Which of the following emissions is associated with burning coal? a. sulfur dioxide b. carbon dioxide c. nitrous oxides d. all of the above

Answers

Answer 1

Answer:

all of the above

Explanation:

because it is.


Related Questions

g A point mass of 1.5kg is attached to a spring and set to oscillate through simple harmonic oscillations. If the period of the oscillation is 10s, find the spring constant.

Answers

Answer:

k = 0.6 N/m

Explanation:

The time period of a spring mass oscillation system is given by the following formula:

T = 2π√(m/k)

where,

T = Time Period of Oscillation = 10 s

m = Mass attached to the spring = 1.5 kg

k = spring constant = ?

Therefore,

10 s = 2π√(1.5 kg/k)

squaring on both sides we get:

100 s² = 4π²(1.5 kg/k)

k = 6π² kg/100 s²

k = 0.6 N/m

As an ice skater begins a spin, his angular speed is 3.14 rad/s. After pulling in his arms, his angular speed increases to 5.94 rad/s. Find the ratio of teh skater's final momentum of inertia to his initial momentum of inertia.

Answers

Answer:

I₂/I₁ = 0.53

Explanation:

During the motion the angular momentum of the skater remains conserved. Therefore:

Angular Momentum of Skater Before Pulling Arms = Angular Momentum of Skater After Pulling Arms

L₁ = L₂

but, the formula for angular momentum is:

L = Iω

Therefore,

I₁ω₁ = I₂ω₂

I₂/I₁ = ω₁/ω₂

where,

I₁ = Initial Moment of Inertia

I₂ = Final Moment of Inertia

ω₁ = Initial Angular Velocity = 3.14 rad/s

ω₂ = Final Angular velocity = 5.94 rad/s

Therefore,

I₂/I₁ = (3.14 rad/s)/(5.94 rad/s)

I₂/I₁ = 0.53

Two moons orbit a planet in nearly circular orbits. Moon A has orbital radius r, and moon B has orbital radius 16r. Moon A takes 10 days to complete one orbit. How long does it take moon B to complete an orbit

Answers

Answer:  

Kepler's Third Law:  The square of the period of any planet about the sun is proportional to cube of its mean distance from the sun.

Mathematically:  T^2 = K R^3

So  (TA / TB)^2 = (RA / RB)^3

TB^2 = TA^2 * (RB / RA)^3

TB^2 = 10^2 * 16^3

TB = (409600)^1/2 = 640 days

Find the length (in m) of an organ pipe closed at one end that produces a fundamental frequency of 175 Hz when air temperature is 18.0°C

Answers

Answer:

Length = 0.4882 m

Explanation:

given data

fundamental frequency = 175 Hz

air temperature = 18.0°C

solution

we will apply here fundamental frequency formula that is

F = [tex]\frac{v}{4L}[/tex]      ....................1

here v =   [tex]331 \sqrt{1+\frac{T}{273}}[/tex]  

here 331 m/s is speed of sound in air

so v =  [tex]331 \sqrt{1+\frac{18}{273}}[/tex]   = 341.74 m/s

now put value in equation 1 we get

F = [tex]\frac{v}{4L}[/tex]

[tex]175 = \frac{341.74}{4L}[/tex]  

Length = 0.4882 m

A small glass bead charged to 8.0 nC is in the plane that bisects a thin, uniformly charged, 10-cm long glass rod and is 4.0 cm from the rod's center. The bead is repelled from the rod with a force of 940 μN.

Required:
What is the total charge on the rod?

Answers

Answer:

71nC is the total charge of the rod

Explanation:

See attached file

The total charge on the rod is equal to 3.3 × 10⁻⁸ C.

What is the force on a charge in an electric field?

The force on the charge in a uniform electric field E is given by:

F = qE    where q is charge in coulombs

The electric field due to the charge associated with the rod is given by:

[tex]E =\frac{kQ}{r\sqrt{r+\frac{L^2}{4} } }[/tex]

Where r is the distance between the bead and the rod, L is the length of the glass rod and Q is the charge on the rod.

