A uniform thin rod of mass ????=3.41 kg pivots about an axis through its center and perpendicular to its length. Two small bodies, each of mass m=0.249 kg , are attached to the ends of the rod. What must the length L of the rod be so that the moment of inertia of the three-body system with respect to the described axis is ????=0.929 kg·m2 ?

Answers

Answer 1

Answer:

The length of the rod for the condition on the question to be met is [tex]L = 1.5077 \ m[/tex]

Explanation:

The  Diagram for this  question is  gotten from the first uploaded image  

From the question we are told that

          The mass of the rod is [tex]M = 3.41 \ kg[/tex]

           The mass of each small bodies is  [tex]m = 0.249 \ kg[/tex]

           The moment of inertia of the three-body system with respect to the described axis is   [tex]I = 0.929 \ kg \cdot m^2[/tex]

             The length of the rod is  L  

     Generally the moment of inertia of this three-body system with respect to the described axis can be mathematically represented as

        [tex]I = I_r + 2 I_m[/tex]

Where  [tex]I_r[/tex] is the moment of inertia of the rod about the describe axis which is mathematically represented as  

        [tex]I_r = \frac{ML^2 }{12}[/tex]

And   [tex]I_m[/tex] the  moment of inertia of the two small bodies which (from the diagram can be assumed as two small spheres) can be mathematically represented  as

           [tex]I_m = m * [\frac{L} {2} ]^2 = m* \frac{L^2}{4}[/tex]

Thus  [tex]2 * I_m = 2 * m \frac{L^2}{4} = m * \frac{L^2}{2}[/tex]

Hence

       [tex]I = M * \frac{L^2}{12} + m * \frac{L^2}{2}[/tex]

=>   [tex]I = [\frac{M}{12} + \frac{m}{2}] L^2[/tex]

substituting vales  we have  

        [tex]0.929 = [\frac{3.41}{12} + \frac{0.249}{2}] L^2[/tex]

       [tex]L = \sqrt{\frac{0.929}{0.40867} }[/tex]

      [tex]L = 1.5077 \ m[/tex]

     

A Uniform Thin Rod Of Mass ????=3.41 Kg Pivots About An Axis Through Its Center And Perpendicular To

Related Questions

An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled downward and then released, it vibrates vertically. The equation of motion is s = 9 cos(t) + 9 sin(t), t ≥ 0, where s is measured in centimeters and t in seconds. (Take the positive direction to be downward.) (a) Find the velocity and acceleration at time t.

Answers

Answer:

v(t) = s′(t) = −9sin(t)+9cos(t)

a(t) = v′(t) = −9cos(t) −9sin(t)

Explanation:

Given that

s = 9 cos(t) + 9 sin(t), t ≥ 0

Then acceleration and velocity is

v(t) = s′(t) = −9sin(t)+9cos(t)

a(t) = v′(t) = −9cos(t) −9sin(t)

Alternating Current In Europe, the voltage of the alternating current coming through an electrical outlet can be modeled by the function V 230 sin (100t), where tis measured in seconds and Vin volts.What is the frequency of the voltage

Answers

Answer:

[tex]\frac{50}{\pi }[/tex]Hz

Explanation:

In alternating current (AC) circuits, voltage (V) oscillates in a sine wave pattern and has a general equation as a function of time (t) as follows;

V(t) = V sin (ωt + Ф)            -----------------(i)

Where;

V = amplitude value of the voltage

ω = angular frequency = 2 π f        [f = cyclic frequency or simply, frequency]

Ф = phase difference between voltage and current.

Now,

From the question,

V(t) = 230 sin (100t)              ---------------(ii)

By comparing equations (i) and (ii) the following holds;

V = 230

ω = 100

Ф = 0

But;

ω = 2 π f = 100

2 π f = 100             [divide both sides by 2]

π f = 50

f = [tex]\frac{50}{\pi }[/tex]Hz

Therefore, the frequency of the voltage is [tex]\frac{50}{\pi }[/tex]Hz

A cylindrical shell of radius 7.00 cm and length 2.21 m has its charge uniformly distributed on its curved surface. The magnitude of the electric field at a point 15.2 cm radially outward from its axis (measured from the midpoint of the shell) is 36.0 kN/C. (a) Find the net charge on the shell.

Answers

Answer:

The net charge on the shell is 30x10^-9C

Explanation:

Pls see attached file

The compressor of an air conditioner draws an electric current of 16.2 A when it starts up. If the start-up time is 1.45 s long, then how much electric charge passes through the circuit during this period

Answers

Answer:

Q = 23.49 C

Explanation:

We have,

Electric current drawn by the air conditioner is 16.2 A

Time, t = 1.45 s

It is required to find the electric charge passes through the circuit during this period. We know that electric current is defined as the electric charge flowing per unit time. So,

[tex]I=\dfrac{q}{t}\\\\q=It\\\\q=16.2\times 1.45\\\\q=23.49\ C[/tex]

So, the charge of 23.49 C is passing through the circuit during this period.

