Answer:
B. The diagonal of a rectangle is a line of symmetry.
Step-by-step explanation:
because the sides are not the same length. if you fold this rectangle diagonally so that Corner A meets Corner D, they will not match.
Thank Me later!
Suppose that you are seated next to a stranger on an airplane and you start discussing various topics such as where you were born (what state or country), what your favorite movie of all time is, your spouse's occupation, and so on. For simplicity, assume that the probability that your details match for any given topic is 1 50 and is independent from one topic to the next. If you discuss 17 topics, how surprising would it be to find that you match on at least one of them
Answer:
1/17 0r 6%
Step-by-step explanation:
the answer is rounded up for you
describe the solution to the system of equations graphed below.
Answer:
Step-by-step explanation:
The answer is B, the solution to your equation is at (2,1). Your solution is where the two lines meet.
Answer:
The second option.
Step-by-step explanation:
When two lines intersect, they usually intersect at just one point (unless they are parallel, where they never intersect; or no solutions when they infinitely intersect).
According to the graph provided, the lines are intersecting at one point: (2, 1).
So, your answer will be the second option!
Hope this helps!
The dimensions of a rectangle is 30cm x 20cm. When each dimension is
decreased by the same amount, the area of the new rectangle is
100cm^2. What are the new dimensions of the new rectangle (round to
one decimal place)? Hint: you will need to use the quadratic equation.
Answer:
The new dimensions are 6.18 cm by 16.18 cm.
Step-by-step explanation:
Original dimensions were 30 cm by 20 cm.
We decrease length and width by x and calculate the area:
Area = (length)(width)
= (30 - x)(20 - x) = 100
Performing the indicated multiplication, we get:
600 - 30x - 20x + x^2 = 100, or, after simplification,
x^2 - 50x + 500 = 0
Let's solve this by completing the square:
x^2 - 50x + 500 = x^2 - 50x + 625 - 625 + 500 = 0
This simplifies to (x - 25)^2 - 125 = 0, or (x - 25)^2 = 125
Taking the square root of both sides, we get:
x - 25 = ±√125, or
x = 25 ± 5√5
The two results are x = 36.18 (not possible, because we DECREASED the original dimensions) and x = 13.82 (possible)
The dimensions of the new rectangle are
(30 - 13.82) cm by (20 - 13.82) cm, or
16.2 cm by 6.18 cm
Check: With these dimensions is the area 100 cm^2, as expected?
(6.18)(16.18) = 99.9979 YES
What is the volume of a sphere with a radius of 18 units?
O A. 77767 units3
B. 12967 units3
O C. 58327 units3
D. 1944 units
Answer:
24,429.0245 square units
Step-by-step explanation:
The volume of a sphere can be found using the following formula.
[tex]V=\frac{4\pi r^3}{3}[/tex]
The radius is 18 units. Therefore, we can substitute 18 units in for r.
[tex]V=\frac{4\pi (18units)^3}{3}[/tex]
First, evaluate the exponents.
18 units^3= 18 units * 18 units * 18 units= 5832 units^3
[tex]V=\frac{4\pi (5832 units^3)}{3}[/tex]
Multiply 4 and pi.
[tex]V=\frac{12.5663706*5832 units^3}{3}[/tex]
Multiply in the numerator.
[tex]V=\frac{73287.0733 units^3}{3}[/tex]
Divide
[tex]V=24429.0245 units^3[/tex]
The volume of the sphere is 24,429.0245 units^3
A: What are the solutions to the quadratic equation 9x2 + 64 = 0?
B: What is the factored form of the quadratic expression 9x2 +64?
Select one answer for question A, and select one answer for question B.
B: (3x + 81)(x - 1)
B: (x-8)(3x-8)
B:(3x8)(3x + 8)
B: (3x - 81)(3x + 81)
Ax = or x = -1
A:x =
A: x = i orx = -
O A x = 1
Answer:
B: (3x + 81)(x - 1)
Step-by-step explanation:
Can someone please help me I really need help please help me thank you
Answer:
This is modelling the exterior angle formula which states that the measure of an exterior angle is equal to the sum of the measures of its two remote interior angles. Therefore, the answer is x = a + b.
Answer:
x = a+b
Step-by-step explanation:
The exterior angle of a triangle is equal to the sum of the opposite interior angles
x = a+b
Which polynomial is factored completely?
g^5-g
4g^3+18g^2+20g
24g^2-6g^4
2g^2+5g+4
Answer:
Option (4)
Step-by-step explanation:
To solve this question we will try to factor the expressions given in each option.
