Answer:
The answer is "Option A"
Step-by-step explanation:
The valid linear programming language equation can be defined as follows:
Equation:
[tex]\Rightarrow \ Min\ 4x + 3y + (\frac{2}{3})z[/tex]
The description of a linear equation can be defined as follows:
It is an algebraic expression whereby each term contains a single exponent, and a single direction consists in the linear interpolation of the equation.
Formula:
[tex]\to \boxed{y= mx+c}[/tex]
Figure B is a scaled copy of Figure A.
What is the scale factor from Figure A to Figure B?
Please answer fast!!!!
Answer:
4
Step-by-step explanation:
We are told that figure B is a scaled copy of B, which means figure A was enlarged by a certain scale factor to get a similar figure as A, now referred to as figure B.
The scale factor = ratio of any two corresponding sides of both similar figures.
Thus,
Scale factor of the similar figures given = 40/10 = 4.
This means that, figure A was scaled up by 4 times its original size to get figure B. Each side of figure B is 4 × the corresponding side in figure A.
Scale factor = 4
expand the linear expression 4(10x -4)
Answer:
40x - 16
Step-by-step explanation:
(see attached for reference)
By utilizing the distributive property:
4(10x -4)
= (10x)(4) -4 (4)
= 40x - 16
Answer:
4x10x= 40x -4x4=-16 40xtimes-4<-----------thats your answer
Step-by-step explanation:
The owner of a fish market has an assistant who has determined that the weights of catfish are normally distributed, with mean of 3.2 pounds and standard deviation of 0.8 pound. If a sample of 4 fish is taken. What is the probability that the sample means will be more than 3.4 pounds?
Answer:
[tex]P(\bar X>3.4) = 0.385[/tex]
Step-by-step explanation:
Relevant Data provided according to the question is as follows
[tex]\mu[/tex] = 3.2
[tex]\sigma[/tex] = 0.8
n = 4
According to the given scenario the calculation of probability that the sample means will be more than 3.4 pounds is shown below:-
[tex]z = \frac{\bar X - \mu}{\frac{a}{\sqrt{n} } }[/tex]
[tex]P(\bar X>3.4) = 1 - P(\bar X\leq 3.4)[/tex]
[tex]= 1 - P \frac{\bar X - \sigma}{\frac{a}{\sqrt{n} } } \leq \frac{3.4 - \sigma}{\frac{a}\sqrt{n} }[/tex]
Now, we will solve the formula to reach the probability that is
[tex]= 1 - P \frac{\bar X - 3.2}{\frac{0.8}{\sqrt{4} } } \leq \frac{3.4 - 3.2}{\frac{0.8}\sqrt{4} }[/tex]
[tex]= 1 - P (Z \leq \frac{0.2}{0.4})[/tex]
[tex]= 1 - P (Z \leq 0.5})[/tex]
[tex]= 1 - \phi (0.5)[/tex]
= 1 - 0.6915
= 0.385
Therefore the correct answer is
[tex]P(\bar X>3.4) = 0.385[/tex]
So, for computing the probability we simply applied the above formula.
Answer:
its 21
Step-by-step explanation:
its not 21 i really dont know
A superintendent of a school district conducted a survey to find out the level of job satisfaction among teachers. Out of 53 teachers who replied to the survey, 13 claim they are satisfied with their job.
z equals fraction numerator p with hat on top minus p over denominator square root of begin display style fraction numerator p q over denominator n end fraction end style end root end fraction
The superintendent wishes to construct a significance test for her data. She find that the proportion of satisfied teachers nationally is 18.4%.
What is the z-statistic for this data? Answer choices are rounded to the hundredths place.
a. 2.90
b. 1.15
c. 1.24
d. 0.61
Answer:
b. 1.15
Step-by-step explanation:
The z statistics is given by:
[tex]Z = \frac{X - p}{s}[/tex]
In which X is the found proportion, p is the expected proportion, and s, which is the standard error is [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Out of 53 teachers who replied to the survey, 13 claim they are satisfied with their job.