The force experienced by the bead charged is,

[tex]F =\frac{kqQ}{r\sqrt{r+\frac{L^2}{4} } }[/tex]

From the above equation, we can find the value of Q as:

[tex]Q =\frac{Fr\sqrt{r+\frac{L^2}{4} } }{kq}[/tex]

Given, the value of force, F = 940μN = 940 ×10⁻⁹ C

The length of glass rod, L = 10cm = 0.1 m and r = 4cm = 0.04 m

[tex]Q =\frac{(940\times 10^{-6}N)(0.04m)\sqrt{(0.04m)+\frac{(0.1m)^2}{4} } }{(8.99\times 10^9 N.m^2/C^2)(8\times 10^{-9}C)}[/tex]

[tex]Q= 0.5228\times 10^{-6}\times\sqrt{0.0041}[/tex]

[tex]Q = 3.3\times 10^{-8} C[/tex]

Therefore, the total charge on the rod is  3.3 × 10⁻⁸ C.

Learn more about the force on a charge, here:

https://brainly.com/question/22042360

#SPJ5

A uniform 2.0-kg rod that is 0.92 m long is suspended at rest from the ceiling by two springs, one at each end. Both springs hang straight down from the ceiling. The springs have identical lengths when they are unstretched. Their spring constants are 29 N/m and 66 N/m. Find the angle that the rod makes with the horizontal.

Answers

Answer:

11.7°

Explanation:

See attached file

A 1.53-kg piece of iron is hung by a vertical ideal spring. When perturbed slightly, the system is moves up and down in simple harmonic oscillations with a frequency of 1.95 Hz and an amplitude of 7.50 cm. If we choose the total potential energy (elastic and gravitational) to be zero at the equilibrium position of the hanging iron, what is the total mechanical energy of the system

Answers

Answer:

E = 0.645J

Explanation:

In order to calculate the total mechanical energy of the system, you take into account that if the zero of energy is at the equilibrium position, then the total mechanical energy is only the elastic potential energy of the spring.

You use the following formula:

[tex]E=U_e=\frac{1}{2}kA^2[/tex]         (1)

k: spring constant = ?

A: amplitude of the oscillation = 7.50cm = 0.075m

The spring constant is given by:

[tex]f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}[/tex]

[tex]k=4\pi^2f^2m[/tex]         (2)

f: frequency of the oscillation = 1.95Hz

m: mass of the piece of iron = 1.53kg

You replace the expression (1) into the equation (2) and replace the values of all parameters:

[tex]E=\frac{1}{2}(4\pi^2f^2m)A^2=2\pi^2f^2mA^2\\\\E=2\pi^2(1.95Hz)^2(1.53kg)(0.075m)^2=0.645J[/tex]

The totoal mechanical energy of the system is 0.645J

A ball bouncing against the ground and rebounding is an example of an elastic collision. Describe two different methods of evaluating this interaction, one for which momentum is conserved, and one for which momentum is not conserved. Explain your answer.

Answers

Answer:

Momentum is conserved when there are no outside forced present and it has an equal and opposite reaction, also momentum is conserved the ball's momentum is transferred to the ground. This first instance is the case of a Closed system.

The second case where momentum is not conserved is when there is a variation or difference in the moment of the ball because of influence of external forces

A particle with a charge of 5 × 10–6 C and a mass of 20 g moves uniformly with a speed of 7 m/s in a circular orbit around a stationary particle with a charge of –5 × 10–6 C. The radius of the orbit is:

Answers

Answer:

r = 0.22m

Explanation:

To find the radius of the circular trajectory, you first take into account that the centripetal force of the charged particle, is equal to the electric force between the particle that is moving and the particle at the center of the orbit.