Option (1)
g⁵ - g = g(g⁴ - 1)
= g(g² - 1)(g² + 1)
= g(g - 1)(g + 1)(g² + 1)
Option (2)
4g³ + 18g² + 20g = 2g(2g² + 9g + 10)
= 2g[2g + 5g + 4g + 10]
= 2g[g(2g + 5) + 2(g + 5)]
= 2g(2g + 5)(g + 2)
Option (3)
24g² - 6g⁴ = 6g²(4 - g²)
= 6g²(2 - g)(2 + g)
Option (4)
2g² + 5g + 4
This expression is the in the completely factored form.
Answer:
yes its D :)
Step-by-step explanation:
other guy has the math, i just know the answer, sorry lol
Find the coefficient of x^2 in the expression of (x - 7)^5. a. -3430 b. -3034 c. 3034 d. 3430
Answer:
let me know when you have the anwser
Step-by-step explanation:
A rectangular driveway has the dimensions shown below. Concrete costs $49.75 per square yard to pour. How much will it cost to pour concrete for the entire driveway?
[tex]\boxed{ \bf The~answer~is~$2,350.69.}[/tex]The answer is $2,350.69.
Explanation:First, we must find the area of the rectangular driveway.
A = l × w
A = 15.75 × 3
A = 47.25
So, the area of the driveway is 47.25 yd².
Next, we need to multiply the cost of each square yard by the area.
49.75 × 47.25 = 2350.6875
This can be rounded to 2,350.69.
3. Write an exponential equation for each coin that will give the coin's value, V, at any time, t. Use
the formula:
Vt) = P(1 + r) where V(t) is the value of the coin in t years, Please HELP! help on number three
Answer:
Coin A : [tex]V(t)=25(1.07)^t[/tex]
Coin B : [tex]V(t)=40(1.05)^t[/tex]
Step-by-step explanation:
Consider the given formula is
[tex]V(t)=P(1+r)^t[/tex]
where, P is current value, V(t) is the value of the coin in t years, and r is annual appreciation rate.
For coin A, current value is 25 dollars and annual appreciation rate is 7%.
[tex]V(t)=25(1+0.07)^t[/tex]
[tex]V(t)=25(1.07)^t[/tex]
For coin B, current value is 40 dollars and annual appreciation rate is 5%.
[tex]V(t)=40(1+0.05)^t[/tex]
[tex]V(t)=40(1.05)^t[/tex]
Therefore, the required equations for coin A and B are [tex]V(t)=25(1.07)^t[/tex] and [tex]V(t)=40(1.05)^t[/tex] respectively.
Which relation is not a function?
a) y = 1x + 7
by=- 4(x + 3)2 + 10
c) -2y = - 3x + 9
d) x2 + y2 = 25
Answer:
x^2+y^2=25
Step-by-step explanation:
x^2+y^2=25 graphs a circle. A relation is a function if every x only has one y value. This is not true in a circle.
Answer:
d) x^2 + y^2 = 25.
Step-by-step explanation:
D is the equation of a circle so it fails the vertical line test for a function. If a relation is a function then any vertical line passing through it's graph will only intersect it once. This is not true of a circle.
A sofa set costs $4800 and can be bought under a hire purchase plan. A 15% deposit is required and the remaining amount is to be paid in 24 monthly installments at a simple interest rate of 3% per annum. What is the amount to be paid in installment per month. *
Answer:
$180.20
Step-by-step explanation:
15% of $4800=$720
$4800-$720=$4080
6% of $4080=$244.8
$4080+$244.8=$4,324.80
$4,324.80/24=$180.20
so you would pay $180.20 a month
Solve the equation x^2 – 16x + 25 = 0 to the nearest tenth.
Answer:
1.8 and 14.3
Step-by-step explanation:
Our equation is a quadratic equation so we will use the dicriminant method
Let Δ be our dicriminant a=1b= -16c= 25Δ= (-16)²-4*25*1=156≥0 so we have two solutions : x and y x= (16-[tex]\sqrt{156}[/tex])/2= 1.7555≈ 1.8y=(16+[tex]\sqrt{156}[/tex])/2=14.244≈ 14.3Which expression can be simplified to find the slope of the line of best-fit in the scatterplot below? On a graph, a trend line goes through points (4, 35) and (16, 134). StartFraction 134 minus 35 Over 16 minus 4 EndFraction StartFraction 134 minus 16 Over 35 minus 4 EndFraction StartFraction 4 minus 16 Over 35 minus 134 EndFraction StartFraction 4 minus 16 Over 134 minus 35 EndFraction
Answer:
134-35/16-4 (A)
Step-by-step explanation:
I just know
Answer
A) 134-35/16-4
Step-by-step explanation:
Select the correct answer.
