Why postharvest physiology is important to maintain sustainable food supply on this planet. Please give named examples and discuss various biological factors associated with produce deterioration after harvest

Answers

Answer 1

Answer:

Postharvest physiology plays a fundamental role in extending the shelf-life and quality of plant products. An example of postharvest physiology methodologies is by reducing the temperature to improve shelf-life before consumption

Explanation:

Postharvest physiology refers to the methodologies used for extending shelf-life and quality, thus being a critical issue in food systems. Postharvest approaches include chemical treatments, temperature reduction, cleaning and disinfection methods, etc. Crop varieties are genetically selected in order to maintain nutritional qualities of stored seeds for a long time after harvest. These seeds are also controlled during storage by using postharvest handling practices (e.g., chemical and enzyme inhibitors that extend shelf life).


Related Questions

State the function of red blood cells.

Answers

Answer:

Red blood cells carry oxygen from our lungs to the rest of our bodies. Then they make the return trip, taking carbon dioxide back to our lungs to be exhaled.

Explanation:

They transport oxygen

Explanation:

1)It carry oxygen from our lungs to the rest of our bodies.

2)It attracts bacteria

Give the mRNA and amino acid sequence of the DNA code below.

DNA Code: TAC AAA ACC ATG ACT
mRNA Codon: ___ ___ ___ ___ ___

amino acid: ___ ___
___ ___ ___

Answers

So the mRNA is AUG UUU UGG UAC UGA

What are the Complementary DNA base pairs: GGGCCATATAG. What are the Complementary DNA base pairs: ATTGGCCTAGC

Answers

Answer:

CCCGGTATATC

TAACCGGATCG

Explanation:

G and C are complimentary; T and A are complimentary

Just swap each letter following that rule :)

identify the type of mutation shown in the diagram, with respect to chromosome 20

Answers

I think is Insertion since that other part of the chromosome( the gray) was added to the current chromosome( the yellow).

Which of the following is true of the water at the bottom of the ocean?
It contains the most salt.
It is particularly rich in nutrients.
It will be the warmest water in the region.
There are very few organisms that can survive there.

Answers

Answer: it is particularly rich in nutrients

Explanation:

Urinary Journey
Name:
For your journey through the urinary system you must be made small enough to be filtered through the filtration
membrane from the bloodstream Into the renal You will be injected into the subclavian vein and must
pass through the heart before entering the arterial circulation. As you travel through the systemic circulation you have
a least 2 minutes to relax before reaching the ___(2).__artery, feeding the kidney. You see the kidney looming
brownish red through the artery wall. Once inside, the blood vessels of the kidney become increasingly smaller until
finally you reach the _3_ arteriole, feeding into the filtering device, or ____.Once in the filter, you
maneuver yourself so that you are directly in front of a pore. Within a fraction of a second, you are swept across the
filtration membrane into the (5)_ part of the nephron. Drifting along, you lower the specimen cup to gather
your first filtrate sample for testing. You study the readout from the sample and note it is very similar in composition to
_66) with one exception. There are essentially no ____. Your next sample doesn't have to be taken
until you reach the "hairpin" or using proper terminology the_8__. As you continue your journey, you notice
that the tubule cells have dense fingerlike projections extending from there surface into the lumen of the tubule.
These are which increase the absorptive surface area because this part of the tubule is very active in the
process of __(10)_ . While in the "hairpin" you collect your second sample. The readout verifies that the
concentration of the filtrate is much ___(11) and there are few nutrients such as ____(12)__and
(13)__.There is a much higher concentration of _(14) wastes here and the color is yellow, indicating
the presence of the pigment_(15)_ Gradually, you make your way up from the "hairpin and enter into an area
where large molecules are being moved into the filtrate you know you have arrived in the (16) and are
witnessing the process of_(12)_ You continue along and realize that the water level has dropped and the
stream have become more turbulent. You remember the role of the hormone_(18)__and think it must have
been released to conserve water in the body. You take an abrupt right and then drop straight downward into a tube
that has other tubes and fluid entering into it. You realize you are in the_(19)_ headed for the rinor calyx. You
enter into a much calmer are and flow very tranquilly Into a tube on the opposite shore. Upon entrance into this tube
you realize you are being squeezed rhythmically downward and you know you are in the _(20) _ Suddenly you
free-fall and splash into a large sea of urine, you know you have arrived at the _(21)
_There appears to be a lot
of fluld as the celling is getting closer and closer to you and suddenly the walls begin to gyrate and in a moment you are
being propelled out and into your hosts__ _(22) to exit the body.

