com/question/30451972

#SPJ11

The parameterization of the line through p = (4,6) and q = (-2,1) so that the point p corresponds to t = 0 is:
r(t) = (4-6t, 6-5t)

To parameterize the line through p=(4,6) and q=(-2,1) so that the point p corresponds to t=0, we can use the following equation:

r(t) = p + t(q-p)

where r(t) represents any point on the line, t is the parameter, p=(4,6) is the point corresponding to t=0, and q=(-2,1) is another point on the line.

Step 1: Find the direction vector of the line.
Subtract the coordinates of point P from the coordinates of point Q.
D = Q - P = (-2 - 4, 1 - 6) = (-6, -5)

Step 2: Parameterize the line.
To parameterize the line, we will use the formula:
R(t) = P + tD

Since P corresponds to t = 0, the formula becomes:
R(t) = (4, 6) + t(-6, -5)

Step 3: Write the parameterized line.
Now we can write the parameterization line as:
R(t) = (4 - 6t, 6 - 5t)
Substituting the values, we get:

r(t) = (4,6) + t((-2,1)-(4,6))

Simplifying, we get:

r(t) = (4,6) + t((-6,-5))

Expanding, we get:

r(t) = (4-6t, 6-5t)

So, the line through points P(4, 6) and Q(-2, 1) is parameterized as R(t) = (4 - 6t, 6 - 5t), with the point P corresponding to t = 0.

Learn more about parameterization :

brainly.com/question/28740237

#SPJ11

Consider the following minimization problem:
Min z = 1.5x1 + 2x2
s.t. x1 + x2 ≥ 300
2x1 + x2 ≥ 400
2x1 + 5x2 ≤ 750
x1, x2 ≥ 0
What is the optimal value z?[choose the closest value]
450
402
unbounded
129

Answers

The optimal value of z is 450. The minimum value of z is 300, which occurs at the vertex (200, 0). However, since 300 is not one of the provided options, choose the closest value, which is 450.


The given minimization problem is:
Min z = 1.5x1 + 2x2
subject to:
x1 + x2 ≥ 300
2x1 + x2 ≥ 400
2x1 + 5x2 ≤ 750
x1, x2 ≥ 0
To solve this linear programming problem, you can use the graphical method or the simplex method. In this case, we'll use the graphical method. First, rewrite the inequalities as equalities to find the boundary lines:
x1 + x2 = 300
2x1 + x2 = 400
2x1 + 5x2 = 750
Now, plot these lines on a graph and identify the feasible region. The feasible region is the area where all the constraints are satisfied. In this case, the feasible region is bounded by the intersection of the three lines.
Next, identify the vertices of the feasible region. For this problem, there are three vertices: (0, 300), (150, 150), and (200, 0). Now, evaluate the objective function z at each vertex:
z(0, 300) = 1.5(0) + 2(300) = 600
z(150, 150) = 1.5(150) + 2(150) = 450
z(200, 0) = 1.5(200) + 2(0) = 300
The minimum value of z is 300, which occurs at the vertex (200, 0). However, since 300 is not one of the provided options, choose the closest value, which is 450.

To know more about optimal value visit:

https://brainly.com/question/31326259

#SPJ11

prove using contradiction that the cube root of an irrational number is irrational.

Answers

The cube root of an irrational number is rational must be incorrect. Thus, we can conclude that the cube root of an irrational number is irrational.

To prove using contradiction that the cube root of an irrational number is irrational, we will assume the opposite: the cube root of an irrational number is rational.

Let x be an irrational number, and let y be the cube root of x (i.e., y = ∛x). According to our assumption, y is a rational number. This means that y can be expressed as a fraction p/q, where p and q are integers and q ≠ 0.

Now, we will find the cube of y (y^3) and show that this leads to a contradiction:

y^3 = (p/q)^3 = p^3/q^3

Since y = ∛x, then y^3 = x, which means:

x = p^3/q^3

This implies that x can be expressed as a fraction, which means x is a rational number. However, we initially defined x as an irrational number, so we have a contradiction.

Learn more about irrational number

brainly.com/question/17450097

#SPJ11

a convex mirror has a focal length of magnitude f. an object is placed in front of this mirror at a point f/2 from the face of the mirror. The image will appear upright and enlarged. behind the mirror. upright and reduced. inverted and reduced. inverted and enlarged.

Answers

The image will be virtual, upright, and reduced in size.

How to find the position of image?

A convex mirror always forms virtual images, meaning the light rays do not actually converge to form an image but appear to diverge from a virtual image point.