This means that [tex]X = \frac{13}{53} = 0.2453[/tex]
She find that the proportion of satisfied teachers nationally is 18.4%.
This means that [tex]p = 0.184[/tex]
Standard error:
p = 0.184, n = 53.
So
[tex]s = \sqrt{\frac{0.184*0.816}{53}} = 0.0532[/tex]
Z-statistic:
[tex]Z = \frac{X - p}{s}[/tex]
[tex]Z = \frac{0.2453 - 0.184}{0.0532}[/tex]
[tex]Z = 1.15[/tex]
The correct answer is:
b. 1.15
A right triangle is shown. The length of the hypotenuse is 4 centimeters and the lengths of the other 2 sides are congruent. The hypotenuse of a 45°-45°-90° triangle measures 4 cm. What is the length of one leg of the triangle? 2 cm 2 StartRoot 2 EndRoot cm 4 cm 4 StartRoot 2 EndRoot cm
Answer:
The leg measures 2 I believe
Step-by-step explanation:
Since the squares of the legs equal C ([tex]A^{2} +B^{2} = C^{2}[/tex]) the square root of 16 would be 4.
The Pythagorean theorem is a basic relationship between the three sides of a right triangle. The length of one leg of the triangle is 2√2 cm.
What is the Pythagoras theorem?The Pythagorean theorem, sometimes known as Pythagoras' theorem, is a basic relationship between the three sides of a right triangle in Euclidean geometry. The size of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides, according to this rule.
[tex]\rm (Hypotenuse)^2 =(Perpendicular)^2 + (Base)^2[/tex]
Let the length of the perpendicular be x.
Given the length of the hypotenuse is 4 centimeters, while the length of the other two sides is the same, therefore, the length of the other two sides is x. Therefore, using the Pythagorus theorem we can write,
[tex]\rm (Hypotenuse)^2 =(Perpendicular)^2 + (Base)^2[/tex]
[tex]4^2 = x^2+x^2\\\\16=2x^2\\\\8=x^2\\\\x= 2\sqrt2[/tex]
Hence, the length of one leg of the triangle is 2√2 cm.
Learn more about Pythagoras Theorem:
https://brainly.com/question/14461977
#SPJ2
Approximating square roots
Go to le
Without using a calculator, choose the statement that best describes the value of 215.
Choose 1 answer:
The value of 215 is between 13 and 13.5.
The value of 215 is between 13.5 and 14.
The value of 215 is between 14 and 1.5.
The value of v 215 is between 14.5 and 15.
Step-by-step explanation:
We know that
14^2=196, and
15^2=225
so we know that sqrt(215) is between 14 and 15.
How do we know if it is between 14.5 and 15?
we need to know the value of 14.5^2, which we can calculate in the head as follows:
The square of all numbers ending in 5 such as 15 can be calculated by breaking up the 5 and the preceding digit(s),
The preceding digit is 1. We multiply 1 by the next integer, 2 to get 2.
Attach 25 to 2 gives us 225 (as we saw above.
Example, 145*145 = 14*15 | 25 = 210 | 25 = 21025
so
14.5^2 = 210.25, which gives the more precise answer that
14.5^2 < 215 < 15^2, or
14.5 < sqrt(215) < 15 (fourth choice)
Since the third choice says sqrt(215) is between 14 and 1.5 (not 15), so the third choice is incorrect.
Note: if we eliminated the third choice, i.e. discard the likelihood of typo in the question, the only one left is the fourth choice.
2{ 3[9 + 4(7 -5) - 4]}
Answer:
2{3[9+4(7-5)-4]}
2{3[9+4(2)-4]}
2{3[13(2)-4]}
2{3[26-4]}
2{3[22]}
2{66}
132
Step-by-step explanation:
Given a triangle with: a =
150, A = 75°, and C = 30°
Using the law of sines gives: c = 0
Answer:
[tex] c = 77.6 [/tex]
Step-by-step explanation:
You may have entered the measure of a side as the measure of an angle.
