Answer:
The length of the rod for the condition on the question to be met is [tex]L = 1.5077 \ m[/tex]
Explanation:
The Diagram for this question is gotten from the first uploaded image
From the question we are told that
The mass of the rod is [tex]M = 3.41 \ kg[/tex]
The mass of each small bodies is [tex]m = 0.249 \ kg[/tex]
The moment of inertia of the three-body system with respect to the described axis is [tex]I = 0.929 \ kg \cdot m^2[/tex]
The length of the rod is L
Generally the moment of inertia of this three-body system with respect to the described axis can be mathematically represented as
[tex]I = I_r + 2 I_m[/tex]
Where [tex]I_r[/tex] is the moment of inertia of the rod about the describe axis which is mathematically represented as
[tex]I_r = \frac{ML^2 }{12}[/tex]
And [tex]I_m[/tex] the moment of inertia of the two small bodies which (from the diagram can be assumed as two small spheres) can be mathematically represented as
[tex]I_m = m * [\frac{L} {2} ]^2 = m* \frac{L^2}{4}[/tex]
Thus [tex]2 * I_m = 2 * m \frac{L^2}{4} = m * \frac{L^2}{2}[/tex]
Hence
[tex]I = M * \frac{L^2}{12} + m * \frac{L^2}{2}[/tex]
=> [tex]I = [\frac{M}{12} + \frac{m}{2}] L^2[/tex]
substituting vales we have
[tex]0.929 = [\frac{3.41}{12} + \frac{0.249}{2}] L^2[/tex]
[tex]L = \sqrt{\frac{0.929}{0.40867} }[/tex]
[tex]L = 1.5077 \ m[/tex]
An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled downward and then released, it vibrates vertically. The equation of motion is s = 9 cos(t) + 9 sin(t), t ≥ 0, where s is measured in centimeters and t in seconds. (Take the positive direction to be downward.) (a) Find the velocity and acceleration at time t.
Answer:
v(t) = s′(t) = −9sin(t)+9cos(t)
a(t) = v′(t) = −9cos(t) −9sin(t)
Explanation:
Given that
s = 9 cos(t) + 9 sin(t), t ≥ 0
Then acceleration and velocity is
v(t) = s′(t) = −9sin(t)+9cos(t)
a(t) = v′(t) = −9cos(t) −9sin(t)
Alternating Current In Europe, the voltage of the alternating current coming through an electrical outlet can be modeled by the function V 230 sin (100t), where tis measured in seconds and Vin volts.What is the frequency of the voltage
Answer:
[tex]\frac{50}{\pi }[/tex]Hz
Explanation:
In alternating current (AC) circuits, voltage (V) oscillates in a sine wave pattern and has a general equation as a function of time (t) as follows;
V(t) = V sin (ωt + Ф) -----------------(i)
Where;
V = amplitude value of the voltage
ω = angular frequency = 2 π f [f = cyclic frequency or simply, frequency]
Ф = phase difference between voltage and current.
Now,
From the question,
V(t) = 230 sin (100t) ---------------(ii)
By comparing equations (i) and (ii) the following holds;
V = 230
ω = 100
Ф = 0
But;
ω = 2 π f = 100
2 π f = 100 [divide both sides by 2]
π f = 50
f = [tex]\frac{50}{\pi }[/tex]Hz
Therefore, the frequency of the voltage is [tex]\frac{50}{\pi }[/tex]Hz
A cylindrical shell of radius 7.00 cm and length 2.21 m has its charge uniformly distributed on its curved surface. The magnitude of the electric field at a point 15.2 cm radially outward from its axis (measured from the midpoint of the shell) is 36.0 kN/C. (a) Find the net charge on the shell.
Answer:
The net charge on the shell is 30x10^-9C
Explanation:
Pls see attached file
The compressor of an air conditioner draws an electric current of 16.2 A when it starts up. If the start-up time is 1.45 s long, then how much electric charge passes through the circuit during this period
Answer:
Q = 23.49 C
Explanation:
We have,
Electric current drawn by the air conditioner is 16.2 A
Time, t = 1.45 s
It is required to find the electric charge passes through the circuit during this period. We know that electric current is defined as the electric charge flowing per unit time. So,
[tex]I=\dfrac{q}{t}\\\\q=It\\\\q=16.2\times 1.45\\\\q=23.49\ C[/tex]
So, the charge of 23.49 C is passing through the circuit during this period.
At what temperature will silver have a resistivity that is two times the resistivity of iron at room temperature? (Assume room temperature is 20° C.)
