if the velocity of the car reduces from 70km/h to 50km/h then the speed of the car will be equal to the speed of the lorry...
thus the relative velocity will be 0
A uniformly charged sphere has a potential on its surface of 450 V. At a radial distance of 8.1 m from this surface, the potential is 150 V. What is the radius of the sphere
Answer:
The radius of the sphere is 4.05 m
Explanation:
Given;
potential at surface, [tex]V_s[/tex] = 450 V
potential at radial distance, [tex]V_r[/tex] = 150
radial distance, l = 8.1 m
Apply Coulomb's law of electrostatic force;
[tex]V = \frac{KQ}{r} \\\\V_s = \frac{KQ}{r} \\\\V_r = \frac{KQ}{r+ l}[/tex]
[tex]450 = \frac{KQ}{r} ------equation (i)\\\\150 = \frac{KQ}{r+8.1} ------equation (ii)\\\\divide \ equation (i)\ by \ equation \ (ii)\\\\\frac{450}{150} = (\frac{KQ}{r} )*(\frac{r+8.1}{KQ} )\\\\3 = \frac{r+8.1}{r} \\\\3r = r + 8.1\\\\2r = 8.1\\\\r = \frac{8.1}{2} \\\\r = 4.05 \ m[/tex]
Therefore, the radius of the sphere is 4.05 m
An enclosed amount of nitrogen gas undergoes thermodynamic processes as follows: from an initial state A to a state B to C to D and back to A, as shown in the P-V diagram. Assume that the gas behaves ideally. What is the change in internal energy of the gas for the entire process, A-B-C-D-A? (pressure at B is 10kPa)
Answer:
The total internal energy change for the entire process is -0.94 kJ
Explanation:
Process A to B is an isothermal process, therefore, [tex]u_A[/tex] - [tex]u_B[/tex] = 0
Process B to C
P = -mV + C
When P = 12, V = 0.12
When P = 4, V = 0.135
Therefore, we have;
12 = -m·0.12 + C
4 = -m·0.135 + C
Solving gives
m = 533.33
C = 76
[tex]T = \dfrac{1}{nR} \times (-533.33 \times V^2 + 76 \times V)[/tex]
p₂ = p₁V₁/V₂ = 12*0.1/0.12 = 10 kPa
The work done = 0.5*(0.135 - 0.12)*(4 - 10.0) = -0.045 kJ = -45 J
For heat supplied
Assuming an approximate polytropic process, we have;
Work done = (p₃×v₃ - p₂×v₂)/(n - 1)
Which gives;
-45 = (4*0.135 - 10*0.12)/(n -1)
∴ n -1 = (4*0.135 - 10*0.12)/-45 = 14.67
n = 15.67
Q = W×(n - γ)/(γ - 1)
Q = -45*(15.67 - 1.4)/(1.4 - 1) = -1,605.375 J
u₃ - u₂ = Q + W = -1,605.375 J - 45 J = -1650 J = -1.65 kJ
For the constant pressure process D to C, we have;
[tex]Q = c_p \times \dfrac{p}{R} \times (V_4 -V_3) = \dfrac{5}{2} \times p \times (V_4 -V_3)[/tex]
Q₄₋₃ = (0.1 - 0.135) * 4*5/2 = -0.35 kJ
W₄₋₃ = 4*(0.1 - 0.135) = -0.14 kJ
u₄ - u₃ = Q₄₋₃ + W₄₋₃ = -0.14 kJ + -0.35 kJ = -0.49 kJ
For the process D to A, we have a constant volume process
[tex]Q_{1-4} = \dfrac{c_v}{R} \times V \times (p_1 - p_4) = \dfrac{3}{2} \times 0.1 \times (12 - 4) = 1.2 \ kJ[/tex]
W₁₋₄ = 0 for constant volume process, therefore, u₁ - u₄ = 1.2 kJ
The total internal energy change Δ[tex]u_{process}[/tex] for the entire process is therefore;
Δ[tex]u_{process}[/tex] = u₂ - u₁ + u₃ - u₂ + u₄ - u₃ + u₁ - u₄ = 0 - 1.65 - 0.49 + 1.2 = -0.94 kJ.
1. The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax
Answer:
Explanation:
each grid corresponding 0.1s⁻¹.
0.2grid unit = 0.2×0.1 =0.02s⁻¹
distance of the star from telescope
d = 1/p
d= 1/0.02= 50 par sec
1par sec = 3.26 light year
1 light year = 9.5×10¹²km
3.26ly=3.084×10¹³km
d= 50×3.084×10¹³=1.55×10¹⁵km
A 2.0-kg object moving at 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy lost by the system as a result of this collision.
Answer:
20 J
Explanation:
From the question, since there is a lost in kinetic energy, Then the collision is an inelastic collision.
m'u'+mu = V(m+m')........... Equation 1
Where m' = mass of the moving object, m = mass of the stick, u' = initial velocity of the moving object, initial velocity of the stick, V = common velocity after collision.
make V the subject of the equation above
V = (m'u'+mu)/(m+m')............. Equation 2
Given: m' = 2 kg, m = 8 kg, u' = 5 m/s, u = 0 m/s (at rest).
Substitute into equation 2
V = [(2×5)+(8×0)]/(2+8)
V = 10/10
V = 1 m/s.
Lost in kinetic energy = Total kinetic energy before collision- total kinetic energy after collision
Total kinetic energy before collision = 1/2(2)(5²) = 25 J
Total kinetic energy after collision = 1/2(2)(1²) +1/2(8)(1²) = 1+4 = 5 J
Lost in kinetic energy = 25-5 = 20 J
The collision is inelastic collision. As a result of collision the kinetic energy lost by the given system is 20 J.