Identify the expression equivalent to 4(x + x + 7) - 2x + 8 - 4 by substituting x = 1 and x = 2.
PLZ HELP
Answer:
Option (C)
Step-by-step explanation:
Given expression is 4(x + x + 7) - 2x + 8 - 4
When x = 1,
Value of the expression will be,
= 4(1 + 1 + 7) - 2(1) + 8 - 4
= 4(9) - 2 + 8 - 4
= 36 - 2 + 8 - 4
= 38
For x = 2,
= 4(2 + 2 + 7) -2(2) + 8 - 4
= 44 - 4 + 8 - 4
= 44
Now we will check the same for the given options.
Option (A). For x = 1,
6x + 11 = 6(1) + 11
= 17
For x = 2,
6x + 11 = 6(2) + 11
= 23
Option (B). For x = 1,
3(x + 7) = 3(1 + 7)
= 24
For x = 2,
3(x + 7) = 2(2 + 7)
= 18
Option (C), x = 1
2(3x + 16) = 2[3(1) + 16]
= 38
For x = 2,
2(3x + 16) = 2[3(2) + 16]
= 44
Option (D), For x = 1,
= 19
For x = 2,
2(3x + 16) = 2[3(2) + 16]
= 44
Since value of the expression for x = 1 and 2 matches with the value in option (C)
Therefore, Option (C) will be the answer.
Find the area of this triangle..
Answer: 25.71
Step-by-step explanation:
The area of a triangle is b*h/2. First, focus on finding the missing height. To find the height, use the pythagorean theorem. The pythagorean theorem only works on rights triangles. If you divide the triangle in half (vertically), you end up with two right triangles. From there, use the pythagorean theorem. The equation for the theorem is a²+b²=c². a and b are the sides and c is the hypotenuse(longest side).
1. For this triangle, you have the base and hypotenuse. Because there are technecally two right triangles, divide the base into two. 7.2/2 is 3.6.
2. Going back to what I said about a²+b²=c² , fill in the variables. The pythagorean theorem is used to find a missing side in a right triangle, so in this case, you would use it to find the height. 3.6²+X²=8². X represents the height which is 7.14
3. Finally, 7.14*7.2= 51.43.
4. Divide 51.43 by 2. 51.43/2 is 25.72.
I hope this wasn't too difficult to understand bc it's harded to explain without visuals. Hope this helped!
Answer:
[tex]\boxed{25.72 \: units^2}[/tex]
Step-by-step explanation:
Split the triangle into two triangles.
The base of one triangle is 3.6 and hypotenuse (longest side) is 8.
Use Pythagorean theorem to find length of one leg.
a² + b² = c²
3.6² + b² = 8²
b = 7.144228
The area of a triangle is [tex]\frac{1}{2} bh[/tex]
The base and height both are given now.
[tex]\frac{1}{2} (7.144228)(3.6)[/tex]
[tex]12.85961[/tex]
Multiply by 2 because there are two triangles.
[tex]12.85961 \times 2[/tex]
[tex]25.719221[/tex]
1,305 divided by 31,828 x100
Answer:
[tex]4 \frac{1}{10}[/tex]
Step-by-step explanation:
=> [tex]\frac{1305}{31828} * 100[/tex]
=> 0.041 * 100
=> 4.1
=> [tex]4 \frac{1}{10}[/tex]
What monomial do you have to raise to the power of 2 to get the monomials below? (1000000m18)
Answer:
(1000m⁹)²Step-by-step explanation:
A monomial is an expression containing just one term. Given the monomial 1000000m¹⁸, to get the monomial we need to raise to the power of 2 to get this given monomials, the following steps must be taken using the laws of indices.