Answers

Answer:for your journey through the urinary system you must be made small enough to be filtered through the filtration

membrane from the bloodstream Into the renal You will be injected into the subclavian vein and must

pass through the heart before entering the arterial circulation. As you travel through the systemic circulation you have

Explanation:

The urinary system, sometimes referred to as the renal system, manages fluid and electrolyte balance as well as filters and eliminates waste items from the body.

How does the urinary system work?

You must be reduced in size to pass through the filtration membrane and into the renal system on your voyage via the urinary system. The subclavian vein will be used as the injection site, and you must first pass through the heart to reach the arterial circulation. You have at least two minutes to unwind as you move through the systemic circulation before you arrive at the renal artery, which supplies the kidney.

Through the artery wall, you can make out the towering, brownish-red kidney. Once within, the kidney's blood arteries get progressively smaller until you reach the afferent arteriole, which feeds into the glomerulus, the filtering organ. Once inside the filter, you position yourself such that you are facing a pore directly. You are quickly carried across the filtration membrane and into the Bowman's capsule region of the nephron. You lower the specimen cup as you proceed to collect your first test sample of filtrate.

You examine the reading from the sample and discover that, with one exception, its chemical makeup is very identical to that of blood. Practically no blood cells exist. You can wait to take your next sample until you get to the Henle loop, or the "hairpin" in correct language. You observe the tubule cells as you proceed along your path because they have numerous thick fingerlike projections that protrude into the tubule lumen from their surface.

This portion of the tubule is relatively small, therefore these microvilli improve the absorptive surface area. You gather your second sample while in the "hairpin". The readout confirms that the filtrate's content is significantly lower and that few nutrients, including glucose and amino acids, are present.

Here, metabolic wastes are substantially more concentrated, and the area is yellow, which denotes the presence of the urochrome pigment. You know you have arrived in the distal convoluted tubule and are seeing the process of secretion when you gradually work your way up from the 'hairpin' and enter into an area where big molecules are being transported into the filtrate.

As you proceed, you notice that the streams are now more agitated and the water level has plummeted. You recall the function of the hormone ADH and assume that the body must have secreted it to save water. You make a sharp right and then plunge straight down into a tube that is being filled with fluid and other tubes. You become aware that you are moving towards the minor calyx in the collecting duct.

You move very calmly into a tube on the other coast after entering a much calmer area. You become aware that you are experiencing a rhythmic downward squeeze as soon as you enter this tube, indicating that you are in the ureter. You know you have arrived to the urinary bladder when you suddenly drop and splash into a sizable sea of urine. As you can see, there is a lot of fluid as the ceiling gets closer to you and the walls start to pull. Suddenly, you are propelled out of the body and into your host's urethra to leave the body.

Therefore, the urinary system, sometimes referred to as the renal system, manages fluid and electrolyte balance as well as filters and eliminates waste items from the body.

Learn more about Urinary System, here:

https://brainly.com/question/10298346

#SPJ2

Iridium (Ir) is a rare element on Earth, but common in
asteroids
volcanoes
the oceans
icy comets

Answers

The metal iridium, which is similar to platinum, is very rare on Earth's surface but is more common in asteroids and in molten rock deep within the planet.

What are the two most important driving forces of metamorphism?

A. High heat and pressure
B. Melting and cystallization
C. Deposition and lithification
D.Weathering and accumulation
E.Magma and lava
ne questions

Answers

Answer:

Heat and pressure

Explanation:

Metamorphic rocks are found deep underground

The two most important driving forces of metamorphism are high heat and pressure (option A).

These two factors play a significant role in transforming rocks into metamorphic rocks. When rocks are subjected to high temperatures and pressures, the minerals within them undergo changes in their composition, structure, and texture. This process leads to the formation of new minerals and the recrystallization of existing minerals, resulting in the development of distinct metamorphic textures and structures.