Answer:
The temperature of silver at this given resistivity is 2971.1 ⁰C
Explanation:
The resistivity of silver is calculated as follows;
[tex]R_t = R_o[1 + \alpha(T-T_o)]\\\\[/tex]
where;
Rt is the resistivity of silver at the given temperature
Ro is the resistivity of silver at room temperature
α is the temperature coefficient of resistance
To is the room temperature
T is the temperature at which the resistivity of silver will be two times the resistivity of iron at room temperature
[tex]R_t = R_o[1 + \alpha(T-T_o)]\\\\\R_t = 1.59*10^{-8}[1 + 0.0038(T-20)][/tex]
Resistivity of iron at room temperature = 9.71 x 10⁻⁸ ohm.m
When silver's resistivity becomes 2 times the resistivity of iron, we will have the following equations;
[tex]R_t,_{silver} = 2R_o,_{iron}\\\\1.59*10^{-8}[1 + 0.0038(T-20)] =(2 *9.71*10^{-8})\\\\\ \ (divide \ through \ by \ 1.59*10^{-8})\\\\1 + 0.0038(T-20) = 12.214\\\\1 + 0.0038T - 0.076 = 12.214\\\\0.0038T +0.924 = 12.214\\\\0.0038T = 12.214 - 0.924\\\\0.0038T = 11.29\\\\T = \frac{11.29}{0.0038} \\\\T = 2971.1 \ ^0C[/tex]
Therefore, the temperature of silver at this given resistivity is 2971.1 ⁰C
What is the change in internal energy of an engine if you put 15 gallon of gasoline into its tank? The energy content of gasoline is 1.5 x 106 J/gallon. All other factors, such as the engine’s temperature, are constant. How many hours the engine can work if the power of the engine’s motor is 600 W? (8 marks)
Answer:
ΔU = 2.25 x 10⁸ J
t = 104.17 s
Explanation:
The change in internal energy of the engine can be given by the following formula:
ΔU = (Mass of Gasoline)(Energy Content of Gasoline)
ΔU = (1.5 x 10⁶ J/gallon)(15 gallon)
ΔU = 2.25 x 10⁸ J
Now, for the time of operation, we use the following formula of power.
P = W/t = ΔU/t
t = ΔU/P
where,
t = time of operation = ?
ΔU = Change in internal energy = 2.25 x 10⁸ J
P = Power of motor = 600 W
Therefore,
t = (2.25 x 10⁸ J)/(600 W)
t = (375000 s)(1 h/3600 s)
t = 104.17 s
An electron, moving west, enters a magnetic field of a certain strength. Because of this field the electron curves upward. What is the direction of the magnetic field?
Answer:
Towards the west.
Explanation:
The direction of a magnetic field lines is the direction north end of a compass needle points. The magnetic field exert force on positive charge.
Using the magnetic rule,which indicate that in order to find the direction of magnetic force on a moving charge, the thumb of the right hand point in the direction of force, the index finger in the direction of velocity charge and the middle finger in the direction of magnetic field.
According to the right hand rule, the electron moving moving west which is the thumb, the direction of the electron is west which is the middle finger and it is upward
2. A pair of narrow, parallel slits sep by 0.25 mm is illuminated by 546 nm green light. The interference pattern is observed on a screen situated at 1.3 m away from the slits. Calculate the distance from the central maximum to the
Answer:
for the first interference m = 1 y = 2,839 10-3 m
for the second interference m = 2 y = 5,678 10-3 m
Explanation:
The double slit interference phenomenon, for constructive interference is described by the expression
d sin θ = m λ
where d is the separation between the slits, λ the wavelength and m an integer that corresponds to the interference we see.
In these experiments in general the observation screen is L >> d, let's use trigonometry to find the angles
tan θ = y / L
with the angle it is small,
tan θ = sin θ / cos θ = sin θ
we substitute
sin θ = y / L
d y / L = m λ
the distance between the central maximum and an interference line is
y = m λ L / d
let's reduce the magnitudes to the SI system
λ = 546 nm = 546 10⁻⁹ m
d = 0.25 mm = 0.25 10⁻³ m
let's substitute the values
y = m 546 10⁻⁹ 1.3 / 0.25 10⁻³
y = m 2,839 10⁻³
the explicit value for a line depends on the value of the integer m, for example
for the first interference m = 1
the distance from the central maximum to the first line is y = 2,839 10-3 m
for the second interference m = 2
the distance from the central maximum to the second line is y = 5,678 10-3 m
A positive kaon (K+) has a rest mass of 494 MeV/c² , whereas a proton has a rest mass of 938 MeV/c². If a kaon has a total energy that is equal to the proton rest energy, the speed of the kaon is most nearly:___________.