At what temperature will silver have a resistivity that is two times the resistivity of iron at room temperature? (Assume room temperature is 20° C.)

Answers

Answer:

The temperature of silver at this given resistivity is 2971.1 ⁰C

Explanation:

The resistivity of silver is calculated as follows;

[tex]R_t = R_o[1 + \alpha(T-T_o)]\\\\[/tex]

where;

Rt is the resistivity of silver at the given temperature

Ro is the resistivity of silver at room temperature

α is the temperature coefficient of resistance

To is the room temperature

T is the temperature at which the resistivity of silver will be two times the resistivity of iron at room temperature

[tex]R_t = R_o[1 + \alpha(T-T_o)]\\\\\R_t = 1.59*10^{-8}[1 + 0.0038(T-20)][/tex]

Resistivity of iron at room temperature = 9.71 x 10⁻⁸ ohm.m

When silver's resistivity becomes 2 times the resistivity of iron, we will have the following equations;

[tex]R_t,_{silver} = 2R_o,_{iron}\\\\1.59*10^{-8}[1 + 0.0038(T-20)] =(2 *9.71*10^{-8})\\\\\ \ (divide \ through \ by \ 1.59*10^{-8})\\\\1 + 0.0038(T-20) = 12.214\\\\1 + 0.0038T - 0.076 = 12.214\\\\0.0038T +0.924 = 12.214\\\\0.0038T = 12.214 - 0.924\\\\0.0038T = 11.29\\\\T = \frac{11.29}{0.0038} \\\\T = 2971.1 \ ^0C[/tex]

Therefore, the temperature of silver at this given resistivity is 2971.1 ⁰C

What is the change in internal energy of an engine if you put 15 gallon of gasoline into its tank? The energy content of gasoline is 1.5 x 106 J/gallon. All other factors, such as the engine’s temperature, are constant. How many hours the engine can work if the power of the engine’s motor is 600 W? (8 marks)

Answers

Answer:

ΔU = 2.25 x 10⁸ J

t = 104.17 s

Explanation:

The change in internal energy of the engine can be given by the following formula:

ΔU = (Mass of Gasoline)(Energy Content of Gasoline)

ΔU = (1.5 x 10⁶ J/gallon)(15 gallon)

ΔU = 2.25 x 10⁸ J

Now, for the time of operation, we use the following formula of power.

P = W/t = ΔU/t

t = ΔU/P

where,

t = time of operation = ?

ΔU = Change in internal energy = 2.25 x 10⁸ J

P = Power of motor = 600 W

Therefore,

t = (2.25 x 10⁸ J)/(600 W)

t = (375000 s)(1 h/3600 s)

t = 104.17 s

An electron, moving west, enters a magnetic field of a certain strength. Because of this field the electron curves upward. What is the direction of the magnetic field?

Answers

Answer:

Towards the west.

Explanation:

The direction of a magnetic field lines is the direction north end of a compass needle points. The magnetic field exert force on positive charge.

Using the magnetic rule,which indicate that in order to find the direction of magnetic force on a moving charge, the thumb of the right hand point in the direction of force, the index finger in the direction of velocity charge and the middle finger in the direction of magnetic field.

According to the right hand rule, the electron moving moving west which is the thumb, the direction of the electron is west which is the middle finger and it is upward

2. A pair of narrow, parallel slits sep by 0.25 mm is illuminated by 546 nm green light. The interference pattern is observed on a screen situated at 1.3 m away from the slits. Calculate the distance from the central maximum to the

Answers

Answer:

for the first interference m = 1   y = 2,839 10-3 m

for the second interference m = 2   y = 5,678 10-3 m

Explanation:

The double slit interference phenomenon, for constructive interference is described by the expression

                d sin θ = m λ

where d is the separation between the slits, λ the wavelength and m an integer that corresponds to the interference we see.