The course of transformation doesn't dissolve the stones, however rather changes them into denser, more conservative rocks. Rearrangements of mineral components or reactions with fluids that enter the rocks produce new minerals.

Know more about metamorphism:

https://brainly.com/question/33610840

#SPJ6

Which of these layers is the deepest?

Answers

the deepest layer: horizon

Answer:

the answer is B. C horizon

Explanation:

AP3X

food is important for growing amd repairing in the body. ny which process is food broken down into nutrient molecules​

Answers

Answer:

Digestion proper, which is the mechanical and chemical breakdown of food into particles/molecules small enough to pass into the blood. Absorption is the passage of food monomers into the blood stream. Assimilation is the passage of the food molecules into body cells.

how larvae of fish get nutrition

Answers

Answer:

The larval period of fish development is certainly the most complex from the aspect of nutrition. During this period, the digestive tract is not fully phisiologicaly developed.

Explanation:

The nutrition of larvae is largely based on the consumption of zooplankton. Such food must be distributed to larvae 10-24 times a day.

Which layer affects the oceanic and continental plates here on Earth?

Answers

Answer:

lithosphere

Explanation:

Which of the following is NOT a property of water?
O A) It is a good solvent.
OB) It is denser when frozen than when liquid.
OC) It resists temperature changes.
OD) it is cohesive.
O El It can be found as a solid. liquid. or gas.

Answers

Answer:

It is denser when frozen than when liquid.

Explanation:

Ice is actually less dense than water. The lattice arrangement of ice allows water molecules to be more spread out than in a liquid, making ice less dense than water.

Hope that helps.

What is symbiosis meaning?

Answers

Answer:

interaction between two different organisms living in close physical association, typically to the advantage of both.

Explanation:

Hope this helps :D

Answer:

It is the interaction between two different organisms that typically has an o advantage to each other.

Explanation:

An example could be the relationship between an anemone (Heteractis magnifica) and a clownfish (Amphiron ocellaris). It's example of two organisms benefiting the other- the anemone provides the clownfish with protection and shelter, while the clownfish provides the anemone nutrients in the form of waste.

how do organelles interact in the production and use of hemoglobin found in theses cells

Answers

Answer:

B

Explanation:

Answer:B

Explanation:

dy÷dx=(x-1)(x+3) at x=2​

Answers

Answer:

[tex]\dfrac{dy}{dx}=\dfrac{4}{25}[/tex]

Explanation:

The given expression is :

[tex]y=\dfrac{(x-1)}{(x+3)}[/tex]

We need to find dy/dx at x = 2

[tex]\dfrac{dy}{dx}=\dfrac{d}{dx}(\dfrac{x-1}{x+3})\\\\=\dfrac{(x+3)\dfrac{d}{dx}(x-1)-(x-1)\dfrac{d}{dx}(x+3)}{(x+3)^2}\\\\=\dfrac{x+3-(x-1)}{(x+3)^2}\\\\=\dfrac{x+3-x+1}{(x+3)^2}\\\\\dfrac{dy}{dx}=\dfrac{4}{(x+3)^2}[/tex]

Put x = 2 in above expression

[tex]\dfrac{dy}{dx}|x=2=\dfrac{4}{(2+3)^2}\\\\=\dfrac{4}{25}[/tex]

Hence, the value at dy/dx is [tex]\dfrac{4}{25}[/tex]

Which of the following is a molecule?
A. Argon
B. Water
C. Nitrogen
D. Uranium

Answers

Answer:

Argon- a chemical element

Water- polar molecule

Nitrogen- chemical compound

Uranium- chemical element

Hope this helps! :)

Please give brainliest

:)

Explanation:

In conclusion B. water is a molecule

What have researchers found a correlation between with respect to black holes? HELP PLEASE QUICK

Answers

Answer: It’s A I think

Explanation:

I have no idea. Its Not D, im pretty sure. And I dont think it’s B. So it’s either A or C, and I think it’s A.