Since there is a lost in kinetic energy, the collision is inelastic collision.
m'u'+mu = V(m+m')
[tex]\bold {V =\dfrac { (m'u'+mu)}{(m+m')} }[/tex]
Where
m' = mass of the moving object = 2 kg
m = mass of the stick = 8 kg,
u' = initial velocity of the moving object = 5 m/s
V = common velocity after collision= ?
u = 0 m/s (at rest).
put the values in the formula,
[tex]\bold {V = \dfrac {(2\times 5)+(8\times 0)}{(2+8)}}\\\\\bold {V = \dfrac {10}{10}}\\\\\bold {V = 1\\ m/s.}[/tex]
kinetic energy before collision
[tex]\bold { = \dfrac 1{2} (2)(5^2) = 25 J}[/tex]
kinetic energy after collision
[tex]\bold { = \dfrac 12(2)(1^2) + \dfrac 12(8)(1^2) = 5\ J}[/tex]
Lost in kinetic energy = 25-5 = 20 J
Therefore, As a result of collision the kinetic energy lost by the given system is 20 J.
To know more about Kinetic energy,
https://brainly.com/question/12669551
An electron of mass 9.11 x 10^-31 kg has an initial speed of 4.00 x 10^5 m/s. It travels in a straight line, and its speed increases to 6.60 x10^5 m/s in a distance of 5.40 cm. Assume its acceleration is constant.
Required:
a. Determine the magnitude of the force exerted on the electron.
b. Compare this force (F) with the weight of the electron (Fg), which we ignored.
Answer:
a. F = 2.32*10^-18 N
b. The force F is 2.59*10^11 times the weight of the electron
Explanation:
a. In order to calculate the magnitude of the force exerted on the electron you first calculate the acceleration of the electron, by using the following formula:
[tex]v^2=v_o^2+2ax[/tex] (1)
v: final speed of the electron = 6.60*10^5 m/s
vo: initial speed of the electron = 4.00*10^5 m/s
a: acceleration of the electron = ?
x: distance traveled by the electron = 5.40cm = 0.054m
you solve the equation (2) for a and replace the values of the parameters:
[tex]a=\frac{v^2-v_o^2}{2x}=\frac{(6.60*10^5m/s)^2-(4.00*10^5m/s)^2}{2(0.054m)}\\\\a=2.55*10^{12}\frac{m}{s^2}[/tex]
Next, you use the second Newton law to calculate the force:
[tex]F=ma[/tex]
m: mass of the electron = 9.11*10^-31kg
[tex]F=(9.11*10^{-31}kg)(2.55*10^{12}m/s^2)=2.32*10^{-18}N[/tex]
The magnitude of the force exerted on the electron is 2.32*10^-18 N
b. The weight of the electron is given by:
[tex]F_g=mg=(9.11*10^{-31}kg)(9.8m/s^2)=8.92*10^{-30}N[/tex]
The quotient between the weight of the electron and the force F is:
[tex]\frac{F}{F_g}=\frac{2.32*10^{-18}N}{8.92*10^{-30}N}=2.59*10^{11}[/tex]
The force F is 2.59*10^11 times the weight of the electron
A person is standing on an elevator initially at rest at the first floor of a high building. The elevator then begins to ascend to the sixth floor, which is a known distance h above the starting point. The elevator undergoes an unknown constant acceleration of magnitude a for a given time interval T. Then the elevator moves at a constant velocity for a time interval 4T. Finally the elevator brakes with an acceleration of magnitude a, (the same magnitude as the initial acceleration), for a time interval T until stopping at the sixth floor.
Answer:
The found acceleration in terms of h and t is:
[tex]a=\frac{h}{5(t_1)^2}[/tex]
Explanation:
(The complete question is given in the attached picture. We need to find the acceleration in terms of h and t in this question)
We are given 3 stages of movement of elevator. We'll first model them each of the stage one by one to find the height covered in each stage. After that we'll find the total height covered by adding heights covered in each stage, and equate it to Total height h. From that we can find the formula for acceleration.
Stage 1Constant acceleration, starts from rest.
Distance = [tex]y = \frac{1}{2}a(t_1)^2[/tex]
Velocity = [tex]v_1=at_1[/tex]
Stage 2Constant velocity where
Velocity = [tex]v_o=v_1=at_1[/tex]
Distance =
[tex]y_2=v_2(t_2)\\\text{Where~}t_2=4t_1 ~\text{and}~ v_2=v_1=at_1\\y_2=(at_1)(4t_1)\\y_2=4a(t_1)^2\\[/tex]Stage 3Constant deceleration where
Velocity = [tex]v_0=v_1=at_1[/tex]
Distance =
[tex]y_3=v_1t_3-\frac{1}{2}a(t_3)^2\\\text{Where}~t_3=t_1\\y_3=v_1t_1-\frac{1}{2}a(t_1)^2\\\text{Where}~ v_1t_1=a(t_1)^2\\y_3=a(t_1)^2-\frac{1}{2}a(t_1)^2\\\text{Subtracting both terms:}\\y_3=\frac{1}{2}a(t_1)^2[/tex]
Total HeightTotal height = y₁ + y₂ + y₃
Total height = [tex]\frac{1}{2}a(t_1)^2+4a(t_1)^2+\frac{1}{2}a(t_1)^2 = 5a(t_1)^2[/tex]
AccelerationFind acceleration by rearranging the found equation of total height.