In these experiments in general the observation screen is L >> d, let's use trigonometry to find the angles

           tan θ = y / L

with the angle it is small,

          tan θ = sin θ / cos θ = sin θ

   

we substitute

         sin θ = y / L

         d y / L = m λ

the distance between the central maximum and an interference line is

        y = m λ L / d

let's reduce the magnitudes to the SI system

     λ = 546 nm = 546 10⁻⁹ m

     d = 0.25 mm = 0.25 10⁻³ m

let's substitute the values

      y = m 546 10⁻⁹ 1.3 / 0.25 10⁻³

      y =  m 2,839 10⁻³

the explicit value for a line depends on the value of the integer m, for example

for the first interference m = 1

the distance from the central maximum to the first line is y = 2,839 10-3 m

for the second interference m = 2

the distance from the central maximum to the second line is y = 5,678 10-3 m

A positive kaon (K+) has a rest mass of 494 MeV/c² , whereas a proton has a rest mass of 938 MeV/c². If a kaon has a total energy that is equal to the proton rest energy, the speed of the kaon is most nearly:___________.
A. 0.25c
B. 0.40c
C. 0.55c
D. 0.70c
E. 0.85c

Answers

Answer:

0.85c

Explanation:

Rest mass of Kaon [tex]M_{0K}[/tex] = 494 MeV/c²

Rest mass of proton [tex]M_{0P}[/tex]  = 938 MeV/c²

The rest energy is gotten by multiplying the rest mass by the square of the speed of light c²

for the kaon, rest energy [tex]E_{0K}[/tex] = 494c² MeV

for the proton, rest energy [tex]E_{0P}[/tex] = 938c² MeV

Recall that the rest energy, and the total energy are related by..

[tex]E[/tex] = γ[tex]E_{0}[/tex]

which can be written in this case as

[tex]E_{K}[/tex] = γ[tex]E_{0K}[/tex] ...... equ 1

where [tex]E[/tex] = total energy of the kaon, and

[tex]E_{0}[/tex] = rest energy of the kaon

γ = relativistic factor = [tex]\frac{1}{\sqrt{1 - \beta ^{2} } }[/tex]

where [tex]\beta = \frac{v}{c}[/tex]

But, it is stated that the total energy of the kaon is equal to the rest mass of the proton or its equivalent rest energy, therefore...

[tex]E_{K}[/tex] = [tex]E_{0P}[/tex] ......equ 2

where [tex]E_{K}[/tex] is the total energy of the kaon, and

[tex]E_{0P}[/tex] is the rest energy of the proton.

From [tex]E_{K}[/tex] = [tex]E_{0P}[/tex] = 938c²    

equ 1 becomes

938c² = γ494c²

γ = 938c²/494c² = 1.89

γ = [tex]\frac{1}{\sqrt{1 - \beta ^{2} } }[/tex] = 1.89

1.89[tex]\sqrt{1 - \beta ^{2} }[/tex] = 1

squaring both sides, we get

3.57( 1 - [tex]\beta^{2}[/tex]) = 1

3.57 - 3.57[tex]\beta^{2}[/tex] = 1

2.57 = 3.57[tex]\beta^{2}[/tex]

[tex]\beta^{2}[/tex] = 2.57/3.57 = 0.72

[tex]\beta = \sqrt{0.72}[/tex] = 0.85

but, [tex]\beta = \frac{v}{c}[/tex]

v/c = 0.85

v = 0.85c

Wind gusts create ripples on the ocean that have a wavelength of 3.03 cm and propagate at 3.37 m/s. What is their frequency (in Hz)?

Answers

Answer:

Their frequency is 111.22 Hz

Explanation:

Wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration and is expressed in units of length (m).

Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).

The propagation speed of a wave is the quantity that measures the speed at which the wave's disturbance propagates throughout its displacement. The speed at which the wave propagates depends on both the type of wave and the medium through which it propagates. Relate wavelength (λ) and frequency (f) inversely proportional using the following equation:

v = f * λ.

Then the frequency can be calculated as: f=v÷λ

In this case:

λ=3.03 cm=0.0303 m (1m=100 cm)v= 3.37 m/s

Replacing:

[tex]f=\frac{3.37 \frac{m}{s} }{0.0303 m}[/tex]

Solving:

f=111.22 Hz

Their frequency is 111.22 Hz

In a high school swim competition, a student takes 1.6 s to complete 1.5 somersaults. Determine the average angular speed of the diver, in rad/s, during this time interval.

Answers

Answer:

The  angular speed is [tex]w = 5.89 \ rad/s[/tex]

Explanation:

From the question we are told that

    The time taken is  [tex]t = 1.6 s[/tex]

    The number of somersaults  is n  =  1.5

The total angular displacement during the somersault is mathematically represented as

         [tex]\theta = n * 2 * \pi[/tex]

substituting values

        [tex]\theta = 1.5 * 2 * 3.142[/tex]

       [tex]\theta = 9.426 \ rad[/tex]

 The angular speed is mathematically represented as

         [tex]w = \frac{\theta }{t}[/tex]

substituting values

         [tex]w = \frac{9.426}{1.6}[/tex]

          [tex]w = 5.89 \ rad/s[/tex]

     

find the value of k for which the given pair of vectors are not equal
2ki +3j​ and 8i + 4kj

Answers

Answer:

5

Explanation:

Consider a skateboarder who starts from rest at the top of ramp that is inclined at an angle of 18.0 ∘ to the horizontal.
Assuming that the skateboarder's acceleration is gsin 18.0 ∘, find his speed when he reaches the bottom of the ramp in 3.50 s .