Answer: A

Explanation: just took the quiz and got it right

What type of speciation results in hybrids of the 2 species?

Answers

Answer:

Alloploidy results when two species mate to produce viable offspring. In the example shown, a normal gamete from one species fuses with a polyploidy gamete from another. Two matings are necessary to produce viable offspring. The cultivated forms of wheat, cotton, and tobacco plants are all allopolyploids.

Explanation:

The opening and closing of _____________in your heart create the lub-dub sound and prevent the backflow of blood.

What goes in the blank?

Answers

Answer:

Heart valves or the closure of the mitral and tricuspid atrioventricular (AV) valves at the beginning of ventricular systole and the closure of the aortic valve and pulmonary valve at the end of ventricular systole.

Explanation:

The heart tone “lub,” or S1, is caused by the closure of the mitral and tricuspid atrioventricular (AV) valves at the beginning of ventricular systole.

The heart tone “dub,” or S2 ( a combination of A2 and P2), is caused by the closure of the aortic valve and pulmonary valve at the end of ventricular systole.

What two items are the products of photosynthesis?

Answers

Answer:

Summary. The photosynthesis chemical equation states that the reactants (carbon dioxide, water and sunlight), yield two products, glucose and oxygen gas. The single chemical equation represents the overall process of photosynthesis.


Where are instructions for making cell parts found in a cell?

Answers

Answer:

The nucleus contains nearly all the cell's DNA and with it the coded instructions for making proteins and other important molecules in a cell

Hope it's help ^_^

If you are building a dichotomous key and you have 10 species to identify, how many couplets should your key have?
A) 04
B) 05
C) O9
D) 10

Answers

Answer:

10

Explanation:

easch couplet presents the user with 2 alternatives and exclusive sets of character's.

10 couplets should your key have. If you are building a dichotomous key, and you have 10 species to identify. Hence, option D is correct.

What is dichotomous key?

A dichotomous key, a crucial piece of scientific gear, is used to discriminate between diverse species according to their visible traits. Users must choose one of two possibilities to answer a series of questions that make up dichotomous keys.

A dichotomous key in the identification of trees, for instance, would ask whether the tree has leaves or needles. The key then leads the user down one set of questions if the tree has leaves; if the tree has needles, a different set of questions is shown.

The three most prevalent types of dichotomous keys are nested, connected, and branched. Each sentence has the appropriate response written next to it in nested type.

Thus, option D is correct.

For more information about dichotomous key, click here:

https://brainly.com/question/2235448

#SPJ2

Which of the following pair of codons both code for serine?







a
ACA and AUC
b
UCG and GCU
c
GCC and UGG
d
AGC and UCC

Answers

Answer: The answer would be D.

Explanation: I took the test and i got D. Sorry if that’s wrong

Which of the following factors most likely triggers arousal from hibernation?

A) the sun rising in the morning B)snow falling onto the ground
C) the environmental temperature dropping below 0 °C
D) a significant decrease in the animal's respiration rate

Answers

Answer:

A) the sun rising in the morning

Explanation:

In biology, hibernation refers to a physiological state where a plant or animal is metabolically inactive in the winter period (characterized by extreme cold). As far as the animal or plant is concerned, the cold weather during winter is an adverse condition, hence, they undergo hibernation in order to conserve their energy.

According to this question, arousal or wakening from hibernation would be triggered in the presence of heat source, which in this case is the SUN RISING IN THE MORNING.

What would happen to a cell if its cytoplasm contains 97% water and 3% solute and it is placed into a container that has a solution of 92% water and 8% solute?

Answers

The cell would probably get smaller

A cell if its cytoplasm contains 97% water and 3% solute and it is placed into a container that has a solution of 92% water and 8% solute - cell will lose water and shrink.

A hypertonic solution, the solution has a lower water concentration than the cell cytosol, and water moves out of the cell until both solutions are isotonic

if you place a cell in a hypertonic solution, the cell shrinksit loses water as due to osmosis water moves from a higher concentration inside the cell to a lower concentration outsideThe water will move out of the cell to try to equalize.

Thus, A cell if its cytoplasm contains 97% water and 3% solute and it is placed into a container that has a solution of 92% water and 8% solute - cell will lose water and shrink.