[tex] \dfrac{\sin A}{a} = \dfrac{\sin C}{c} [/tex]
[tex] \dfrac{\sin 75^\circ}{150} = \dfrac{\sin 30^\circ}{c} [/tex]
[tex] c\sin 75^\circ = 150 \sin 30^\circ [/tex]
[tex] c = \dfrac{150 \sin 30^\circ}{\sin 75^\circ} [/tex]
[tex] c = 77.6 [/tex]
You are correct. Good job!
The mean monthly car payment for 123 residents of the local apartment complex is $624. What is the best point estimate for the mean monthly car payment for all residents of the local apartment complex?
Answer:
The best point estimate for the mean monthly car payment for all residents of the local apartment complex is $624.
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
In this question:
We apply the inverse Central Limit Theorem.
The mean monthy car payment for 123 residents of the local apartment complex is $624.
So, for all residents of the local apartment complex, the best point estimate for the mean monthly car payment is $624.
which point is a solution to the inequality shown in the graph? (3,2) (-3,-6)
The point that is a solution to the inequality shown in the graph is:
A. (0,5).
Which points are solutions to the inequality?The points that are on the region shaded in blue are solutions to the inequality.
(3,2) and (-3,-6) are on the dashed line, hence they are not solutions. Point (5,0) is to the right of the line, hence it is not a solution, and point (0,5) is a solution, meaning that option A is correct.
More can be learned about inequalities at https://brainly.com/question/25235995
#SPJ1
Simon swapped of 2/5
his 40 marbles for 9 of
Saqib's. How many has
Simon got now?
Answer:
33
Step-by-step explanation:
2/5x40=16
40-16=24
24+9=33
33 marbles
2/5 is .4
Multiply .4 by 40 to get 16
Subtract 16 from 40 to get 24
Add 9 to 24 to get 33
Hope it helps <3
(If it does, please mark brainliest, only need 1 more to get rank up :) )
Please please please please help me. i will do anything, anything!! please
Answer:
[tex]d \approx 2.2[/tex]
Step-by-step explanation:
It is the same process as in previous problems.
Once the origin is the point (0, 0):
[tex]d=\sqrt{(x_{1}-x_{2})^2 + (y_{1}-y_{2})^2}[/tex]
[tex]d=\sqrt{(2-0)^2 + (-1-0)^2}[/tex]
[tex]d=\sqrt{2^2 + (-1)^2}[/tex]
[tex]d=\sqrt{5}[/tex]
[tex]d \approx 2.2[/tex]
Answer:
2.2
Step-by-step explanation:
The distance formula
[tex]\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}[/tex] with
[tex]x_1=0\\y_1=0\\x_2=2\\y_2=-1[/tex]
[tex]\sqrt{(0-2)^2+(0-(-1))^2}=\sqrt{2^2+1^2}=\sqrt{5}[/tex]
[tex]\sqrt{5} =2.2360...=2.2[/tex]
show that 7 1/2 - 4 2/3 = 2 5/6
Equation is [tex]7\frac{1}{2} -4\frac{2}{3}=2\frac{5}{6}[/tex] is true.
What is Equation?Two or more expressions with an Equal sign is called as Equation.
The given equation is [tex]7\frac{1}{2} -4\frac{2}{3}=2\frac{5}{6}[/tex]
We need to check whether the left hand side is equal to right hand side.
These are in the form pf mixed fraction we can convert them to the improper fraction.
[tex]7\frac{1}{2}=15/2[/tex]
[tex]4\frac{2}{3}=\frac{14}{3}[/tex]
So Let us subtract 24/3 from 15/2
15/2-14/3
LCM of 2 and 3 is 6
45-28/6
17/6
This can be written as mixed fraction [tex]2\frac{5}{6}[/tex]
Hence, equation is [tex]7\frac{1}{2} -4\frac{2}{3}=2\frac{5}{6}[/tex] is true.