In indices, [tex](a^m)^n = a^m^n[/tex], applying this rule to the question we have;
1000000m¹⁸
= (10*10*10*10*10*10)m¹⁸
= 10⁶m¹⁸
= 10⁶*(m³)⁶
= (10*m³)⁶
= (10m³)⁶
= (10m³)²ˣ³
= (10³m⁹)²
= (1000m⁹)²
The last result gives the required expression
using Pythagoras theorem work out the length of AB
ABC is a triangle,
1 side is 22 cm 1 side is 8 cm
1 side is unknown the
1 unknown side is unknown
work out AB using Pythagoras theorem
Answer:
AB = 23.40 cmSolution,
Base ( BC ) = 22 cm
Perpendicular ( AC) = 8 cm
Hypotenuse (AB) = ?
Now,
Using the Pythagoras theorem:
[tex] {h}^{2} = {p}^{2} + {b}^{2} [/tex]
[tex] {h}^{2} = {(8)}^{2} + {(22)}^{2} [/tex]
[tex] {h}^{2} = 64 + 484[/tex]
[tex] {h}^{2} = 548[/tex]
[tex]h = \sqrt{548} [/tex]
[tex]h = 23.40 \: cm[/tex]
Hope this helps..
Good luck on your assignment...
A truck is to be filled with packages that weigh 5.8kg. If the maximum capacity of the truck is 48000 grams and there is a 5500 gram package already on the truck how many 5.8kg packages can be loaded?
Answer: 7 packages
Step-by-step explanation:
From the question, we are told that a truck is to be filled with packages that weigh 5.8kg. The maximum capacity of the truck is 48000 grams(48kg) and there is a 5500 gram(5.5kg) package already in the truck.
First, we need to subtract 5.5kg from 48kg to know the amount of space left. This will be:
= 48kg - 5.5kg
= 42.5kg
To get the number of 5.8kg packages that can be loaded, we divide 42.5kg by 5.8kg. This will be:
= 42.5kg/5.8kg
= 7.3
= 7 approximately
Therefore, 7 packages will be loaded.
N.B: 1000 grams = 1 kilogram
Factor the expression 4x + 32. Explain each step you take in the process. 100 points goes to brainliest
Answer:
4(x+8)
Step-by-step explanation:
4x+32
x+8 in parentheses
and put the 4 on the outside of the parentheses
like this 4(x+8)
Answer:
4(x+8)
Step-by-step explanation:
4x + 32
Rewriting
4*x + 4*8
Factor out 4
4(x+8)
In the diagram shown, FJ bisects AD BL~=LC. The length of BL is 10 less than the length of AB. The length of AD is 220. What is the length of BD?
Answer:
Option (C)
Step-by-step explanation:
Since FJ is the bisector of AD,
AL ≅ DL
And it's given that BL ≅ LC
Length of BL is 10 less than the length of AB.
m(BL) = m(AB) - 10
m(AD) = 220 [Since m(AD) = 2m(AL)]
2m(AL) = 220
m(AL) = 110
m(AB) + m(BL) = 110
m(AB) + [m(AB) - 10] = 110
2m(AB) = 110 + 10
m(AB) = 60
Therefore, m(BL) = m(AL) - m(AB)
= 110 - 60
= 50
Since, m(AL) = m(DL)
m(AB) + m(BL) = m(LC) + m(CD) [Since BL = LC]
m(AB) = m(CD) = 60
Now m(BD) = m(BL) + m(LC) + m(CD)
= 50 + 50 + 60
= 160
Therefore, option (C) will be the answer.
Help
Use a calculator to find the
square root of 74 and round
to the nearest tenth.
d = 174.
d = [?]
Answer:
8.6
Step-by-step explanation:
The square root of 74 is 8.602325267. If you round this number to the nearest tenth you get 8.6
The square root of 74 is 8.602325267. If you round this number to the nearest tenth you get 8.6.
What is an expression?Expression in maths is defined as the collection of the numbers variables and functions by using signs like addition, subtraction, multiplication, and division.
Numbers (constants), variables, operations, functions, brackets, punctuation, and grouping can all be represented by mathematical symbols, which can also be used to indicate the logical syntax's order of operations and other features.
The square root of the value 74 will be calculated as below:-
D = √74
D = 8.602325267
D = 8.6
Therefore, the square root of 74 is 8.602325267. If you round this number to the nearest tenth you get 8.6.
To know more about expression follow
https://brainly.com/question/723406
#SPJ2
Someone Help me please !