Total Height = h
h = 5a(t₁)²
[tex]a=\frac{h}{5(t_1)^2}[/tex]
In a hydraulic lift, if the pressure exerted on the liquid by one piston is increased by 100 N/m2 , how much additional weight can the other piston slowly lift if its cross sectional area is 25 m2
Answer:
The additional weight and mass needed for lifting the other piston slowly is 2500 N and 254.92 kg, respectively.
Explanation:
By means of the Pascal's Principle, the hydraulic lift can be modelled by the following two equations:
Hydraulic Lift - Before change
[tex]P = \frac{F}{A}[/tex]
Hydraulic Lift - After change
[tex]P + \Delta P = \frac{F + \Delta F}{A}[/tex]
Where:
[tex]P[/tex] - Hydrostatic pressure, measured in pascals.
[tex]\Delta P[/tex] - Change in hydrostatic pressure, measured in pascals.
[tex]A[/tex] - Cross sectional area of the hydraulic lift, measured in square meters.
[tex]F[/tex] - Hydrostatic force, measured in newtons.
[tex]\Delta F[/tex] - Change in hydrostatic force, measured in newtons.
The additional weight is obtained after some algebraic handling and the replacing of all inputs:
[tex]\frac{F}{A} + \Delta P = \frac{F}{A} + \frac{\Delta F}{A}[/tex]
[tex]\Delta P = \frac{\Delta F}{A}[/tex]
[tex]\Delta F = A\cdot \Delta P[/tex]
Given that [tex]\Delta P = 100\,Pa[/tex] and [tex]A = 25\,m^{2}[/tex], the additional weight is:
[tex]\Delta F = (25\,m^{2})\cdot (100\,Pa)[/tex]
[tex]\Delta F = 2500\,N[/tex]
The additional mass needed for the additional weight is:
[tex]\Delta m = \frac{\Delta F}{g}[/tex]
Where:
[tex]\Delta F[/tex] - Additional weight, measured in newtons.
[tex]\Delta m[/tex] - Additional mass, measured in kilograms.
[tex]g[/tex] - Gravitational constant, measured in meters per square second.
If [tex]\Delta F = 2500\,N[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then:
[tex]\Delta m = \frac{2500\,N}{9.807\,\frac{m}{s^{2}} }[/tex]
[tex]\Delta m = 254.92\,kg[/tex]
The additional weight and mass needed for lifting the other piston slowly is 2500 N and 254.92 kg, respectively.
Dr. Jones performed an experiment to monitor the effects of sunlight exposure on stem density in aquatic plants. In the study, Dr. Jones measured the mass and volume of stems grown in 5 levels of sun exposure. The data is represented below.
Sun exposure Stem mass (g) Stem volume (mL)
30 275 1100
45 415 1215
60 563 1425
75 815 1610
90 954 1742
a. Convert the mass measurements to kilograms (kg) and the volume measurements to cubic meters (mº).
b. Calculate the density of the samples using the equation d = m/v. d = density m = mass (kg) v = volume (m)
c. Convert the density values to scientific notation.
Given that,
Sun exposure = 30%, 45%, 60%, 75%, 90%
Stem mass (g) = 275, 415, 563, 815, 954
Stem volume (ml) = 1100, 1215, 1425, 1610, 1742
(a). We need to convert the mass measurements to kilograms (kg) and the volume measurements to cubic meters
Using conversion of mass
[tex]1\ g=0.001\ kg[/tex]
Conservation of volume
[tex]1\ Lt=0.001\ m^3[/tex]
[tex]1\ mL=1\times10^{-6}\ m^3[/tex]
So, mass in kg
Stem mass (kg) = 0.275, 0.415, 0.563, 0.815, 0.954
Volume in m³,
Stem volume (m³) = 0.0011, 0.001215, 0.001425, 0.001610, 0.001742
(b). We need to calculate the density of the samples
Using formula of density
[tex]\rho=\dfrac{m}{V}[/tex]
Where, m = mass
V = volume
If the m = 0.275 kg and V = 0.0011 m³
Put the value into the formula
[tex]\rho=\dfrac{0.275}{0.0011}[/tex]
[tex]\rho=250\ kg/m^3[/tex]
If the m = 0.415 kg and V = 0.001215 m³
Put the value into the formula
[tex]\rho=\dfrac{0.415}{0.001215}[/tex]
[tex]\rho=341.56\ kg/m^3[/tex]
[tex]\rho=342\ kg/m^3[/tex]
If the m = 0.563 kg and V = 0.001425 m³
Put the value into the formula
[tex]\rho=\dfrac{0.563}{0.001425}[/tex]
[tex]\rho=395.08\ kg/m^3[/tex]
If the m = 0.815 kg and V = 0.001610 m³
Put the value into the formula
[tex]\rho=\dfrac{0.815}{0.001610}[/tex]
[tex]\rho=506.21\ kg/m^3[/tex]
If the m = 0.954 kg and V = 0.001742 m³
Put the value into the formula
[tex]\rho=\dfrac{0.954}{0.001742}[/tex]
[tex]\rho=547.6\ kg/m^3[/tex]
[tex]\rho=548\ kg/m^3[/tex]
(c). We need to convert the density values to scientific notation
In scientific notation
The densities are
[tex]\rho\ (kg/m^3)= 2.50\times10^{2}, 3.42\times10^{2}, 3.95\times10^{2}, 5.06\times10^{2}, 5.48\times10^{2}[/tex]
Hence, This is required solution.