To learn more on Equation:
https://brainly.com/question/10413253
#SPJ2
Prepare the journal entries on December 31, 2019, for the 40 extended contracts (the first year of the revised 3-year contract).
This is not the complete question, the complete question is:
P18-1 (LO2,3) (Allocate Transaction Price, Upfront Fees)
Tablet Tailors sells tablet PCs combined with Internet service, which permits the tablet to connect to the Internet anywhere and set up a Wi-Fi hot spot. It offers two bundles with the following terms.
1. Tablet Bundle A sells a tablet with 3 years of Internet service. The price for the tablet and a 3-year Internet connection service contract is $500. The standalone selling price of the tablet is $250 (the cost to Tablet Tailors is $175). Tablet Tailors sells the Internet access service independently for an upfront payment of $300. On January 2, 2017, Tablet Tailors signed 100 contracts, receiving a total of $50,000 in cash.
2. After 2 years of the 3-year contract, Tablet Tailors offers a modified contract and extension incentive. The extended contract services are similar to those provided in the first 2 years of the contract. Signing the extension and paying $90 (which equals the standalone selling of the revised Internet service package) extends access for 2 more years of Internet connection. Forty Tablet Bundle A customers sign up for this offer.
INSTRUCTION
a) Prepare the journal entries when the contract is signed on January 2, 2019, for the 40 extended contracts. Assume the modification does not result in a separate performance obligation.
b) Prepare the journal entries on December 31, 2019, for the 40 extended contracts (the first year of the revised 3-year contract).
Answer:
Step-by-step explanation:
(A)
Date Particulars Debit Credit
2-Jan-19 Cash 3600
Unearned Service Revenue 3600
40 * 90 = 3600
services in the extended period are the same as the services that were provided in the original contract period. As they are not distinct hence the modifications will be considered as part of the original contract.
(B)
Date Particulars Debit Credit
31-Dec-19 Unearned Service Revenue 2413
Service revenue 2413
internet = 300, price = 550, connection service = 500
(300/550) * 500 = 273
so
Original internet service contract = 40 * 273 = 10,920
Revenue recognized in 1st two years = 10,920 * 2/3 = 7280
Remaining service at original rates = 10920 - 7280 = 3640
Extended service = 3600
3640 + 3600 = $7240
7240 / 3 = $2413
Evaluate the expression.........
Answer:
9
Step-by-step explanation:
p^2 -4p +4
Let p = -1
(-1)^1 -4(-1) +4
1 +4+4
9
I need help urgent plz someone help me solved this problem! Can someone plz help I’m giving you 10 points! I need help plz help me! Will mark you as brainiest!
Step-by-step explanation:
Log T = 11.8 + 1.5.M (with T is the amount of energy released by the earthquake, Log refers to the logarithm to the base 10)
-->T = [tex]10^{11.8 +1.5*6.5}[/tex] ≈3.458 *[tex]10^{21}[/tex]
Answer: 2.00 x 10¹⁰⁹
Step-by-step explanation:
log T = 11.8 + 1.5M
Given: M = 6.5
log T = 11.8 + 1.5(6.5)
log T = 11.8 + 9.75
log T = 21.55
T = 10²¹⁻⁵⁵
T = 1.995 x 10¹⁰⁹
T = 2.00 x 10¹⁰⁹ rounded to the nearest hundredth
An election ballot asks voters to select six city commissioners from a group of 24 candidates in how many ways can this be done? Six city commissioners can be selected from a group of 24 candidates in blank different ways
Answer:
134,596 diffrent ways.
Step-by-step explanation:
Combination has to do with selection. When n object is to be selected from n objects, this can be achieved using the combination formula as shown; \
nCr = n!/(n-r)!r!
If an election ballot asks voters to select six city commissioners from a group of 24 candidates, then the selection can be done in 24C6 different ways.