A. 0.25c
B. 0.40c
C. 0.55c
D. 0.70c
E. 0.85c
Answer:
0.85c
Explanation:
Rest mass of Kaon [tex]M_{0K}[/tex] = 494 MeV/c²
Rest mass of proton [tex]M_{0P}[/tex] = 938 MeV/c²
The rest energy is gotten by multiplying the rest mass by the square of the speed of light c²
for the kaon, rest energy [tex]E_{0K}[/tex] = 494c² MeV
for the proton, rest energy [tex]E_{0P}[/tex] = 938c² MeV
Recall that the rest energy, and the total energy are related by..
[tex]E[/tex] = γ[tex]E_{0}[/tex]
which can be written in this case as
[tex]E_{K}[/tex] = γ[tex]E_{0K}[/tex] ...... equ 1
where [tex]E[/tex] = total energy of the kaon, and
[tex]E_{0}[/tex] = rest energy of the kaon
γ = relativistic factor = [tex]\frac{1}{\sqrt{1 - \beta ^{2} } }[/tex]
where [tex]\beta = \frac{v}{c}[/tex]
But, it is stated that the total energy of the kaon is equal to the rest mass of the proton or its equivalent rest energy, therefore...
[tex]E_{K}[/tex] = [tex]E_{0P}[/tex] ......equ 2
where [tex]E_{K}[/tex] is the total energy of the kaon, and
[tex]E_{0P}[/tex] is the rest energy of the proton.
From [tex]E_{K}[/tex] = [tex]E_{0P}[/tex] = 938c²
equ 1 becomes
938c² = γ494c²
γ = 938c²/494c² = 1.89
γ = [tex]\frac{1}{\sqrt{1 - \beta ^{2} } }[/tex] = 1.89
1.89[tex]\sqrt{1 - \beta ^{2} }[/tex] = 1
squaring both sides, we get
3.57( 1 - [tex]\beta^{2}[/tex]) = 1
3.57 - 3.57[tex]\beta^{2}[/tex] = 1
2.57 = 3.57[tex]\beta^{2}[/tex]
[tex]\beta^{2}[/tex] = 2.57/3.57 = 0.72
[tex]\beta = \sqrt{0.72}[/tex] = 0.85
but, [tex]\beta = \frac{v}{c}[/tex]
v/c = 0.85
v = 0.85c
Wind gusts create ripples on the ocean that have a wavelength of 3.03 cm and propagate at 3.37 m/s. What is their frequency (in Hz)?
Answer:
Their frequency is 111.22 Hz
Explanation:
Wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration and is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).
The propagation speed of a wave is the quantity that measures the speed at which the wave's disturbance propagates throughout its displacement. The speed at which the wave propagates depends on both the type of wave and the medium through which it propagates. Relate wavelength (λ) and frequency (f) inversely proportional using the following equation:
v = f * λ.
Then the frequency can be calculated as: f=v÷λ
In this case:
λ=3.03 cm=0.0303 m (1m=100 cm)v= 3.37 m/sReplacing:
[tex]f=\frac{3.37 \frac{m}{s} }{0.0303 m}[/tex]
Solving:
f=111.22 Hz
Their frequency is 111.22 Hz
In a high school swim competition, a student takes 1.6 s to complete 1.5 somersaults. Determine the average angular speed of the diver, in rad/s, during this time interval.
Answer:
The angular speed is [tex]w = 5.89 \ rad/s[/tex]
Explanation:
From the question we are told that
The time taken is [tex]t = 1.6 s[/tex]
The number of somersaults is n = 1.5
The total angular displacement during the somersault is mathematically represented as
[tex]\theta = n * 2 * \pi[/tex]
substituting values
[tex]\theta = 1.5 * 2 * 3.142[/tex]
[tex]\theta = 9.426 \ rad[/tex]
The angular speed is mathematically represented as
[tex]w = \frac{\theta }{t}[/tex]
substituting values
[tex]w = \frac{9.426}{1.6}[/tex]
[tex]w = 5.89 \ rad/s[/tex]
find the value of k for which the given pair of vectors are not equal
2ki +3j and 8i + 4kj
Answer:
5
Explanation:
Consider a skateboarder who starts from rest at the top of ramp that is inclined at an angle of 18.0 ∘ to the horizontal.
Assuming that the skateboarder's acceleration is gsin 18.0 ∘, find his speed when he reaches the bottom of the ramp in 3.50 s .
Answer:
Explanation:
v= u + at
v is final velocity , u is initial velocity . a is acceleration and t is time
Initial velocity u = 0 . Putting the given values in the equation
v = 0 + g sin 18 x 3.5
= 10.6 m /s
For a skateboarder who starts from the rest, the speed when he reaches the bottom of the ramp will be 10.6 m/s.
What are Velocity and Acceleration?The term "velocity" refers to a vector measurement of the rate and direction of motion. Velocity is the rate of movement in a single direction, to put it simply. Velocity can be used to determine how fast a rocket is heading into space and how fast a car is moving north on a congested motorway.