The Thomson model of a hydrogen atom is a sphere of positive charge with an electron (a point charge) at its center. The total positive charge equals the electronic charge e. Prove that when the electron is at a distance r from the center of the sphere of positive charge, it is attracted with a force F=\frac{e^2r}{4\pi\varepsilon_oR^3} where R is the radius of the sphere.
Answer:
E = (1 / 4π ε₀ ) q r / R³
Explanation:
Thomson's stable model that the negative charge is mobile within the atom and the positive charge is uniformly distributed, to calculate the force we can use Coulomb's law
F = K q₁ q₂ / r²
we used law Gauss
Ф = ∫ E .dA = q_{int} /ε₀
E 4π r² = q_{int} /ε₀
E = q_{int} / 4π ε₀ r²
we replace the charge inside
E = (1 / 4π ε₀ r²) ρ 4/3 π r³
E = ρ r / 3 ε₀
the density for the entire atom is
ρ = Q / V
V = 4/3 π R³
we substitute
E = (r / 3ε₀ ) Q 3/4π R³
E = (1 / 4π ε₀ ) q r / R³
During a particular time interval, the displacement of an object is equal to zero. Must the distance traveled by this object also equal to zero during this time interval? Group of answer choices
Answer: No, we can have a displacement equal to 0 while the distance traveled is different than zero.
Explanation:
Ok, let's write the definitions:
Displacement: The displacement is equal to the difference between the final position and the initial position.
Distance traveled: Total distance that you moved.
So, for example, if at t = 0s, you are in your house, then you go to the store, and then you return to your house, we have:
The displacement is equal to zero, because the initial position is your house and the final position is also your house, so the displacement is zero.
But the distance traveled is not zero, because you went from you traveled the distance from your house to the store two times.
So no, we can have a displacement equal to zero, but a distance traveled different than zero.
The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax
Answer:
The distance is [tex]d = 1.5 *10^{15} \ km[/tex]
Explanation:
From the question we are told that
The smallest shift is [tex]d = 0.2 \ grid \ units[/tex]
Generally a grid unit is [tex]\frac{1}{10}[/tex] of an arcsec
This implies that 0.2 grid unit is [tex]k = \frac{0.2}{10} = 0.02 \ arc sec[/tex]
The maximum distance at which a star can be located and still have a measurable parallax is mathematically represented as
[tex]d = \frac{1}{k}[/tex]
substituting values
[tex]d = \frac{1}{0.02}[/tex]
[tex]d = 50 \ parsec[/tex]
Note [tex]1 \ parsec \ \to 3.26 \ light \ year \ \to 3.086*10^{13} \ km[/tex]
So [tex]d = 50 * 3.08 *10^{13}[/tex]
[tex]d = 1.5 *10^{15} \ km[/tex]
Suppose two children push horizontally, but in exactly opposite directions, on a third child in a sled. The first child exerts a force of 79 N, the second a force of 92 N, kinetic friction is 5.5 N, and the mass of the third child plus sled is 24 kg.
1. Using a coordinate system where the second child is pushing in the positive direction, calculate the acceleration in m/s2.
2. What is the system of interest if the accelaration of the child in the wagon is to be calculated?
3. Draw a free body diagram including all bodies acting on the system
4. What would be the acceleration if friction were 150 N?
Answer:
Please, read the anser below
Explanation:
1. In order to calculate the acceleration of the children you use the Newton second law for the summation of the implied forces:
[tex]F_2-F_1-F_f=Ma[/tex] (1)
Where is has been used that the motion is in the direction of the applied force by the second child
F2: force of the second child = 92N
F1: force of the first child = 79N
Ff: friction force = 5.5N
M: mass of the third child = 24kg
a: acceleration of the third child = ?
You solve the equation (1) for a, and you replace the values of the other parameters:
[tex]a=\frac{F_2-F_1.F_f}{M}=\frac{96N-79N-5.5N}{24kg}=0.48\frac{m}{s^2}[/tex]
The acceleration is 0.48m/s^2
2. The system of interest is the same as before, the acceleration calculated is about the motion of the third child.
3. An image with the diagram forces is attached below.
4. If the friction would be 150N, the acceleration would be zero, because the friction force is higher than the higher force between children, which is 92N.
Then, the acceleration is zero
The magnet has an unchanging magnetic field: very strong near the magnet, and weak far from the magnet. How did the magnetic field through the coil change as the magnet fell toward it? How did the magnetic flux through the coil change as the magnet fell toward it?
Answer:
The magnetic field through the coil at first increases steadily up to its maximum value, and then decreases gradually to its minimum value.
Explanation:
At first, the magnet fall towards the coils; inducing a gradually increasing magnetic field through the coil as it falls into the coil. At the instance when half the magnet coincides with the coil, the magnetic field magnitude on the coil is at its maximum value. When the magnet falls pass the coil towards the floor, the magnetic field then starts to decrease gradually from a strong magnitude to a weak magnitude.
This action creates a changing magnetic flux around the coil. The result is that an induced current is induced in the coil, and the induced current in the coil will flow in such a way as to oppose the action of the falling magnet. This is based on lenz law that states that the induced current acts in such a way as to oppose the motion or the action that produces it.
4. How much force is required to stop a 60 kg person traveling at 30 m/s during a time of a)
5.0 seconds
b) 0.50 seconds
c) 0.05 seconds
Explanation:
F = ma, and a = Δv / Δt.