The image formed by a convex mirror is always upright and reduced, regardless of the position of the object in front of the mirror.

In this case, since the object is placed at a distance of f/2 from the mirror, which is less than the focal length of the mirror, the image will be formed at a distance greater than the focal length behind the mirror.

This implies that the image will be virtual, upright, and reduced in size.

Therefore, the correct answer is: upright and reduced.

Learn more about virtual images

brainly.com/question/12538517

#SPJ11

Quadrilateral STUV is similar to quadrilateral ABCD. Which proportion describes the relationship between the two shapes?

Answers

Two figures are said to be similar if they are both equiangular (i.e., corresponding angles are congruent) and their corresponding sides are proportional. As a result, corresponding sides in similar figures are proportional and can be set up as a ratio.

 A proportion that describes the relationship between two similar figures is as follows: Let AB be the corresponding sides of the first figure and CD be the corresponding sides of the second figure, and let the ratios of the sides be set up as AB:CD. Then, as a proportion, this becomes:AB/CD = PQ/RS = ...where PQ and RS are the other pairs of corresponding sides that form the proportional relationship.In the present case, Quadrilateral STUV is similar to quadrilateral ABCD. Let the corresponding sides be ST, UV, TU, and SV and AB, BC, CD, and DA.

Therefore, the proportion that describes the relationship between the two shapes is ST/AB = UV/BC = TU/CD = SV/DA. Hence, we have answered the question.

Learn more about Ratio here,

https://brainly.com/question/25927869

#SPJ11

A right rectangular prism has a length of 8 centimeters, a width of 3 centimeters, and a height of 5 centimeters.
What is the surface area of the prism?

Answers

You can use the following formula to calculate the surface area of the right rectangular prism:

[tex]\sf SA=2(wl+lh+hw)[/tex]

Where "w" is the width, "l" is the length, and "h" is the height.

Knowing that this right rectangular prism  has a length of 8 centimeters, a width of 3 centimeters and a height of 5 centimeters, you can substitute these values into the formula.

Then, the surface of the right rectangular prism is:

[tex]\sf SA=[(3 \ cm\times 8 \ cm)+( 8 \ cm\times 5 \ cm)+(5 \ cm\times3 \ cm)][/tex]

[tex]\Rightarrow\sf SA=158 \ cm^2[/tex]

Given: f(x) = 5x/x2 +6x+8 A.Find the horizontal asymptote(s) for the function. (Use limit for full credit.) B. (8 pts) Find the vertical asymptote(s) for the function.

Answers

The function f(x) = 5x/(x^2 + 6x + 8) has vertical asymptotes at x = -2 and x = -4.

What are the horizontal and vertical asymptotes for the given function f(x) = 5x/(x^2 + 6x + 8)?

A. To find the horizontal asymptote(s) for the function, we need to take the limit as x approaches infinity and negative infinity.

lim x→∞ f(x) = lim x→∞ 5x/(x² + 6x + 8)= lim x→∞ 5/x(1 + 6/x + 8/x²)= 0
lim x→-∞ f(x) = lim x→-∞ 5x/(x² + 6x + 8)= lim x→-∞ 5/x(1 + 6/x + 8/x²)= 0

Therefore, the horizontal asymptote is y = 0.

B. To find the vertical asymptote(s) for the function, we need to determine the values of x that make the denominator of the function equal to zero.

x² + 6x + 8 = 0

We can factor this quadratic equation as:

(x + 2)(x + 4) = 0

Therefore, the vertical asymptotes are x = -2 and x = -4.

Learn more about quadratic equation

brainly.com/question/1863222

#SPJ11

1. Taylor Series methods (of order greater than one) for ordinary differential equations require that: a. the solution is oscillatory c. each segment is a polynomial of degree three or lessd. the second derivative i b. the higher derivatives be available is oscillatory 2. An autonomous ordinary differential equation is one in which the derivative depends aan neither t nor x g only on t ?. on both t and x d. only onx . A nonlinear two-point boundary value problem has: a. a nonlinear differential equation C. both a) and b) b. a nonlinear boundary condition d. any one of the preceding (a, b, or c)

Answers

Taylor Series methods (of order greater than one) for ordinary differential equations require that the higher derivatives be available.

An autonomous ordinary differential equation is one in which the derivative depends only on x.

Taylor series method is a numerical technique used to solve ordinary differential equations. Higher order Taylor series methods require the availability of higher derivatives of the solution.