Learn more:

https://brainly.com/question/18968473

What was John snows original hypothesis and how did it conflict with prevailing models of Heath and disease

Answers

Answer:

Explanation:Snow's hypothesis was that contaminated water was the source of the disease, but the challenge was how to prove this to others who were skeptical. ... It is now known that cholera is a waterborne disease, spread when water used for drinking or washing food has been contaminated with feces from infected individuals.

HELP, 100 POINTS!

Identify one source of carbon that can be found in each of these four spheres: atmosphere (air), geosphere (land), biosphere (living organisms) and hydrosphere (water).

The mitochondria has been described as the engine of the cell. Why is this a fitting nickname? How is this organelle involved in the process of cellular respiration?

Describe the process of photosynthesis in plants. Why is this process important to animals and humans?

How are the processes of cellular respiration, photosynthesis and carbon cycle related to each other?

Explain how one of the processes discussed in this module (photosynthesis, cellular respiration or the carbon cycle) apply to both the Law of Conservation of Matter and Law of Conservation of Energy.

Answers

Answer:

1.Mitochondria is considered as the power house of the cell as it helps in producing large amount of energy in the form of ATP (adenosine triphosphate) that is used in driving various cellular activities.

2.Through a process called photosynthesis, plants use energy in sunlight to turn a gas called carbon dioxide and water into sugar. Plants then use this sugar to grow. At the same time, plants produce a gas called oxygen as a waste product, which is lucky for us and other animals because we need oxygen to breathe!

3.Cellular respiration and photosynthesis are important parts of the carbon cycle. The carbon cycle is the pathways through which carbon is recycled in the biosphere. While cellular respiration releases carbon dioxide into the environment, photosynthesis pulls carbon dioxide out of the atmosphere.

4.Cellular respiration uses oxygen and has it's waste product of carbon dioxide (CO2). How does photosynthesis demonstrate the law of conservation? ... The AMOUNT of carbon-dioxide atoms released by respiration are EXACTLY EQUAL to the atoms of these materials contained in the oxygen and carbon converted.The Law of Conservation of Matter states that matter cannot be created or destroyed. The carbon cycle is an example of the Law because the same carbon atoms are being recycled through the carbon cycle. ... Carbon is used for energy, and some is stored for growth.

BRAINLIEST AND 20 POINTS!!! FIRST CORRECT ANSWER

Which of the following describes erosion caused by glaciers?
It forms big ice chunks.
It changes the temperature.
It happens quickly.
It takes a long time.

Answers

Answer:

The 4th option.

Explanation:

Erosion from glaciers takes a long time because glaciers move very slowly across the land. For example, The Appalachian Mountains in the U.S. used to be really tall but slowly overtime, glaciers rounded them off.

Bacterial disease is caused by the multiplication of bacteria in a patient. How do pathogenic bacteria harm a patient?

Answers

Answer:

Host Susceptibility

Resistance to bacterial infections is enhanced by phagocytic cells and an intact immune system. Initial resistance is due to nonspecific mechanisms. Specific immunity develops over time. Susceptibility to some infections is higher in the very young and the very old and in immunosuppressed patients.

Bacterial Infectivity

Bacterial infectivity results from a disturbance in the balance between bacterial virulence and host resistance. The “objective” of bacteria is to multiply rather than to cause disease; it is in the best interest of the bacteria not to kill the host.

Host Resistance

Numerous physical and chemical attributes of the host protect against bacterial infection. These defenses include the antibacterial factors in secretions covering mucosal surfaces and rapid rate of replacement of skin and mucosal epithelial cells. Once the surface of the body is penetrated, bacteria encounter an environment virtually devoid of free iron needed for growth, which requires many of them to scavenge for this essential element. Bacteria invading tissues encounter phagocytic cells that recognize them as foreign, and through a complex signaling mechanism involving interleukins, eicosanoids, and complement, mediate an inflammatory response in which many lymphoid cells participate.

Genetic and Molecular Basis for Virulence

Bacterial virulence factors may be encoded on chromosomal, plasmid, transposon, or temperate bacteriophage DNA; virulence factor genes on transposons or temperate bacteriophage DNA may integrate into the bacterial chromosome.