Then, you have:

[tex]F_c=F_e=ma_c[/tex]      (1)

m: mass of the particle = 20g = 20*10-3 kg

ac: centripetal acceleration = ?

q: charge of the particle = 5*10^-6C

Fe: electric force between the charges

The electric force is given by:

[tex]F_e=k\frac{qq'}{r^2}[/tex]             (2)

r: radius of the orbit

q': charge of the particle at the center of the orbit = -5*10^-6C

Furthermore, the centripetal acceleration is:

[tex]a_c=\frac{v^2}{r}[/tex]                 (3)

v: speed of the particle = 7m/s

You replace the expressions (2) and (3) in the equation (1) and solve for r:

[tex]k\frac{qq'}{r^2}=m\frac{v^2}{r}\\\\r=\frac{kqq'}{mv^2}[/tex]

Finally, you replace the values of all parameters in the previous expression:

[tex]r=\frac{(8.98*10^9Nm^2/C^2)(5*10^{-6}C)(5*10^{-6}C)}{(20*10^{-3}kg)(7m/s)^2}\\\\r=0.22m[/tex]

The radius of the circular trajectory is 0.22m

What must be the diameter of a cylindrical 120-m long metal wire if its resistance is to be ? The resistivity of this metal is 1.68 × 10-8 Ω • m.

Answers

Answer:

The  diameter is  [tex]d = 6.5 *10^{-4} \ m[/tex]

Explanation:

From the question we are told that

   The length of the cylinder is  [tex]l = 120 \ m[/tex]

     The resistance is  [tex]\ 6.0\ \Omega[/tex]

     The  resistivity of the metal is [tex]\rho = 1.68 *10^{-8} \ \Omega \cdot m[/tex]

Generally the resistance of the cylindrical wire is  mathematically represented as

         [tex]R = \rho \frac{l}{A }[/tex]

The cross-sectional area of the cylindrical wire is  

        [tex]A = \frac{\pi d^2}{4}[/tex]

Where  d is the diameter, so

         [tex]R = \rho \frac{l}{\frac{\pi d^2}{4 } }[/tex]

=>     [tex]d = \sqrt{ \rho* \frac{4 * l }{\pi * R } }[/tex]

       [tex]d = \sqrt{ 1.68 *10 ^{-8}* \frac{4 * 120 }{3.142 * 6 } }[/tex]

       [tex]d = 6.5 *10^{-4} \ m[/tex]

Calculate the flow rate of blood (of density 0.846 g/cm3 ) in an aorta with a crosssectional area of 1.36 cm2 if the flow speed is 48.5 cm/s. Answer in units of g/s.

Answers

Answer:

55.80 g/s

Explanation:

From the question,

Flow rate = density×Area×velocity.

φ = ρ×A×V................... Equation 1

Where φ = flow rate of blood, ρ = density of blood, A = cross sectional area of blood, V = velocity of blood.

Given: ρ = 0.846 g/cm³, A = 1.36 cm², V = 48.5 cm/s.

Substitute these values into equation 1

φ = 0.846×1.36×48.5

φ = 55.80 g/s

Hence, the flow rate of  the blood = 55.80 g/s

A 0.140-kg baseball is thrown with a velocity of 27.1 m/sIt is struck by the bat with an average force of 5000 N, which results in a velocity of 37.0 m/s in the opposite direction from the original velocity. How long were the bat and ball in contact?

Answers

Answer:

The bat and the ball were in contact for 1.8 x 10⁻³ s

Explanation:

Given;

mass of baseball, m = 0.14 kg

initial velocity of the baseball, u = 27.1 m/s

applied force in opposite direction, F = -5000 N

final velocity in opposite direction, v = -37 m/s

Note: The applied force and final velocity are negative because they act in opposite direction to the initial velocity.

impulse received by the body = change in momentum of the  body

Ft = Δmv

Ft = mv - mu

Ft = m(v-u)

t = m(v-u) / F

[tex]t = \frac{0.14(-37-27.1)}{-5000} \\\\t = \frac{0.14(-64.1)}{-5000} \\\\t = \frac{-8.974}{-5000} \\\\t = 0.0018 \ s\\\\t = 1.8*10^{-3} \ s[/tex]

Therefore, the bat and the ball were in contact for 1.8 x 10⁻³ s

Two 60.o-g arrows are fired in quick succession with an initial speed of 82.0 m/s. The first arrow makes an initial angle of 24.0° above the horizontal, and the second arrow is fired straight upward. Assume an isolated system and choose the reference configuration at the initial position of the arrows.
(a) what is the maximum height of each of the arrows?
(b) What is the total mechanical energy of the arrow-Earth system for each of the arrows at their maximum height?