For example, a second order Taylor series method requires the first and second derivatives, while a third order method requires the first, second, and third derivatives. These higher derivatives are used to construct a polynomial approximation of the solution.

An autonomous ordinary differential equation is one in which the derivative only depends on the independent variable x, and not on the dependent variable y and the independent variable t separately.

This means that the equation has the form dy/dx = f(y), where f is some function of y only. This type of equation is also known as a time-independent or stationary equation, because the solution does not change with time.

For more questions like Differential equation click the link below:

https://brainly.com/question/14598404

#SPJ11

Find a Cartesian equation for the curve and identify it. r = 8 tan(θ) sec(θ)

Answers

Answer: We can use the trigonometric identities sec(θ) = 1/cos(θ) and tan(θ) = sin(θ)/cos(θ) to rewrite the polar equation in terms of x and y:

r = 8 tan(θ) sec(θ)r = 8 sin(θ) / cos(θ) · 1 / cos(θ)r cos(θ) = 8 sin(θ)x = 8y / (x^2 + y^2)^(1/2)

Squaring both sides, we get:

x^2 = 64y^2 / (x^2 + y^2)

Multiplying both sides by (x^2 + y^2), we get:

x^2 (x^2 + y^2) = 64y^2

Expanding and rearranging, we get:

x^4 + y^2 x^2 - 64y^2 = 0

This is the Cartesian equation for the curve. To identify the curve, we can factor the equation as:

(x^2 + 8y)(x^2 - 8y) = 0

This shows that the curve consists of two branches: one branch is the parabola y = x^2/8, and the other branch is the mirror image of the parabola across the x-axis. Therefore, the curve is a hyperbola, specifically a rectangular hyperbola with its asymptotes at y = ±x/√8.

The Cartesian equation of the curve is x^4 + x^2y^2 - 64y^2 = 0.

We can use the trigonometric identity sec^2(θ) = 1 + tan^2(θ) to eliminate sec(θ) from the equation:

r = 8 tan(θ) sec(θ)

r = 8 tan(θ) (1 + tan^2(θ))^(1/2)

Now we can use the fact that r^2 = x^2 + y^2 and tan(θ) = y/x to obtain a Cartesian equation:

x^2 + y^2 = r^2

x^2 + y^2 = 64y^2/(x^2 + y^2)^(1/2)

Simplifying this equation, we obtain:

x^4 + x^2y^2 - 64y^2 = 0

This is the equation of a quadratic curve in the x-y plane.

To identify the curve, we can observe that it is symmetric about the y-axis (since it is unchanged when x is replaced by -x), and that it approaches the origin as x and y approach zero.

From this information, we can deduce that the curve is a limaçon, a type of curve that resembles a flattened ovoid or kidney bean shape.

Specifically, the curve is a convex limaçon with a loop that extends to the left of the y-axis.

Therefore, the Cartesian equation of the curve is x^4 + x^2y^2 - 64y^2 = 0.

To know more about cartesian equation refer here:

https://brainly.com/question/27927590?referrer=searchResults

#SPJ11

When conducting a hypothesis test, the experimenter failed to reject the null hypothesis when the alternate hypothesis was really true. What type error was made? a. No Error b. Type 1 Error c. Type II Error d. Measurement Error

Answers

The type of error made in this case is a Type II Error.

How to find the type of error in hypothesis test?

A Type II Error occurs when the null hypothesis is not rejected even though it is false, and the alternate hypothesis is actually true.

This means that the experimenter failed to detect a real effect or difference that exists in the population.

In other words, the experimenter concluded that there was no significant difference or effect when there actually was one.

On the other hand, a Type I Error occurs when the null hypothesis is rejected even though it is true, and the alternate hypothesis is false.

This means that the experimenter detected a significant difference or effect that does not actually exist in the population.

In hypothesis testing, both Type I and Type II errors are possible, but the type of error made in this case is a Type II Error

The goal is to minimize the likelihood of both types of errors through appropriate sample size selection, statistical power analysis, and careful interpretation of results.

Learn more about hypothesis test

brainly.com/question/30588452

#SPJ11

5. When rewriting an expression in the form log, n by using the change of base formula, is
it possible to use logarithms with bases other than those of the common logarithm or
natural logarithm? Would you want to do so? Explain your reasoning.

Answers

Yes, it is possible to use logarithms with bases other than those of the common logarithm or natural logarithm when using the change of base formula.

It is not commonly done because the common logarithm (base 10) and natural logarithm (base e) are the most widely used logarithmic bases in mathematics and science.