Host-mediated Pathogenesis

In certain infections (e.g., tuberculosis), tissue damage results from the toxic mediators released by lymphoid cells rather than from bacterial toxins.

Intracellular Growth

Some bacteria (e.g., Rickettsia species) can grow only within eukaryotic cells, whereas others (e.g., Salmonella species) invade cells but do not require them for growth. Most pathogenic bacteria multiply in tissue fluids and not in host cells.

Virulence Factors

Virulence factors help bacteria to (1) invade the host, (2) cause disease, and (3) evade host defenses. The following are types of virulence factors:

Adherence Factors: Many pathogenic bacteria colonize mucosal sites by using pili (fimbriae) to adhere to cells.

Invasion Factors: Surface components that allow the bacterium to invade host cells can be encoded on plasmids, but more often are on the chromosome.

Capsules: Many bacteria are surrounded by capsules that protect them from opsonization and phagocytosis.

Endotoxins: The lipopolysaccharide endotoxins on Gram-negative bacteria cause fever, changes in blood pressure, inflammation, lethal shock, and many other toxic events.

Exotoxins: Exotoxins include several types of protein toxins and enzymes produced and/or secreted from pathogenic bacteria. Major categories include cytotoxins, neurotoxins, and enterotoxins.

Siderophores: Siderophores are iron-binding factors that allow some bacteria to compete with the host for iron, which is bound to hemoglobin, transferrin, and lactoferrin.

Explanation:

Other Questions
How do we see examples of citizens perceiving the New Deal as more sympathetic to their plight? Marco scored 20 points at the basketball game . If this is 40% of the total score, what was the total score for the basketball game ? Will give crown will post more Sra. Snchez, aqu hay algunas sugerencias para su viaje. No traigas solo la tarjeta de crdito porque tambin es bueno tener dinero en efectivo. Use su celular para sacar fotos porque una cmara grande llama atencin. Evite ser un blanco fcil. Ponga su dinero en el bolsillo de adelante, no en el bolsillo de atrs. Traigas Use Evite Ponga Los nios (empezar) escuela a las ocho de la maana. What is the solution to the equation represented by the model below?x = negative 14x = negative 2x = 2x = 14 Suppose it takes John 45 minutes to run 4 miles. How long would it take him to run 4 kilometers? Round your answer to the nearest minute Studies indicate that 10.5% of the US population has diabetes. A producer of medical devices is developing a test for diabetes diagnosis: a positive test suggests that a person has diabetes, a negative test suggests that a person does not have diabetes. However, medical tests can give false results: in particular, the probability that this test gives a negative result for a person who actually has diabetes is 0.05, while the probability that the test is positive for a person who in fact does not have diabetes is 0.10.1. What is the probability that the test gives a positive result for a person who is known to have diabetes? 2. What is the probability that a person has diabetes, given that the test gives a positive result? Question 3The element with electron configuration 1s^2 2s^s 2p^6 3s^2 3p^2 S (Z = 16).Mg (Z = 12).C (Z = 6).Si (Z = 14). What are chemical equations used to represent? What is the value of X?A: 15B: 27C: 45D: 12 Do you think Americans should be allowed to own guns, or should the 2nd Amendment be changed? Explain your answer in complete sentences. 1. six to eight months2. ten to twelve months3.before one year old Home Depot sells 400 stoves every day. Home Depot sells 125 more microwaves per day than stoves. Which equation can be used to find x, the total number of stoves and microwaves Home Depot sells in one day? identify at least 5 precedents set by washington What is the highest numeral in a binary code? The resultant of two forces is 250 N and the same are inclined at 30 and 45 with resultant one on either side calculate the magnitude of two forces Which substance is a homogeneous mixture? (3 points)CerealSilverNickelShampoo Which procedure gives citizens of some states more influence over theirgovernment? Help ASAP!!!Suppose you buy a stock for $2,100. It decreases in value by 15% and then rises20%. What is the new stock value? Round to the nearest cent.A) $2,142.00$1,785.00B) $2,205.00D) $2,520.00