Answers

Answer:

a) The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters, b) Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

Explanation:

a) The first arrow is launch in a parabolic way, that is, horizontal speed remains constant and vertical speed changes due to the effects of gravity. On the other hand, the second is launched vertically, which means that velocity is totally influenced by gravity. Let choose the ground as the reference height for each arrow. Each arrow can be modelled as particles and by means of the Principle of Energy Conservation:

First arrow

[tex]U_{g,1} + K_{x,1} + K_{y,1} = U_{g,2} + K_{x,2} + K_{y,2}[/tex]

Where:

[tex]U_{g,1}[/tex], [tex]U_{g,2}[/tex] - Initial and final gravitational potential energy, measured in joules.

[tex]K_{x,1}[/tex], [tex]K_{x,2}[/tex] - Initial and final horizontal translational kinetic energy, measured in joules.

[tex]K_{y,1}[/tex], [tex]K_{y,2}[/tex] - Initial and final vertical translational kinetic energy, measured in joules.

Now, the system is expanded and simplified:

[tex]m \cdot g \cdot (y_{2} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 2}^{2} -v_{y, 1}^{2}) = 0[/tex]

[tex]g \cdot (y_{2}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,2}^{2})[/tex]

[tex]y_{2}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,2}^{2}}{g}[/tex]

Where:

[tex]y_{1}[/tex]. [tex]y_{2}[/tex] - Initial and final height of the arrow, measured in meters.

[tex]v_{y,1}[/tex], [tex]v_{y,2}[/tex] - Initial and final vertical speed of the arrow, measured in meters.

[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.

The initial vertical speed of the arrow is:

[tex]v_{y,1} = v_{1}\cdot \sin \theta[/tex]

Where:

[tex]v_{1}[/tex] - Magnitude of the initial velocity, measured in meters per second.

[tex]\theta[/tex] - Initial angle, measured in sexagesimal degrees.

If [tex]v_{1} = 82\,\frac{m}{s}[/tex] and [tex]\theta = 24^{\circ}[/tex], the initial vertical speed is:

[tex]v_{y,1} = \left(82\,\frac{m}{s} \right)\cdot \sin 24^{\circ}[/tex]

[tex]v_{y,1} \approx 33.352\,\frac{m}{s}[/tex]

If [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{y,1} \approx 33.352\,\frac{m}{s}[/tex] and [tex]v_{y,2} = 0\,\frac{m}{s}[/tex], the maximum height of the first arrow is:

[tex]y_{2} - y_{1} = \frac{1}{2}\cdot \frac{\left(33.352\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }[/tex]

[tex]y_{2} - y_{1} = 56.712\,m[/tex]

Second arrow

[tex]U_{g,1} + K_{y,1} = U_{g,3} + K_{y,3}[/tex]

Where:

[tex]U_{g,1}[/tex], [tex]U_{g,3}[/tex] - Initial and final gravitational potential energy, measured in joules.

[tex]K_{y,1}[/tex], [tex]K_{y,3}[/tex] - Initial and final vertical translational kinetic energy, measured in joules.

[tex]m \cdot g \cdot (y_{3} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 3}^{2} -v_{y, 1}^{2}) = 0[/tex]

[tex]g \cdot (y_{3}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,3}^{2})[/tex]

[tex]y_{3}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,3}^{2}}{g}[/tex]

If [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{y,1} = 82\,\frac{m}{s}[/tex] and [tex]v_{y,3} = 0\,\frac{m}{s}[/tex], the maximum height of the first arrow is:

[tex]y_{3} - y_{1} = \frac{1}{2}\cdot \frac{\left(82\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }[/tex]

[tex]y_{3} - y_{1} = 342.816\,m[/tex]

The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters.

b) The total energy of each system is determined hereafter:

First arrow

The total mechanical energy at maximum height is equal to the sum of the potential gravitational energy and horizontal translational kinetic energy. That is to say:

[tex]E = U + K_{x}[/tex]

The expression is now expanded:

[tex]E = m\cdot g \cdot y_{max} + \frac{1}{2}\cdot m \cdot v_{x}^{2}[/tex]

Where [tex]v_{x}[/tex] is the horizontal speed of the arrow, measured in meters per second.