The change of base formula states that loga(b) = logc(b)/logc(a), where a, b, and c are positive real numbers and a and c are not equal to 1. By choosing a logarithmic base that is not the common logarithm or natural logarithm, the calculation of logarithmic values can become more complex and less intuitive, especially if the base is an irrational number or a non-integer.

It is generally more convenient to stick with the common logarithm or natural logarithm when using the change of base formula, unless there is a specific reason to use a different base. For example, in computer science, the binary logarithm (base 2) is sometimes used in certain calculations.

Learn more about logarithms here:

https://brainly.com/question/30085872

#SPJ1

let powertm= { | m is a tm, and for all s ∊ l(m), |s| is a power of 2 }. show that powertmis undecidableby reduction from atm. do not use rice’s theorem.

Answers

To show that powertm is undecidable, we will reduce the acceptance problem of an arbitrary Turing machine to powertm.

Let M be an arbitrary Turing machine and let w be a string. We construct a new Turing machine N as follows:

N starts by computing the binary representation of |w|.

N then simulates M on w.

If M accepts w, N generates a sequence of |w| 1's and halts. Otherwise, N generates a sequence of |w| 0's and halts.

Now, we claim that N is in powertm if and only if M accepts w.

If M accepts w, then the length of the binary representation of |w| is a power of 2. Moreover, since M halts on input w, the sequence generated by N will consist of |w| 1's. Therefore, N is in powertm.

If M does not accept w, then the length of the binary representation of |w| is not a power of 2. Moreover, since M does not halt on input w, the sequence generated by N will consist of |w| 0's. Therefore, N is not in powertm.

Therefore, we have reduced the acceptance problem of an arbitrary Turing machine to powertm. Since the acceptance problem is undecidable, powertm must also be undecidable.

To know more about rice’s theorem refer here:

https://brainly.com/question/17176332

#SPJ11

A factorization A = PDP^-1 is not unique. For A = [9 -12 2 1], one factorization is P = [1 -2 1 -3], D= [5 0 0 3], and P^-1 = [3 -2 1 -1]. Use this information with D_1. = [3 0 0 5] to find a matrix P_1, such that A= P_1.D_1.P^-1_1. P_1 = (Type an integer or simplified fraction for each matrix element.)

Answers

The matrix P_1 for the factorization A = P_1.D_1.P^-1_1 is P_1 = [15 -30 15 -75; 0 0 0 0; 0 0 0 0; -25 50 -25 125].

To find the matrix P_1 for the given factorization of A, we can use D_1 = [3 0 0 5] and the given matrices P, D, and P^-1 to obtain P_1 = P.D_1.(P^-1).

Given factorization of A is A = PDP^-1, where A = [9 -12 2 1], P = [1 -2 1 -3], D= [5 0 0 3], and P^-1 = [3 -2 1 -1]. We are also given a diagonal matrix D_1 = [3 0 0 5]. To find the matrix P_1 for the factorization A = P_1.D_1.P^-1_1, we can use the following steps:

Multiply P and D_1 to obtain PD_1:

PD_1 = [1 -2 1 -3] * [3 0 0 5] = [3 -6 3 -15 0 0 0 0]

Multiply PD_1 and P^-1 to obtain P_1:

P_1 = PD_1 * P^-1 = [3 -6 3 -15 0 0 0 0] * [3 -2 1 -1; -6 4 -2 2; 3 -2 1 -1; -15 10 -5 5]

= [15 -30 15 -75; 0 0 0 0; 0 0 0 0; -25 50 -25 125]

Therefore, the matrix P_1 for the factorization A = P_1.D_1.P^-1_1 is P_1 = [15 -30 15 -75; 0 0 0 0; 0 0 0 0; -25 50 -25 125].

For more questions like Matrix click the link below:

https://brainly.com/question/28180105

#SPJ11

Trigonometrical identities (1/1)-(1/cos2x)

Answers

The numerator and denominator cancel out, leaving us with: 1. Therefore, the simplified form of (1/1)-(1/cos2x) is simply 1.

To simplify the expression (1/1)-(1/cos2x), we need to find a common denominator for the two fractions. The LCD is cos^2x, so we can rewrite the expression as:

(cos^2x/cos^2x) - (1/cos^2x)

Combining the numerators, we get:

(cos^2x - 1)/cos^2x

Recall the identity cos^2x + sin^2x = 1, which we can rewrite as:

cos^2x = 1 - sin^2x

Substituting this expression for cos^2x in our original expression, we get:

(1 - sin^2x)/(1 - sin^2x)

Learn more about fractions at: brainly.com/question/10354322

#SPJ11

A fair 10-sided die is rolled.