Answers

Answer:

Explanation:

v= u + at

v is final velocity , u is initial velocity . a is acceleration and t is time

Initial velocity u = 0 . Putting the given values in the equation

v = 0 + g sin 18 x 3.5

= 10.6 m /s

For a skateboarder who starts from the rest, the speed when he reaches the bottom of the ramp will be 10.6 m/s.

What are Velocity and Acceleration?

The term "velocity" refers to a vector measurement of the rate and direction of motion. Velocity is the rate of movement in a single direction, to put it simply. Velocity can be used to determine how fast a rocket is heading into space and how fast a car is moving north on a congested motorway.

There are several types of velocity :

Instantaneous velocityAverage VelocityUniform VelocityNon-Uniform Velocity

The pace at which a person's velocity changes is known as acceleration. This implies that an object is accelerating if its velocity is rising or falling. An object that is accelerating won't have a steady change in location every second like an item moving at a constant speed does.

According to the question, the given values are :

Time, t = 3.50 sec

Initial Velocity, u = 0 m/s

Use equation of motion :

v = u+at

v = 0+ g sin 18 × 3.5

v = 10.6 m/s.

So, the final velocity will be 10.6 m/s.

To get more information about Velocity and Acceleration :

https://brainly.com/question/14683118

#SPJ2

Four identical charges particles of charge 1Uc, 2Uc,
3Uc and 4Uc
are placed at x = lm, x=2m,
x=3m and
x=5m. The electric field intensity
at origin is?

Answers

Answer:

17.94 kN/C is the electric field intensity at the origin due to the charges.

Explanation:

From the question, we are told that

The distance of 1 μC from origin = 1 m

The distance of 2 μC from origin = 2 m

The distance of 3 μC from origin = 3 m

The distance of 4 μC from origin = 5 m

Therefore, for us to find the electric field intensity, we'll solve below:

The formula for Electric field intensity = ( k * q ) / ( r * r )

where , r is distance ,

k = 9 * 10^9 ,

and , q is charge .

now ,

electric field intensity at the origin = [ k * 10^(-6) / 1 * 1 ] +[ k * 2 * 10^(-6) / 2 * 2 ] + [ k * 3 * 10^(-6) / 3 * 3 ] + [ k * 4 * 10^(-6) / 5 * 5 ]

=> electric field intensity at the origin = k * 10^(-6) [ 1 + 1/2 + 1/3 + 4/25 ] N/C

=> electric field intensity at the origin = 9 * 10^9 * 10^(-6) * 1.99 N/C

=> electric field intensity at the origin = 17.94 kN/C

A medieval city has the shape of a square and is protected by walls with length 500 m and height 15 m. You are the commander of an attacking army and the closest you can get to the wall is 100 m. Your plan is to set fire to the city by catapulting heated rocks over the wall (with an initial speed of 80 m/s). At what range of angles should you tell your men to set the catapult? (Assume the path of the rocks is perpendicular to the wall. Round your answers to one decimal place. Use g ≈ 9.8 m/s2. Enter your answer using interval notation. Enter your answer in terms of degrees without using a degree symbol.)

Answers

Answer:

  θ₁ = 85.5º       θ₂ = 12.98º

Explanation:

Let's analyze this projectile launch problem, the catapults are 100 m from the wall 15 m high, the objective is for the walls, let's look for the angles for which the rock stops touching the wall.

Let's write the equations for motion for this point

X axis

          x = v₀ₓ t

          x = v₀ cos θ t

Y axis

         y = [tex]v_{oy}[/tex] t - ½ g t2

         y = v_{o} sin θ t - ½ g t²

let's substitute the values

         100 = 80 cos θ t

           15 = 80 sin θ t - ½ 9.8 t²

we have two equations with two unknowns, so the system can be solved

let's clear the time in the first equation

           t = 100/80 cos θ

         15 = 80 sin θ (10/8 cos θ) - 4.9 (10/8 cos θ)²

         15 = 100  tan θ - 7.656 sec² θ

we can use the trigonometric relationship

         sec² θ = 1- tan² θ

we substitute

       15 = 100 tan θ - 7,656 (1- tan² θ)