[tex]v_{x} = v_{1}\cdot \cos \theta[/tex]

If [tex]v_{1} = 82\,\frac{m}{s}[/tex] and [tex]\theta = 24^{\circ}[/tex], the horizontal speed is:

[tex]v_{x} = \left(82\,\frac{m}{s} \right)\cdot \cos 24^{\circ}[/tex]

[tex]v_{x} \approx 74.911\,\frac{m}{s}[/tex]

If [tex]m = 0.06\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]y_{max} = 56.712\,m[/tex] and [tex]v_{x} \approx 74.911\,\frac{m}{s}[/tex], the total mechanical energy is:

[tex]E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (56.712\,m)+\frac{1}{2}\cdot (0.06\,kg)\cdot \left(74.911\,\frac{m}{s} \right)^{2}[/tex]

[tex]E = 201.720\,J[/tex]

Second arrow:

The total mechanical energy is equal to the potential gravitational energy. That is:

[tex]E = m\cdot g \cdot y_{max}[/tex]

[tex]m = 0.06\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] and [tex]y_{max} = 342.816\,m[/tex]

[tex]E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (342.816\,m)[/tex]

[tex]E = 201.720\,J[/tex]

Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

A student is conducting an experiment that involves adding hydrochloric acid to various minerals to detect if they have carbonates in them. The student holds a mineral up and adds hydrochloric acid to it. The acid runs down the side and onto the student’s hand causing irritation and a minor burn. If they had done a risk assessment first, how would this situation be different? A. It would be the same, there is no way to predict the random chance of acid dripping off the mineral in a risk assessment. B. The student would have no injuries because he would know hydrochloric acid is dangerous and would be wearing gloves when using it. C. The student would be safer because he would have been wearing goggles, but his hand still would not have been protected. D. The student would not have picked up the mineral because he would know that some of the minerals have dangerous chemicals in them.

Answers

The answer would be D because it could have been prevented

By  the experiment "The student would have no injuries because he would know hydrochloric acid is dangerous and would be wearing gloves when using it. "

What is experiment ?

An experiment would be a technique used to confirm or deny a hypothesis, as well as assess the likelihood or effectiveness of something that has never been tried before.

What is hydrochloric acid?

Hydrochloric acid is a kind of compound in which hydrogen and chlorine element is present.

Maintain a safe distance between your hands and your body, mouth, eyes, as well as a face when utilizing lab supplies and chemicals.

By  the experiment "By  the experiment "The student would have no injuries because he would know hydrochloric acid is dangerous and would be wearing gloves when using it. "

To know more about experiment and hydrochloric acid

https://brainly.com/question/13770820

#SPJ3

An electric heater is constructed by applying a potential different of 120V across a nichrome wire that has a total resistant of 8 ohm .the current by the wire is

Answers

Answer:

15amps

Explanation:

V=IR

I=V/R

I = 120/8

I = 15 amps

How would the magnetic field lines appear for a bar magnet cut at the midpoint, with the two pieces placed end to end with a space in between such that the cut edges are closest to each other? What would the general shape of the field lines look like? What would the field lines look like in between the two pieces?

Answers

Answer:

Explanation:

check this out and rate me

There was a major collision of an asteroid with the Moon in medieval times. It was described by monks at Canterbury Cathedral in England as a red glow on and around the Moon. How long (in s) after the asteroid hit the Moon, which is 3.77 ✕ 105 km away, would the light first arrive on Earth?

Answers

Answer:

Explanation:

speed of light = 3 x 10⁸ m /s .

distance between moon and the earth = 3.77 x 10⁵  x 10³m .

Time taken by light to cover the distance

= distance / speed

= 3.77 x 10⁸ / 3 x 10⁸

= 1.256  s

When we describe electric flux, we say that a surface is oriented in a certain direction with respect to an electric field. When we try to calculate how much electric field passes through the surface, we make use of the:_________.
1. Wedge Product
2. Dot Product
3. Cross Product

Answers

Answer:

2. Dot Product

Explanation:

The calculation of the electric flux gives an scalar result.