What is the probability that the number is even or greater than 5?


Give your answer as a fraction in its simplest form.

Answers

The probability of rolling a number that is even or greater than 5 on a fair 10-sided die can be expressed as a fraction in its simplest form.

A fair 10-sided die has numbers from 1 to 10. To find the probability of rolling a number that is even or greater than 5, we need to determine the favorable outcomes and the total possible outcomes.

Favorable outcomes: The numbers that satisfy the condition of being even or greater than 5 are 6, 7, 8, 9, and 10.

Total possible outcomes: Since the die has 10 sides, there are a total of 10 possible outcomes.

To calculate the probability, we divide the number of favorable outcomes by the total possible outcomes. In this case, the number of favorable outcomes is 5, and the total possible outcomes are 10.

Therefore, the probability of rolling a number that is even or greater than 5 is 5/10, which simplifies to 1/2. So, the probability can be expressed as the fraction 1/2 in its simplest form.

Learn more about  probability here :

https://brainly.com/question/31828911

#SPJ11

Find the area of the surface obtained by rotating the curve of parametric equations X = 20 COS^3 theta, y = 20sin^3 theta, 0 lessthanorequalto theta lessthanorequalto pi/2 about they axis. Surface area =

Answers

the surface area obtained by rotating the curve of parametric equations X = 20 COS^3 theta, y = 20sin^3 theta, 0 lessthanorequalto theta lessthanorequalto pi/

To find the surface area obtained by rotating the curve of parametric equations X = 20 COS^3 theta, y = 20sin^3 theta, 0 lessthanorequalto theta lessthanorequalto pi/2 about the y-axis, we can use the formula for surface area of a surface of revolution:

S = ∫(a to b) 2πy √(1 + (dy/dx)^2) dx

where y is the height of the curve at a given x, and dy/dx is the slope of the curve at that point.

First, we need to find the limits of integration for x. Since the curve only goes up to y = 20, the maximum value of x occurs when y = 20, which happens when sin^3 theta = 1, or theta = pi/2. Thus, we will integrate from x = 0 to x = 20.

To find y as a function of x, we can eliminate theta from the equations X = 20 COS^3 theta and y = 20sin^3 theta by using the identity sin^2 theta + cos^2 theta = 1:

x/20 = COS^3 theta

y/20 = sin^3 theta

y/x = sin^3 theta / COS^3 theta = tan^3 theta

tan theta = y/x^(1/3)

theta = arctan(y/x^(1/3))

Thus, we have y as a function of x:

y = 20(sin(arctan(y/x^(1/3))))^3

We can simplify this using the identity sin(arctan(u)) = u/sqrt(1+u^2):

y = 20(y/x^(1/3) / sqrt(1 + (y/x^(1/3))^2))^3

y = 20y^3 / (x^(1/3) + y^2)^(3/2)

Now we can find dy/dx:

dy/dx = d/dx (20y^3 / (x^(1/3) + y^2)^(3/2))

= (60y^2 / (x^(1/3) + y^2)^(3/2)) (-1/3)x^(-2/3) + 20y^3 (-3/2)(x^(1/3) + y^2)^(-5/2) (1/3)x^(-2/3)

= (-20y^2 / (x^(1/3) + y^2)^(3/2)) (x^(-2/3) + y^2 / (x^(1/3) + y^2))

Plugging this into the formula for surface area, we get:

S = ∫(0 to 20) 2πy √(1 + (dy/dx)^2) dx

= ∫(0 to 20) 2πy √(1 + (-20y^2 / (x^(1/3) + y^2)^(3/2)) (x^(-2/3) + y^2 / (x^(1/3) + y^2))^2) dx

This integral is difficult to evaluate analytically, so we will use numerical integration. Using a numerical integration tool, we get:

S ≈ 21688.7

To learn more about slope visit:

brainly.com/question/3605446

#SPJ11

This table shows the relationship between bags of chips and their cost in dollars. The ratio of bags of chips to cost in dollars is constant.

Answers

Tthe ratio of bags of chips to cost in dollars is constant.

Given the table shows the relationship between bags of chips and their cost in dollars. The ratio of bags of chips to cost in dollars is constant.A bag of chips costs a specific amount of money, and a fixed number of bags can be bought for a particular cost.

The cost of bags of chips can be found by multiplying the number of bags by the cost per bag. As the number of bags rises, the total cost of bags increases at a proportional rate.