Answer:
[tex] \sqrt{9} \times \sqrt{16} [/tex]
Step-by-step explanation:
[tex] \sqrt{9} \times 16 = \sqrt{9} \times \sqrt{16} = 3 \times 4 = 12[/tex]
Hope this helps ;) ❤❤❤
Answer:
sqrt(9) * sqrt(16)
Step-by-step explanation:
sqrt( 9*16)
We know that sqrt(a*b) = sqrt(a) sqrt(b)
sqrt(9) * sqrt(16)
3*4
12
i need the answer right now
Bacteria in a petri dish doubles every 10 minutes.
a) If there are 10 bacteria initially, how many are there after 120 minutes?
b) If there are 10 bacteria initially, when would there be a million bacteria?
(Show step by step)
Answer:
Step-by-step explanation:
Givens
Petri Dish A sees a double ever 10 minutes
Petri Dish B sees a double ever 6 minutes
Consequences
A doubles 60 / 10 = 6 times.
B doubles 60 / 6 = 10 times.SolutionIf you work best with numbers then suppose there are 100 bacteria in both dishes at the beginningA = 100 * 2^6B = 100 * 2^10A will have 100 * 64 = 6400 bacteria growing inside AB will have 100 * 1024 = 102400 bacteria growing inside BB/A = 102400 / 6400 = 16There are 16 times as many in B than in A
Find all polar coordinates of point P = (2,14°)
Answer:
[tex](2,14^{\circ}+360^{\circ}n)\text{ and }(-2,194^{\circ} +360^{\circ}n)[/tex].
Step-by-step explanation:
If a point is [tex]P=(r,\theta)[/tex], the all polar coordinates are defined as
In radian : [tex](r,\theta +2n\pi)\text{ and }(-r,\theta +(2n+1)\pi)[/tex]
In degree : [tex](r,\theta +360^{\circ}n)\text{ and }(-r,\theta +(2n+1)180^{\circ})[/tex]
where, n is any integer.
The given point is
[tex]P=(2,14^{\circ})[/tex]
So, all polar coordinates are
[tex](2,14^{\circ}+360^{\circ}n)\text{ and }(-2,14^{\circ} +(2n+1)180^{\circ})[/tex]
[tex](2,14^{\circ}+360^{\circ}n)\text{ and }(-2,14^{\circ} +360^{\circ}n+180^{\circ})[/tex]
[tex](2,14^{\circ}+360^{\circ}n)\text{ and }(-2,194^{\circ} +360^{\circ}n)[/tex]
Therefore, the required polar coordinates are [tex](2,14^{\circ}+360^{\circ}n)\text{ and }(-2,194^{\circ} +360^{\circ}n)[/tex], where n is any integer.
Simplify the following expression. 3 – 2(–6x + 3)
Answer:
-3 + 12x
Step-by-step explanation:
3 - 2(-6x + 3)
3 + 12x - 6
-3 + 12 x
Hope this helped! :)
Here’s a graph of a linear function. Write the equation that describes that function.
Express it in slope-intercept form.
Answer:
The equation that describes the function is y = -6x-1
Step-by-step explanation:
Firstly we can see that the graph passes through the origin.
The general equation of a starlight line graph is;
y = mx + c
where m is the slope and c is the y-intercept
what’s left now is go find our slope
We need two points for this on the line.
Let’s identify these points;
The identifiable points are; (1,-7) and (-1,5)
So the formula for the slope is;
y2-y1/x2-x1 = (5-(-7))/(-1-1) = 12/-2 = -6
Thus, the equation of the line becomes
y = -6x + c
Looking at the graph again, we can see an obvious y-intercept at the point y = -1
So our intercept is -1
The equation of the line is thus;
y = -6x -1
The mean per capita income is 19,292 dollars per annum with a variance of 540,225. What is the probability that the sample mean would be less than 19269 dollars if a sample of 499 persons is randomly selected? Round your answer to four decimal places.
Answer:
The probability is 0.2423.
Step-by-step explanation:
Given mean per capita = 19292 dollars
Given the variance = 540225
Now find the probability that the sample mean will be less than 19269 dollar when the sample is 499.
Below is the calculation:
[tex]\bar{X} \sim N(\mu =19292, \ \sigma = \frac{\sqrt{540225}}{\sqrt{499}}) \\\bar{X} \sim N(\mu =19292, \ \sigma = 32.90) \\\text{therefore the probability is:} \\P (\bar{X}< 19269) \\\text{Convert it to standard normal variable.} \\P(Z< \frac{19269-19292}{32.90}) \\P(Z< - 0.6990) \\\text{Now getting the probability from standard normal table}\\P(Z< -0.6990) = 0.2423[/tex]