       15 = 100 tan θ - 7,656 + 7,656 tan² θ

        7,656 tan² θ + 100 tan θ -22,656=0

let's change variables

       tan θ = u

         

        u² + 13.06 u + 2,959 = 0

let's solve the quadratic equation

       u = [-13.06 ±√(13.06² - 4  2,959)] / 2

       u = [13.06 ± 12.599] / 2

        u₁ = 12.8295

        u₂ = 0.2305

now we can find the angles

         u = tan θ

         θ = tan⁻¹ u

        θ₁ = 85.5º

         θ₂ = 12.98º

Given that the velocity of blood pumping through the aorta is about 30 cm/s, what is the total current of the blood passing through the aorta (in grams of blood per second)?

Answers

Answer:

94.248 g/sec

Explanation:

For solving the total current of the blood passing first we have to solve the cross sectional area which is given below:

[tex]A_1 = \pi R^2\\\\A_1 = \pi (1)^2\\\\A_1 = 3.1416 cm^2[/tex]

And, the velocity of blood pumping is 30 cm^2

Now apply the following formula to solve the total current

[tex]Q = \rho A_1V_1\\\\Q = (1)(3.1416)(30)\\\\[/tex]

Q =  94.248 g/sec

Basically we applied the above formula So, that the total current could come

Other Questions
mo1.[tex] \frac{5}{10} \div \frac{3}{2} [/tex] Please help me find the answer ASAP literally a free 50 points, just need the answer, What is the solution to the equation fraction 4 over 5 n minus fraction 1 over 5 equals fraction 2 over 5 n? Please Show Work So I Can Grasp The Concept the diagram shows a right angled triangle use pythagoras theorem to work out length of side ac Another term for genocide is ethnic ___ . In 1998, as an advertising campaign, the Nabisco Company announced a "1000 Chips Challenge," claiming that every 18-ounce bag of their Chips Ahoy cookies contained at least 1000 chocolate chips. Dedicated statistics students at the Air Force Academy (no kidding) purchased some randomly selected bags of cookies and counted the chocolate chips. Some of their data are given below. 1219 1214 1087 1200 1419 1121 1325 1345 1244 1258 1356 1132 1191 1270 1295 1135 Find a 95% confidence interval for the mean number of chips in a bag of Chips Ahoy Cookies. can some body help me plz The points plotted below satisfy a polynomial. In what ranges of x-values must there be a root of the graph? Check all that apply. I will mark brainliest! Regular exercise can NOT prevent, delay, or reduce __________. A. diabetes B. arthritis C. skin cancer D. heart disease ullbright Company sold goods to Blue Dirt Company for $400,000 in exchange for a 4-year, zero-interest-bearing note with a face amount of $629,406 (imputed rate of 12%). The goods have an inventory cost on Fullbrights books of $240,000. What amount of Sales Revenue should Fullbright recognize in 2017? Fill in the blank with the most appropriate verb.Mi hermanocomer pollo asado anoche.A. perdiB. prefiriC. pierdeD. prefiere Siblings Jacob and Lana love playing video games, but they only own one gaming console. Their father tells them to be fair and take turns, but Jacob ignores his sister's requests to play. Jacob only lets his sister play when their father intervenes and punishes Jacob for not sharing. Jacob's behavior best fits which of Kohlberg's stages? 1. Preconventional Stage 2. Conventional Stage 3. Postconventional Stage 4. None of the above In what ways are fats and steroids similar to each other, and in what ways are they different? Fats and steroids are both hydrophilic lipids, but fats help with metabolism while steroids provide insulation. Fats and steroids are both hydrophobic lipids, but fats serve as energy while steroids serve as hormones. Steroids contain a four-carbon ring while fats consist of glycerol and fatty acids, but both are proteins. Steroids help with transport while fats store energy, but both are proteins. Transcultural global ethics always maintains the value of human rights. Have Googles operations been consistent with the value of human rights? Carlos esta tratando de decidir que carrera estudiar en la universidad. Cual es la pregunta mas importante A suicidal client with a history of one manic episode is admitted to the emergency room. The client's diagnosis is documented as bipolar 1 disorder, current episode depressed. What is the rationale for this diagnosis instead of a diagnosis of major depressive disorder 2) Find the diameter.4) If the diameter is equal to 3 inches ,d= What was the significance of the Battle of Baltimore? 1.It ended the War of 1812. 2.It was a needed victory after the burning of Washington, DC. 3.It led to the death of Francis Scott Key. 4.It proved the resourcefulness of Rogerss Rangers. What is the value of X in equation? 1/3 X - 2/3 = - 18