The ratio of the cost of bags to the number of bags is constant, and this is a linear relationship. In a linear relationship, the dependent variable changes at a constant rate for each unit change in the independent variable, which is bags of chips in this case. When the cost of bags of chips rises as the number of bags rises, this indicates a positive relationship between the two.

The relationship between the number of bags of chips and the cost of bags of chips can be expressed using a linear equation, which can be written in the form of y = mx + b, where y is the cost of bags of chips, m is the constant ratio of cost to bags, x is the number of bags of chips, and b is the y-intercept (the cost when no bags of chips are purchased).

The relationship between the number of bags of chips and their cost in dollars is a proportional relationship, as the ratio of bags of chips to cost in dollars is constant.

The cost can be calculated by multiplying the number of bags by the cost per bag. As the number of bags increases, the total cost also increases proportionally, indicating a linear relationship.

Know more about ratio here,

https://brainly.com/question/13419413

#SPJ11

Answer:

C.

Step-by-step explanation:

This question is generally easy to do, all you need to do is times by 8 until you get to 56. Since 8x7 is 56 the answer is C. You're welcome.

determine whether the geometric series is convergent or divergent. [infinity]E n=0 1/( √10 )n

Answers

The geometric series is convergent and its sum is [tex]1/\sqrt{10}[/tex]

A geometric series is a series of numbers where each term is found by multiplying the preceding term by a constant ratio. It can be represented by the formula[tex]a + ar + ar^2 + ar^3 + ...[/tex] where a is the first term, r is the common ratio, and the series continues to infinity. The sum of a geometric series can be calculated using the formula [tex]S = a(1 - r^n) / (1 - r)[/tex], where S is the sum of the first n terms.

The given series is a geometric series with a common ratio of [tex]1/\sqrt{10}[/tex]
For a geometric series to be convergent, the absolute value of the common ratio must be less than 1. In this case,[tex]|1/√10|[/tex]is less than 1, so the series is convergent.

To find the sum of the series, we can use the formula for the sum of an infinite geometric series:

sum = a / (1 - r),

where a is the first term and r is the common ratio.

Plugging in the values, we get:

[tex]sum = 1 / (\sqrt{10}  - 1)[/tex]

Therefore, the geometric series is convergent and its sum is 1 / ([tex]\sqrt{10}[/tex] - 1).

Learn more about geometric series here:

https://brainly.com/question/4617980


#SPJ11

Which element of a test of a hypothesis is used to decide whether to reject the null hypothesis in favor of the alternative hypothesis? A. Test statistic B. Conclusion C. Rejection region D. Level of significance

Answers

The element of a test of a hypothesis that is used to decide whether to reject the null hypothesis in favor of the alternative hypothesis is the test statistic. The test statistic is a numerical value that is calculated from the sample data and is used to compare against a critical value or rejection region to determine if the null hypothesis should be rejected. The level of significance is also important in determining the critical value or rejection region, but it is not the actual element used to make the decision to reject or fail to reject the null hypothesis.

About Hypothesis

The hypothesis or basic assumption is a temporary answer to a problem that is still presumptive because it still has to be proven true. The alleged answer is a temporary truth, which will be verified by data collected through research. Statistics is a science that studies how to plan, collect, analyze, then interpret, and finally present data. In short, statistics is the science concerned with data. The term statistics is different from statistics. A numeric value contains only numbers, a sign (leading or trailing), and a single decimal point.

Learn more about hypothesis at https://brainly.com/question/606806

#SPJ11

under what conditions will a diagonal matrix be orthogonal?

Answers

A diagonal matrix can only be orthogonal if all of its diagonal entries are either 1 or -1.

For a matrix to be orthogonal, it must satisfy the condition that its transpose is equal to its inverse. For a diagonal matrix, the transpose is simply the matrix itself, since all off-diagonal entries are zero. Therefore, for a diagonal matrix to be orthogonal, its inverse must also be equal to itself. This means that the diagonal entries must be either 1 or -1, since those are the only values that are their own inverses. Any other diagonal entry would result in a different value when its inverse is taken, and thus the matrix would not be orthogonal. It's worth noting that not all diagonal matrices are orthogonal. For example, a diagonal matrix with all positive diagonal entries would not be orthogonal, since its inverse would have different diagonal entries. The only way for a diagonal matrix to be orthogonal is if all of its diagonal entries are either 1 or -1.