When we tray to calculate how much electric field passes trough a surface, we are calculating a scalar value. Furthermore, the concept of flux requires the calculation of a scalar value.

Also it is necessary to take into account that the magnitude of the flux trough a surface depends of the inclination of the surface respect to the direction of the electric field. This is taken into account sufficiently by a dot product.

Then, the answer is:

2. Dot Product

The cost of energy delivered to residences by electrical transmission varies from $0.070/kWh to $0.258/kWh throughout the United States; $0.110/kWh is the average value.

Required:
At this average price, calculate the cost of:

a. leaving a 40-W porch light on for two weeks while you are on vacation?
b. making a piece of dark toast in 3.00 min with a 970-W toaster
c. drying a load of clothes in 40.0 min in a 5.20 x 10^3-W dryer.

Answers

Answer:

Cost = $ 1.48

Cost = $ 0.005

Cost = $ 0.38

Explanation:

given data

electrical transmission varies = $0.070/kWh to $0.258/kWh

average value = $0.110/kWh

solution

when leaving a 40-W porch light on for two weeks while you are on vacation so cost will be

first we get here energy consumed that is express as

E = Pt    .................1

here E is Energy Consumed and Power Delivered is P and t is time

so power is here 0.04 KW and t = 2 week = 336 hour

so

put value in 1 we get

E = 0.04 × 336

E = 13.44 KWh

so cost will be as

Cost = E × Unit Price    .............2

put here value and we get

Cost = 13.44 × 0.11

Cost = $ 1.48

and

when you making a piece of dark toast in 3.00 min with a 970-W toaster

so energy consumed will be by equation 1 we get

E = Pt

power is = 0.97 KW and time = 3 min = 0.05 hour

put value in equation 1 for energy consume

E = 0.97 × 0.05 h

E = 0.0485 KWh

and we get cost by w\put value in equation 2 that will be

cost =  E × Unit Price

cost = 0.0485 × 0.11

Cost = $ 0.005

and

when drying a load of clothes in 40.0 min in a 5.20 x 10^3-W dryer

from equation 1 we get energy consume

E = Pt

Power Delivered = 5.203 KW and time = 40 min = 0.67 hour

E = 5.203 × 0.67

E = 3.47 KWh

and

cost will by put value in equation 2

Cost = E × Unit Price

Cost = 3.47 × 0.11

Cost = $ 0.38

A uniform electric field of magnitude 144 kV/m is directed upward in a region of space. A uniform magnetic field of magnitude 0.38 T perpendicular to

Answers

Complete Question

A uniform electric field of magnitude 144 kV/m is directed upward in a region of space. A uniform magnetic field of magnitude 0.38 T perpendicular to the electric field also exists in this region. A beam of positively charged particles travels into the region. Determine the speed of the particles at which they will not be deflected by the crossed electric and magnetic fields. (Assume the beam of particles travels perpendicularly to both fields.)

Answer:

The velocity is  [tex]v = 3.79 *10^{5} \ m/s[/tex]  

Explanation:

From the question we are told that

    The  magnitude of the electric field is  [tex]E = 144 \ kV /m = 144*10^{3} \ V/m[/tex]

     The magnetic field is  [tex]B = 0.38 \ T[/tex]

   

The force due to the electric field is mathematically represented as

      [tex]F_e = E * q[/tex]

and

The force due to the magnetic field is mathematically represented as

    [tex]F_b = q * v * B * sin(\theta )[/tex]

Now given that it is perpendicular ,  [tex]\theta = 90[/tex]

=>   [tex]F_b = q * v * B * sin(90)[/tex]

=>   [tex]F_b = q * v * B[/tex]

Now  given that it is not deflected it means that

        [tex]F_ e = F_b[/tex]

=>    [tex]q * E = q * v * B[/tex]

=>   [tex]v = \frac{E}{B }[/tex]

 substituting values

     [tex]v = \frac{ 144 *10^{3}}{0.38 }[/tex]

     [tex]v = 3.79 *10^{5} \ m/s[/tex]

A block attached to a spring undergoes simple harmonic motion on a horizontal frictionless surface. Its total energy is 50 J. When the displacement is half the amplitude, the kinetic energy is

Answers

Answer:

The kinetic energy at a displacement of half the amplitude is 37.5 J

Explanation:

Given;

total energy on the spring, E = 50 J

When the displacement is half the amplitude, the total energy in the spring is sum of the kinetic energy and elastic potential energy.