Applying the formula above:
24C6 = 24!/(24-6)!6!
24C6 = 24!/18!6!
24C6 = 24*23*22*21*20*19*18!/18!*6*5*4*3*2
24C6 = 24*23*22*21*20*19/24*30
24C6 = 23*22*21*20*19/30
24C6 = 134,596 different ways.
Hence, Six city commissioners can be selected from a group of 24 candidates in 134,596 different ways
How many multiples of 4, that are smaller than 1,000, do not contain any of the digits 6, 7, 8, 9 or 0?
Answer:
44
Step-by-step explanation:
11×4
hope it helped!
A survey was taken of students in math classes to find
out how many hours per day students spend on social
media. The survey results for the first-, second-, and
third-period classes are as follows:
First period: 2, 4, 3, 1, 0, 2, 1, 3, 1, 4, 9, 2, 4, 3,0
Second period: 3, 2, 3, 1, 3, 4, 2, 4, 3, 1, 0, 2, 3, 1, 2
Third period: 4, 5, 3, 4, 2, 3, 4, 1, 8, 2, 3, 1, 0, 2, 1, 3
Which is the best measure of center for second period
and why?
What is the complete factorization of x^2+4x-45?
Answer:(x-5)(x+9)
Step-by-step explanation:
You want two numbers that can give you -45 in multiplication and two numbers that can add to 4 and that is -5 and 9.
Answer: (x - 5)(x + 9)
If you have to solve, x=5 or x= -9
Step-by-step explanation: You need two numbers that multiply to be 45.
(could be 3 × 15 or 5 × 9) . The difference between the two factors needs to be 4, the coefficient of the middle term.
9 - 5 =4, so use those. -45 has a negative sign, so one of the factors must be + and the other - Since the 4 has the + sign, the larger factor has to be + so the difference will be positive.
So (x -5)(x + 9) are your factors. You can FOIL to be sure
x × x += x² . x × 9 = 9x . -5 × x = -5x . -5 × 9 = -45 .
Combine the x terms: 9x -5x = +4x
At the Arctic weather station, a warning light turns on if the outside temperature is below -25 degrees Fahrenheit. Which inequality models this situation?
Answer:
T < -25
Step-by-step explanation:
Was correct on TTM
The lengths of adult males' hands are normally distributed with mean 190 mm and standard deviation is 7.4 mm. Suppose that 45 individuals are randomly chosen. Round all answers to 4 where possible.
What is the distribution of ¯xx¯? ¯xx¯ ~ N(,)
For the group of 45, find the probability that the average hand length is less than 189.
Find the third quartile for the average adult male hand length for this sample size.
For part b), is the assumption that the distribution is normal necessary?
Answer:
a. The distribution of the sample means is normal with mean 190 mm and standard deviation 1.1031 mm.
b. The probability that the average hand length is less than 189 is P(M<189)=0.1823.
c. The third quartile for the average adult male hand length for this sample size is M_75=190.7440.
d. The assumption of normality is not necessary as the sampling distribution will tend to have a bell shaped independently of the population distribution.
Step-by-step explanation:
We have a normal distribution, with mean 190 and standard deviation 7.4.
We take samples of size n=45 from this population.
Then, the sample means will have a distribution with the following parameters:
[tex]\mu_s=\mu=190\\\\ \sigma_s=\dfrac{\sigma}{\sqrt{n}}=\dfrac{7.4}{\sqrt{45}}=\dfrac{7.4}{6.7082}=1.1031[/tex]
The probability that the sample mean is less than 189 can be calculated as:
[tex]z=\dfrac{M-\mu}{\sigma/\sqrt{n}}=\dfrac{189-190}{7.4/\sqrt{45}}=\dfrac{-1}{1.1031}=-0.9065\\\\\\P(M<189)=P(z<-0.9065)=0.1823[/tex]
The third quartile represents the value of the sample where 75% of the data is to the left of this value. It means that:
[tex]P(M<M^*)=0.75[/tex]
The third quartile corresponds to a z-value of z*=0.6745.