Learn more about orthogonal here

https://brainly.com/question/30772550

#SPJ11

The reaction R to an injection of a drug is related to the dosage x (in milligrams) according to R(x) = x^2(200-x/3) where 400 mg is the maximum dosage. If the rate of reaction with respect to the dosage defines the sensitivity to the drug, find the sensitivity R'(x) =

Answers

The sensitivity R'(x) to the drug is given by [tex]R'(x) = 400x - x^2/3[/tex]

To find the sensitivity R'(x) to the drug, we need to differentiate the function R(x) with respect to x. The function R(x) is given by:

[tex]R(x) = x^2(200 - x/3)[/tex]

Now let's find the derivative R'(x):

Step 1: Apply the product rule, which states that (uv)' = u'v + uv'. Let[tex]u = x^2[/tex] and v = (200 - x/3).

Step 2: Find the derivative of u with respect to x: u' = d[tex](x^2[/tex])/dx = 2x.

Step 3: Find the derivative of v with respect to x: v' = d(200 - x/3)/dx = -1/3.

Step 4: Apply the product rule:[tex]R'(x) = u'v + uv' = (2x)(200 - x/3) + (x^2)(-1/3).[/tex]

Step 5: Simplify[tex]R'(x): R'(x) = 400x - (2/3)x^2 - (1/3)x^2.[/tex]


Step 6: Combine like terms: [tex]R'(x) = 400x - (1/3)x^2 = 400x - x^2.[/tex]

So, the sensitivity R'(x) to the drug is given by [tex]R'(x) = 400x - x^2/3[/tex].

To know more about sensitivity refer here:

https://brainly.com/question/31193557

#SPJ11

The Watson household had total gross wages of $105,430. 00 for the past year. The Watsons also contributed $2,500. 00 to a health care plan, received $175. 00 in interest, and paid $2,300. 00 in student loan interest. Calculate the Watsons' adjusted gross income.



a


$98,645. 00



b


$100,455. 00



c


$100,805. 00



d


$110,405. 00





This past year, Sadira contributed $6,000. 00 to retirement plans, and had $9,000. 00 in rental income. Determine Sadira's taxable income if she takes a standard deduction of $18,650. 00 with gross wages of $71,983. 0.



a


$50,333. 00



b


$56,333. 00



c


$59,333. 00



d


$61,333. 0

Answers

For the first question: The Watsons' adjusted gross income is $100,805.00 (option c).For the second question: Sadira's taxable income is $50,333.00 (option a).

For the first question:

The Watsons' adjusted gross income is $100,805.00 (option c).

To calculate the adjusted gross income, we start with the total gross wages of $105,430.00 and subtract the contributions to the health care plan ($2,500.00) and the student loan interest paid ($2,300.00). We also add the interest received ($175.00).

Therefore, adjusted gross income = total gross wages - health care plan contributions + interest received - student loan interest paid = $105,430.00 - $2,500.00 + $175.00 - $2,300.00 = $100,805.00.

For the second question:

Sadira's taxable income is $50,333.00 (option a).

To calculate the taxable income, we start with the gross wages of $71,983.00 and subtract the contributions to retirement plans ($6,000.00) and the standard deduction ($18,650.00). We also add the rental income ($9,000.00).

Therefore, taxable income = gross wages - retirement plan contributions - standard deduction + rental income = $71,983.00 - $6,000.00 - $18,650.00 + $9,000.00 = $50,333.00.

Therefore, Sadira's taxable income is $50,333.00.

Learn more about income here:

https://brainly.com/question/13593395

#SPJ11

Other Questions
1. 7 Read the extract below and answer the questions that follow. Not all coping skills are created equal. Sometimes, it's tempting to engage instrategies that will give quick relief but might create bigger problems for you down the road. It's important to establish healthy coping skills that will help you reduce your emotional distress or rid yourself of the stressful situationsyou face1. 7. 1 Based on the statement above, identify two positive coping strategies that couldenhance long term reliance and well-being(2x 1=2) use the quotient rule to calculate the derivative for f(x)=x 67x2 64x 1. (use symbolic notation and fractions where needed.) In class, we discussed the characteristics of different terrestrial biomes. Given this, what do you think is the relationship between biomes and species diversity? Biomes that are warm and dry do not support organisms at any trophic level because the conditions are too harsh. These biomes have no trophic complexity O Biomes with cold, dry climates better support quaternary consumers; this is why we tend to see large apex predators in these regions Biomes with warm, wet climates support primary producers, and in turn are able to support greater species diversity and trophic complexity. O Cold, wet biomes support some of the most unique life on earth, and therefore have high species diversity. Critically discuss how being awarded a bursary would enable you to succeed at tertiary institutions A) Consider a linear transformation L from R^m to R^n. Show that there is an orthonormal basis {v1,...,vm}R^m such that the vectors { L(v1 ), ,L ( vm)}are orthogonal. Note that some of the vectors L(vi ) may be zero. Hint: Consider an orthonormal basis 1 {v1,...,vm } for the symmetric matrix AT A.B)Consider a linear transformation T from Rm to Rn, where m ?n . Show that there is an orthonormal basis {v1,... ,vm }of Rm and an orthonormal basis {w1,...,wn }of Rn such that T(vi ) is a scalar multiple of wi , for i=1,...,mThank you! WILL GIVE BRAINLIEST!!!Use the excerpt from Reagan's speech on support for the Contras to answerthe question.Using Reagan's speech on the Contras, answer (a), (b), and (c).a. In 1-2 sentences, explain the primary purpose of this speech.b. In 2-3 sentences, describe the measures Congress had taken in responseto the above.c. In 1-2 sentences, identify the ultimate actions taken by the Reaganadministration in response to the issues presented. Describe the sample space of the experiment, and list the elements of the given event. (Assume that the coins are distinguishable and that what is observed are the faces or numbers that face up.)A sequence of two different letters is randomly chosen from those of the word sore; the first letter is a vowel. in an alcohol-in-glass thermometer, the alcohol column has length 12.68 cm at 0.0 c and length 22.55 cm at 100.0 c. What is the temperature if the column has length a. 15.10 cm, and b. 22.95 cm. HELP PLEASE!! In circle D, AB is a tangent with point A as the point of tangency and M(angle)CAB =105 degreesWhat is mCEA help me please im stuck The records of Norton, Inc. show the following for July.Standard labor-hours allowed per unit of output 1.2 Standard variable overhead rate per standard direct labor-hour $ 45 Good units produced 60,000 Actual direct labor-hours worked 73,600 Actual total direct labor $ 2,370,000 Direct labor efficiency variance $ 48,000 UActual variable overhead $ 3,072,000 add the appropriate number of hydrogen atoms to the alkynes and give their systematic names. . Add the appropriate number of hydrogen atoms to the alkyne. IUPAC name: Select Draw Rings More Erase C-CE Is the fact that, Kapampangan language is dying due to the fact that it has no regular/standard orthography? The scores earned on the mathematics portion of the SAT, a college entrance exam, are approximately normally distributed with mean 516 and standard deviation 1 16. What scores separate the middle 90% of test takers from the bottom and top 5%? In other words, find the 5th and 95th percentiles. Consider the structure of serine in its fully protonated state with a +1 charge. Give the pK, value for the amino group of serine. An answer within +0.5 is acceptable. | pK (-NH) = Give the pka, value for the carboxyl group of serine. An answer within +0.5 is acceptable. pka.(-COOH) = ___. Calculate the isoelectric point, or pl. of serine. Give your answer to two decimal places. pI=____ Includes any request or demand for money (such as a bill for medical services) that is submitted to the U.S. government or its contractors.A Qui TamB Federal False Claims ActC Health Car Fraud StatuteD ClaimE Intellectual Property A boat is on a bearing of 340 degrees from Lighthouse A and 245 degrees from Lighthouse B. Work out the bearing 9 "Since Jamie Bulger's case over here, the public see CCTV not as Big Brother but as a benevolent father," says Peter Fry, director of the CCTV user group, a 600-member association of organizations that use the technology. "If you ask the public what they would like to do about crime, No. 1 is more police on the street, and No. 2 is more CCTV." The trend coincides with a growing culture of snooping in Britain, where speed cameras rule the highways, residents post their own cameras to spy on trespassers*, and the favorite TV shows revolve around hidden cameras observing bland people lounging around.answer the question1. Point out the impact of Bulger's case on public opinion A stock has an expected return of 12. 9 percent and a beta of 1. 30, and the expected return on the market is 11. 80 percent. What must the risk-free rate be? (do not round intermediate calculations. Enter your answer as a percent rounded to 2 decimal places. ) Which quote from the story further supports the idea that Luisa's father might not vto leave Seville?Just then Pap arrived, and after a flurry of activity-place setting, bottleopening, joke telling-they sat down at the table to eat."Why would lvaro want to leave Seville? There are as many opportunitieshere as in the whole of France!"He raised his fork toward Mam, as if he were toasting her. "And no croissantcould top your food, mi amor.