F = m Δv / Δt
Given: m = 60 kg and Δv = -30 m/s.
a) Δt = 5.0 s
F = (60 kg) (-30 m/s) / (5.0 s)
F = -360 N
b) Δt = 0.50 s
F = (60 kg) (-30 m/s) / (0.50 s)
F = -3600 N
c) Δt = 0.05 s
F = (60 kg) (-30 m/s) / (0.05 s)
F = -36000 N
360N, 3600N and 36000N forces are required to stop a 60 kg person traveling at 30 m/s during a time of a)5.0 seconds, b) 0.50 seconds, c)0.05 seconds respectively.
To find the force, we need to know about the mathematical formulation of force.
What is force?According to Newton's second law of motion, force is defined as mass times acceleration. Its SI unit is Newton (N).What is the mathematical formulation of force?Mathematically, it is written as
F= m×a= m×(∆V/∆t)
What is the force needed to stop 60 kg person traveling at 30 m/s during a time of a)5.0 seconds, b) 0.50 seconds, c)0.05 seconds?Here, initially the velocity of the person is 30m/s. But after applying the force, he came to rest. So his final velocity is 0 m/s. ∆V= 30m/s
When ∆t=5 seconds, F= 60×(30/5)=360N
When ∆t=0.5 seconds, F= 60×(30/0.5)=3600N
When ∆t=0.05 seconds, F= 60×(30/0.05)=36000N
Thus, we can conclude that 360N, 3600N and 36000N forces are required to stop a 60 kg person traveling at 30 m/s during a time of a)5.0 seconds, b) 0.50 seconds, c)0.05 seconds respectively.
Learn more about force here:
brainly.com/question/12785175
#SPJ2
A 56.0 g ball of copper has a net charge of 2.10 μC. What fraction of the copper’s electrons has been removed? (Each copper atom has 29 protons, and copper has an atomic mass of 63.5.)
Answer:
The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].
Explanation:
An electron has a mass of [tex]9.1 \times 10^{-31}\,kg[/tex] and a charge of [tex]-1.6 \times 10^{-19}\,C[/tex]. Based on the Principle of Charge Conservation, [tex]-2.10\times 10^{-6}\,C[/tex] in electrons must be removed in order to create a positive net charge. The amount of removed electrons is found after dividing remove charge by the charge of a electron:
[tex]n_{R} = \frac{-2.10\times 10^{-6}\,C}{-1.6 \times 10^{-19}\,C}[/tex]
[tex]n_{R} = 1.3125 \times 10^{13}\,electrons[/tex]
The number of atoms in 56 gram cooper ball is determined by the Avogadro's Law:
[tex]n_A = \frac{m_{ball}}{M_{Cu}}\cdot N_{A}[/tex]
Where:
[tex]m_{ball}[/tex] - Mass of the ball, measured in kilograms.
[tex]M_{Cu}[/tex] - Atomic mass of cooper, measured in grams per mole.
[tex]N_{A}[/tex] - Avogradro's Number, measured in atoms per mole.
If [tex]m_{ball} = 56\,g[/tex], [tex]M_{Cu} = 63.5\,\frac{g}{mol}[/tex] and [tex]N_{A} = 6.022\times 10^{23}\,\frac{atoms}{mol}[/tex], the number of atoms is:
[tex]n_{A} = \left(\frac{56\,g}{63.5\,\frac{g}{mol} } \right)\cdot \left(6.022\times 10^{23}\,\frac{atoms}{mol} \right)[/tex]
[tex]n_{A} = 5.3107\times 10^{23}\,atoms[/tex]
As there are 29 protons per each atom of cooper, there are 29 electrons per atom. Hence, the number of electrons in cooper is:
[tex]n_{E} = \left(29\,\frac{electrons}{atom} \right)\cdot (5.3107\times 10^{23}\,atoms)[/tex]
[tex]n_{E} = 1.5401\times 10^{23}\,electrons[/tex]
The fraction of the cooper's electrons that is removed is the ratio of removed electrons to total amount of electrons when net charge is zero:
[tex]x = \frac{n_{R}}{n_{E}}[/tex]
[tex]x = \frac{1.3125\times 10^{13}\,electrons}{1.5401\times 10^{23}\,electrons}[/tex]
[tex]x = 8.5222 \times 10^{-11}[/tex]
The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].
Two large rectangular aluminum plates of area 180 cm2 face each other with a separation of 3 mm between them. The plates are charged with equal amount of opposite charges, ±17 µC. The charges on the plates face each other. Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates when the normal to the circle makes an angle of 4° with a line perpendicular to the plates. Note that this angle can also be given as 180° + 4°. N · m2/C
Answer:
Φ = 361872 N.m^2 / C
Explanation:
Given:-
- The area of the two plates, [tex]A_p = 180 cm^2[/tex]
- The charge on each plate, [tex]q = 17 * 10^-^6 C[/tex]
- Permittivity of free space, [tex]e_o = 8.85 * 10^-^1^2 \frac{C^2}{N.m^2}[/tex]
- The radius for the flux region, [tex]r = 3.3 cm[/tex]
- The angle between normal to region and perpendicular to plates, θ = 4°
Find:-
Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates.
Solution:-
- First we will determine the area of the region ( Ar ) by using the formula for the area of a circle as follows. The region has a radius of r = 3.3 cm:
[tex]A_r = \pi *r^2\\\\A_r = \pi *(0.033)^2\\\\A_r = 0.00342 m^2[/tex]
- The charge density ( σ ) would be considered to be uniform for both plates. It is expressed as the ratio of the charge ( q ) on each plate and its area ( A_p ):
σ = [tex]\frac{q}{A_p} = \frac{17*10^-^6}{0.018} \\[/tex]
σ = 0.00094 C / m^2
- We will assume the electric field due to the positive charged plate ( E+ ) / negative charged plate ( E- ) to be equivalent to the electric field ( E ) of an infinitely large charged plate with uniform charge density.