There are several types of velocity :
Instantaneous velocityAverage VelocityUniform VelocityNon-Uniform VelocityThe pace at which a person's velocity changes is known as acceleration. This implies that an object is accelerating if its velocity is rising or falling. An object that is accelerating won't have a steady change in location every second like an item moving at a constant speed does.
According to the question, the given values are :
Time, t = 3.50 sec
Initial Velocity, u = 0 m/s
Use equation of motion :
v = u+at
v = 0+ g sin 18 × 3.5
v = 10.6 m/s.
So, the final velocity will be 10.6 m/s.
To get more information about Velocity and Acceleration :
https://brainly.com/question/14683118
#SPJ2
Four identical charges particles of charge 1Uc, 2Uc,
3Uc and 4Uc
are placed at x = lm, x=2m,
x=3m and
x=5m. The electric field intensity
at origin is?
Answer:
17.94 kN/C is the electric field intensity at the origin due to the charges.
Explanation:
From the question, we are told that
The distance of 1 μC from origin = 1 m
The distance of 2 μC from origin = 2 m
The distance of 3 μC from origin = 3 m
The distance of 4 μC from origin = 5 m
Therefore, for us to find the electric field intensity, we'll solve below:
The formula for Electric field intensity = ( k * q ) / ( r * r )
where , r is distance ,
k = 9 * 10^9 ,
and , q is charge .
now ,
electric field intensity at the origin = [ k * 10^(-6) / 1 * 1 ] +[ k * 2 * 10^(-6) / 2 * 2 ] + [ k * 3 * 10^(-6) / 3 * 3 ] + [ k * 4 * 10^(-6) / 5 * 5 ]
=> electric field intensity at the origin = k * 10^(-6) [ 1 + 1/2 + 1/3 + 4/25 ] N/C
=> electric field intensity at the origin = 9 * 10^9 * 10^(-6) * 1.99 N/C
=> electric field intensity at the origin = 17.94 kN/C
A medieval city has the shape of a square and is protected by walls with length 500 m and height 15 m. You are the commander of an attacking army and the closest you can get to the wall is 100 m. Your plan is to set fire to the city by catapulting heated rocks over the wall (with an initial speed of 80 m/s). At what range of angles should you tell your men to set the catapult? (Assume the path of the rocks is perpendicular to the wall. Round your answers to one decimal place. Use g ≈ 9.8 m/s2. Enter your answer using interval notation. Enter your answer in terms of degrees without using a degree symbol.)
Answer:
θ₁ = 85.5º θ₂ = 12.98º
Explanation:
Let's analyze this projectile launch problem, the catapults are 100 m from the wall 15 m high, the objective is for the walls, let's look for the angles for which the rock stops touching the wall.
Let's write the equations for motion for this point
X axis
x = v₀ₓ t
x = v₀ cos θ t
Y axis
y = [tex]v_{oy}[/tex] t - ½ g t2
y = v_{o} sin θ t - ½ g t²
let's substitute the values
100 = 80 cos θ t
15 = 80 sin θ t - ½ 9.8 t²
we have two equations with two unknowns, so the system can be solved
let's clear the time in the first equation
t = 100/80 cos θ
15 = 80 sin θ (10/8 cos θ) - 4.9 (10/8 cos θ)²
15 = 100 tan θ - 7.656 sec² θ
we can use the trigonometric relationship
sec² θ = 1- tan² θ
we substitute
15 = 100 tan θ - 7,656 (1- tan² θ)
15 = 100 tan θ - 7,656 + 7,656 tan² θ
7,656 tan² θ + 100 tan θ -22,656=0
let's change variables
tan θ = u
u² + 13.06 u + 2,959 = 0
let's solve the quadratic equation
u = [-13.06 ±√(13.06² - 4 2,959)] / 2
u = [13.06 ± 12.599] / 2
u₁ = 12.8295
u₂ = 0.2305
now we can find the angles
u = tan θ
θ = tan⁻¹ u
θ₁ = 85.5º
θ₂ = 12.98º
Given that the velocity of blood pumping through the aorta is about 30 cm/s, what is the total current of the blood passing through the aorta (in grams of blood per second)?
Answer:
94.248 g/sec
Explanation:
For solving the total current of the blood passing first we have to solve the cross sectional area which is given below:
[tex]A_1 = \pi R^2\\\\A_1 = \pi (1)^2\\\\A_1 = 3.1416 cm^2[/tex]
And, the velocity of blood pumping is 30 cm^2
Now apply the following formula to solve the total current
[tex]Q = \rho A_1V_1\\\\Q = (1)(3.1416)(30)\\\\[/tex]
Q = 94.248 g/sec
Basically we applied the above formula So, that the total current could come