[tex]P(z<z^*)=0.75[/tex]
Then, we can calculate the sample mean for the third quartile as:
[tex]M=\mu_s+z^*\sigma_s=190+0.6745\cdot 1.1031=190+0.7440=190.7440[/tex]
The assumption of normality is not necessary as the sampling distribution will tend to have a bell shaped independently of the population distribution.
if p+4/p-4, what is the value of p
Answer:
p = 2
Step-by-step explanation:
p + 4/p - 4
multiplying through by p,
p×p + 4/p ×p - 4×p
p² + 4 - 4p = 0
p² - 4p + 4 = 0
factorizing,
p(p - 2) -2(p - 2) =0
(p -2)(p -2) =0
p-2 =0
p=2
Module 7
When you multiply a difference of two squares, why is your answer a binomial instead of a trinomial like when you multiply the sum of two squares? Create an example of multiplying a difference of two squares and show your work as you simplify the expression.
WILL GIVE BRAINLIEST
Answer:
When you multiply a difference of squares, two terms cancel each other out and result in a binomial instead of a trinomial. To understand this, you can use an example.
When you multiply (x-3) and (x+3), you can use FOIL to expand them. By doing this, you get x^2-3x+3x-9. As you can see, -3x and 3x cancel each other out, so this results in a binomial instead of a trinomial.
Answer:
when you multiply them the two terms cancel each other out which will result in a binominal
Step-by-step explanation:
1) A grocer sold 5 kg of wheat flour at Rs 30 per kg and gained 20%. If he had sold
it at Rs 27 per kg, what would be his gain or loss percent?
Answer:
given,
selling price (sp)=rs 5 ×30
=rs 150
now, gain %=20%
cost price (cp)=
[tex] \frac{sp \times 100}{100 + gain\%} [/tex]
[tex] = \frac{150 \times 100}{100 + 20} [/tex]
therefore cp= rs125
now,
again in 2nd case
sp= rs 27×5
therefore sp=rs 135
and cp= rs125
now, sp>cp so,
[tex]gain\% = \frac{sp - cp}{cp} \times 100\%[/tex]
or, gain=
[tex] = \frac{135 - 125}{125} \times 100\%[/tex]
therefore gain %= 8%.... is answer
hope it helps..
What is the volume of a cubed shaped box with edges 6 cm. in length?
Answer:
216 cm³
Step-by-step explanation:
The volume of a cube is denoted by V = s³, where s is the side length.
Here, the side length is 6 centimetres, so plug this into the formula to find V:
V = s³
V = 6³ = 6 * 6 * 6 = 216
The answer is thus 216 cm³.
~ an aesthetics lover
Answer:
216
Step-by-step explanation:
6³ = 216
I got the answer but I really don’t know if it’s correct or not, please help this is due today
The two triangles are similar. What is the value of x? Enter your answer in the box. x =
Answer:
the value of x=12
Step-by-step explanation:
d) the answer is d on edg.
Find the length of UC
Answer: 25 units
Step-by-step explanation:
Simply do 40(UN)-15(CN) to get 25(UC)
Hope it helps <3
Answer:
25Option D is the correct option
Solution,
Here,
UN = 40
CN = 15
Now,
UN = UC + CN
plugging the values,
40 = UC + 15
-UC = 15 - 40
-UC = -25
The difference sign (-) will be cancelled in both sides:
UC = 25
hope this helps...
Good luck on your assignment..
If 16 student drove to school out of a class of 21, what percentage drove to school
Your answer would be 76.2% to the nearest tenth.
We can find this by first dividing 16 by 21 to get 0.7619. which is the proportion as a decimal. To convert this into a percentage, we need to multiply it by 100 to get 76.19% = 76.2% to the nearest tenth.
I hope this helps! Let me know if you have any questions :)