[tex]E+ = E- = \frac{sigma}{2*e_o} \\\\[/tex]
- The electric field experienced by a region between two infinitely long charged plates with uniform charge density is the resultant effect of both plates. So from the principle of super-position we have the following net uniform electric field ( E_net ) between the two plates:
[tex]E_n_e_t = (E+) + ( E-)\\\\E_n_e_t = \frac{0.00094}{8.85*10^-^1^2} \\\\E_n_e_t = 106214689.26553 \frac{N}{C} \\[/tex]
- From the Gauss-Law the flux ( Φ ) through a region under uniform electric field ( E_net ) at an angle of ( θ ) is:
Φ = E_net * Ar * cos ( θ )
Φ = (106214689.26553) * (0.00342) * cos ( 5 )
Φ = 361872 N.m^2 / C
A harmonic wave is traveling along a rope. It is observed that the oscillator that generates the wave completes 43.0 vibrations in 33.0 s. Also, a given maximum travels 424 cm along the rope in 15.0 s. What is the wavelength
Answer:
0.218
Explanation:
Given that
Total vibrations completed by the wave is 43 vibrations
Time taken to complete the vibrations is 33 seconds
Length of the wave is 424 cm = 4.24 m
to solve this problem, we first find the frequency.
Frequency, F = 43 / 33 hz
Frequency, F = 1.3 hz
Also, we find the wave velocity. Which is gotten using the relation,
Wave velocity = 4.24 / 15
Wave velocity = 0.283 m/s
Now, to get our answer, we use the formula.
Frequency * Wavelength = Wave Velocity
Wavelength = Wave Velocity / Frequency
Wavelength = 0.283 / 1.3
Wavelength = 0.218
In 1898, the world land speed record was set by Gaston Chasseloup-Laubat driving a car named Jeantaud. His speed was 39.24 mph (63.15 km/h), much lower than the limit on our interstate highways today. Repeat the calculations of Example 2.7 (assume the car accelerates for 6 miles to get up to speed, is then timed for a one-mile distance, and accelerates for another 6 miles to come to a stop) for the Jeantaud car. (Assume the car moves in the +x direction.)
Find the acceleration for the first 6 miles.
Answer:
the acceleration [tex]a^{\to} = (0.0159 \ \ m/s^2 )i[/tex]
Explanation:
Given that:
the initial speed v₁ = 0 m/s i.e starting from rest ; since the car accelerates at a distance Δx = 6 miles in order to teach that final speed v₂ of 63.15 km/h.
So; the acceleration for the first 6 miles can be calculated by using the formula:
v₂² = v₁² + 2a (Δx)
Making acceleration a the subject of the formula in the above expression ; we have:
v₂² - v₁² = 2a (Δx)
[tex]a = \dfrac{v_2^2 - v_1^2 }{2 \Delta x}[/tex]
[tex]a = \dfrac{(63.15 \ km/s)^2 - (0 \ m/s)^2 }{2 (6 \ miles)}[/tex]
[tex]a = \dfrac{(17.54 \ m/s)^2 - (0 \ m/s)^2 }{2 (9.65*10^3 \ m)}[/tex]
[tex]a =0.0159 \ m/s^2[/tex]
Thus;
Assume the car moves in the +x direction;
the acceleration [tex]a^{\to} = (0.0159 \ \ m/s^2 )i[/tex]
1- A 30 gram bullet travels at 300 m/s. How much kinetic energy does it have?
Answer:
1.35 kJ
Explanation:
KE = ½mv² = ½ × 0.030 kg × (300 m·s⁻¹)² = 1350 J = 1.35 kJ
Given:-
Mass (m) of the bullet = 30 gramsVelocity of the bullet (v) = 300 m/sTo Find: Kinetic energy of the bullet.
We know,
Eₖ = ½mv²
where,
Eₖ = Kinetic energy,m = Mass &v = Velocity.thus,
Eₖ = ½(30 g)(300 m/s)²
= (15 g)(90000 m²/s²)
= 1350000 g m²/s²
= 1350 kg m²/s²
= 1350 J
= 1.35 kJ (Ans.)
The Pauli exclusion principle states that Question 1 options: the wavelength of a photon of light times its frequency is equal to the speed of light. no two electrons in the same atom can have the same set of four quantum numbers. both the position of an electron and its momentum cannot be known simultaneously very accurately. the wavelength and mass of a subatomic particle are related by . an electron can have either particle character or wave character.
Answer:
no two electrons in the same atom can have the same set of four quantum numbers
Explanation:
Pauli 's Theory of Exclusion specifies that for all four of its quantum numbers, neither two electrons in the same atom can have similar value.
In a different way, we can say that no more than two electrons can take up the identical orbital, and two electrons must have adversely spin in the identical orbital
Therefore the second option is correct
An unknown charged particle passes without deflection through crossed electric and magnetic fields of strengths 187,500 V/m and 0.1250 T, respectively. The particle passes out of the electric field, but the magnetic field continues, and the particle makes a semicircle of diameter 25.05 cm.
Part A. What is the particle's charge-to-mass ratio?
Part B. Can you identify the particle?
a. can't identify
b. proton
c. electron
d. neutron
Answer:
Explanation:
Given that
The electric fields of strengths E = 187,500 V/m and
and The magnetic fields of strengths B = 0.1250 T
The diameter d is 25.05 cm which is converted to 0.2505m
The radius is (d/2)
= 0.2505m / 2 = 0.12525m
The given formula to find the magnetic force is [tex]F_{ma}=BqV---(i)[/tex]
The given formula to find the electric force is [tex]F_{el}=qE---(ii)[/tex]
The velocity of electric field and magnetic field is said to be perpendicular
Electric field is equal to magnectic field
Equate equation (i) and equation (ii)
[tex]Bqv=qE\\\\v=\frac{E}{B}[/tex]
[tex]v=\frac{187500}{0.125} \\\\v=15\times10^5m/s[/tex]
It is said that the particles moves in semi circle, so we are going to consider using centripetal force
[tex]F_{ce}=\frac{mv^2}{r}---(iii)[/tex]
magnectic field is equal to centripetal force
Lets equate equation (i) and (iii)
[tex]Bqr=\frac{mv^2}{r} \\\\\frac{q}{m}=\frac{v}{Br} \\\\\frac{q}{m} =\frac{15\times 10^5}{0.125\times0.12525} \\\\=\frac{15\times10^5}{0.015656} \\\\=95808383.23\\\\=958.1\times10^5C/kg[/tex]
Therefore, the particle's charge-to-mass ratio is [tex]958.1\times10^5C/kg[/tex]
b)
To identify the particle
Then 1/ 958.1 × 10⁵ C/kg
The charge to mass ratio is very close to that of a proton, which is about 1*10^8 C/kg
Therefore the particle is proton.
A double slit illuminated with light of wavelength 588 nm forms a diffraction pattern on a screen 11.0 cm away. The slit separation is 2464 nm. What is the distance between the third and fourth bright fringes away from the central fringe
Answer:
[tex]y_{4}-y_{3}=35.22-11.27=23.95 \mathrm{cm}[/tex]
Explanation:
Given that
Wavelength [tex]\lambda=588 \mathrm{nm}[/tex]
slit separation [tex]\mathrm{d}=2464 \mathrm{nm}[/tex]
slit screen distance [tex]\mathrm{D}=11 \mathrm{cm}[/tex]
We know that for double slit the maxima condition is that
[tex]\operatorname{dsin} \theta=m \lambda[/tex]
[tex]\sin \theta=\frac{m \lambda}{d}[/tex]
[tex]\theta=\sin ^{-1}\left(\frac{\mathrm{m} \lambda}{\mathrm{d}}\right)[/tex]
For small angle approximation, [tex]\sin \theta \approx \tan \theta \approx \theta[/tex]
[tex]\tan \theta=\frac{y_{m}}{D}[/tex]
[tex]y_{m}=D \times \tan \left[\sin ^{-1}\left(\frac{m \lambda}{d}\right)\right][/tex]
Now [tex]y_{4}[/tex] [tex]y_{4}=D \times \tan \left[\sin ^{-1}\left(\frac{4 \lambda}{d}\right)\right]=11 \times \tan \left[\sin ^{-1}\left(\frac{4 \times 588 \mathrm{nm}}{2464 \mathrm{nm}}\right)\right]=35.22 \mathrm{cm}[/tex]
Again [tex]y_{3}=D \times \tan \left[\sin ^{-1}\left(\frac{3 \lambda}{d}\right)\right]=11 \times \tan \left[\sin ^{-1}\left(\frac{3 \times 588 \mathrm{nm}}{2464 \mathrm{nm}}\right)\right]=11.27 \mathrm{cm}[/tex]
Hence [tex]y_{4}-y_{3}=35.22-11.27=23.95 \mathrm{cm}[/tex]
Professional baseball player Nolan Ryan could pitch a baseball at approximately 160.0 km/h. At that average velocity, how long (in s) did it take a ball thrown by Ryan to reach home plate, which is 18.4 m from the pitcher's mound
Answer:
t = 0.414s
Explanation:
In order to calculate the time that the ball takes to reach home plate, you assume that the speed of the ball is constant, and you use the following formula:
[tex]t=\frac{d}{v}[/tex] (1)
d: distance to the plate = 18.4m
v: speed of the ball = 160.0km/h
You first convert the units of the sped of the ball to appropriate units (m/s)
[tex]160.0\frac{km}{h}*\frac{1h}{3600s}*\frac{1000m}{1km}=44.44\frac{m}{s}[/tex]
Then, you replace the values of the speed v and distance s in the equation (1):
[tex]t=\frac{18.4m}{44.44m/s}=0.414s[/tex]
THe ball takes 0.414s to reach the home plate
A spherical balloon is made from a material whose mass is 4.30 kg. The thickness of the material is negligible compared to the 1.54-m radius of the balloon. The balloon is filled with helium (He) at a temperature of 289 K and just floats in air, neither rising nor falling. The density of the surrounding air is 1.19 kg/m3. Find the absolute pressure of the helium gas.
Answer:
P = 5.97 × 10^(5) Pa
Explanation:
We are given;
Mass of balloon;m_b = 4.3 kg
Radius;r = 1.54 m
Temperature;T = 289 K
Density;ρ = 1.19 kg/m³
We know that, density = mass/volume
So, mass = Volume x Density
We also know that Force = mg
Thus;
F = mg = Vρg
Where m = mass of balloon(m_b) + mass of helium (m_he)
So,
(m_b + m_he)g = Vρg
g will cancel out to give;
(m_b + m_he) = Vρ - - - eq1
Since a sphere shaped balloon, Volume(V) = (4/3)πr³
V = (4/3)π(1.54)³
V = 15.3 m³
Plugging relevant values into equation 1,we have;
(3 + m_he) = 15.3 × 1.19
m_he = 18.207 - 3
m_he = 15.207 kg = 15207 g
Molecular weight of helium gas is 4 g/mol
Thus, Number of moles of helium gas is ; no. of moles = 15207/4 ≈ 3802 moles
From ideal gas equation, we know that;
P = nRT/V
Where,
P is absolute pressure
n is number of moles
R is the gas constant and has a value lf 8.314 J/mol.k
T is temperature
V is volume
Plugging in the relevant values, we have;
P = (3802 × 8.314 × 289)/15.3
P = 597074.53 Pa
P = 5.97 × 10^(5) Pa
a What CE describes the way energy is stored in a sandwich
A 12,000-N car is raised using a hydraulic lift, which consists of a U-tube with arms of unequal areas, filled with oil and capped at both ends with tight-fitting pistons. The wider arm of the U-tube has a radius of 18.0 cm and the narrower arm has a radius of 5.00 cm. The car rests on the piston on the wider arm of the U-tube. The pistons are initially at the same level. What is the initial force that must be applied to the
Answer:
F₂ = 925.92 N
Explanation:
In a hydraulic lift the normal stress applied to one arm must be equally transmitted to the other arm. Therefore,
σ₁ = σ₂
F₁/A₁ = F₂/A₂
F₂ = F₁ A₂/A₁
where,
F₂ = Initial force that must be applied to narrow arm = ?
F₁ = Load on Wider Arm to be raised = 12000 N
A₁ = Area of wider arm = πr₁² = π(18 cm)² = 324π cm²
A₂ = Area of narrow arm = πr₂² = π(5 cm)² = 25π cm²
Therefore,
F₂ = (12000 N)(25π cm²)/(324π cm²)
F₂ = 925.92 N
What do behaviorism and cognitive psychology have in common?
O Both rely on the scientific method.
Both attempt to explain human behavior.
Both note the differences between human and animal behavior
Behaviorism focuses on actions only.
Answer:
Both attempt to explain human behavior
Explanation:
Psychology is generally regarded as the science of human behavior. Behaviourism is the psychological theory which holds that behaviour can be fully understood in terms of conditioning, without actually considering thoughts or feelings. The theory holds that psychological disorders can be aptly handled by simply altering the behavioural patterns of the individual. It involves the study of stimulus and responses.
Cognitive psychology attempts to decipher what is going on in people's minds. That is, it looks at the mind as a processor of information. Hence we can define cognitive psychology as the study of the internal mental processes. This according to behaviorists, cannot be studied in measurable terms as in behaviourism (stimulus response approach) even though mental processes are known to influence human behavior significantly.
Hence, both behaviourism and cognitive psychology attempt to study human behavior from different perspectives.
according to newtons second law of motion, what is equal to the acceleration of an object
Answer: According to Newtons second Law of motion ;
F = ma (Force equals mass multiplied by acceleration.)
The acceleration is directly proportional to the net force; the net force equals mass times acceleration; the acceleration in the same direction as the net force; an acceleration is produced by a net force
Explanation:
A piston of small cross-sectional area a is used in a hydraulic press to exert a small force f on the enclosed liquid. A connecting pipe leads to a larger piston of cross sectional area A. a) What force F will the larger piston sustain
Answer:
force on larger piston = [tex]\frac{fA}{a}[/tex]
Explanation:
we label the pistons as piston A and piston B
small piston A:
area = a
force = f
large piston B:
area = A
force = ?
Pascal's law of pressure state that the pressure delivered to a liquid is transmitted undiminished to every portion of the fluid.
we know that pressure = force ÷ area
pressure of piston A = [tex]\frac{f}{a}[/tex]
pressure of piston B = [tex]\frac{(force on piston B)}{A}[/tex]
obeying Pascal's law, the system pressures must be equal. Therefore
[tex]\frac{f}{a} = \frac{(force on piston B)}{A}[/tex]
force on large piston (B) = F = [tex]\frac{fA}{a}[/tex]
At the local playground, a 21-kg child sits on the right end of a horizontal teeter-totter, 1.8 m from the pivot point. On the left side of the pivot an adult pushes straight down on the teeter-totter with a force of 151 N. Part A In which direction does the teeter-totter rotate if the adult applies the force at a distance of 3.0 m from the pivot?Part B
In which direction does the teeter-totter rotate if the adult applies the force at a distance of 2.5 m from the pivot?
(clockwise/counterclockwise)
Part C
In which direction does the teeter-totter rotate if the adult applies the force at a distance of 2.0 m from the pivot?
(clockwise/counterclockwise)
Answer:
By convention a negative torque leads to clockwise rotation and a positive torque leads to counterclockwise rotation.
here weight of the child =21kgx9.8m/s2 = 205.8N
the torque exerted by the child Tc = - (1.8)(205.8) = -370.44N-m ,negative sign is inserted because this torque is clockwise and is therefore negative by convention.
torque exerted by adult Ta = 3(151) = 453N , counterclockwise torque.
net torque Tnet = -370.44+453 =82.56N , which is positive means counterclockwise rotation.
b) Ta = 2.5x151 = 377.5N-m
Tnet = -370.44+377.5 = 7.06N-m , positive ,counterclockwise rotation.
c)Ta = 2x151 = 302N-m
Tnet = -370.44+302 = -68.44N-m, negative,clockwise rotation.