E = K + U

Where;

K is the kinetic energy

U is the elastic potential energy

K = E - U

K = E - ¹/₂KA²

When the displacement is half = ¹/₂(A) = A/₂

K = E - ¹/₂K(A/₂)²

K = E - ¹/₂K(A²/₄)

K = E - ¹₄(¹/₂KA²)

Recall, E = ¹/₂KA²

K = ¹/₂KA² - ¹₄(¹/₂KA²)     (recall from simple arithmetic, 1 - ¹/₄ = ³/₄)

K = 1(¹/₂KA²) - ¹₄(¹/₂KA²)  = ³/₄(¹/₂KA²)

K = ³/₄(¹/₂KA²)

But E = ¹/₂KA² = 50J

K = ³/₄ (50J)

K = 37.5 J

Therefore, the kinetic energy at a displacement of half the amplitude is 37.5 J

The kinetic energy when the displacement is half the amplitude

Given the following data:

Total energy = 50 Joules.Displacement, x = [tex]\frac{A}{2}[/tex]

To find the kinetic energy when the displacement is half the amplitude:

The total energy of the system of a block and a spring is the sum of the spring's elastic potential energy and kinetic energy of the block and it's proportional to the square of the amplitude.

Mathematically, the total energy of the system of a block and a spring is given by the formula:

[tex]T.E = U + K.E[/tex]   .....equation 1.

[tex]T.E = \frac{1}{2} kA^2[/tex]

Where:

T.E is the total energy.U is the elastic potential energy.K.E is the kinetic energy.A is the amplitude.

Making K.E the subject of formula, we have:

[tex]K.E = T.E - U[/tex]   .....equation 2.

But, [tex]U = \frac{1}{2} kx^2[/tex]    ....equation 3.

Where:

k is spring constant.x is change in position (displacement).

Substituting the eqn 3 into eqn 2, we have:

[tex]K.E = T.E - \frac{1}{2} kx^2[/tex]

[tex]K.E = T.E - \frac{1}{2} k(\frac{A}{2})^2\\\\K.E = T.E - \frac{1}{2} k(\frac{A^2}{4})\\\\K.E = T.E - \frac{1}{4} (\frac{1}{2} kA^2)\\\\K.E = T.E - \frac{1}{4} (T.E)\\\\K.E = 50 - \frac{1}{4} (50)\\\\K.E = 50 - 12.5[/tex]

K.E = 37.5 Joules.

Read more: https://brainly.com/question/23153766

If you could see stars during the day, this is what the sky would look like at noon on a given day. The Sun is near the stars of the constellation Gemini. Near which constellation would you expect the Sun to be located at sunset?

Answers

Answer:

The sun will be located near the Gemini constellation at sunset

An archer shoots an arrow toward a 300-g target that is sliding in her direction at a speed of 2.10 m/s on a smooth, slippery surface. The 22.5-g arrow is shot with a speed of 37.5 m/s and passes through the target, which is stopped by the impact. What is the speed of the arrow after passing through the target

Answers

Answer:

The speed of the arrow after passing through the target is 30.1 meters per second.

Explanation:

The situation can be modelled by means of the Principle of Linear Momentum, let suppose that the arrow and the target are moving on the same axis, where the velocity of the first one is parallel to the velocity of the second one. The Linear Momentum model is presented below:

[tex]m_{a}\cdot v_{a,o} + m_{t}\cdot v_{t,o} = m_{a}\cdot v_{a,f} + m_{t}\cdot v_{t,f}[/tex]

Where:

[tex]m_{a}[/tex], [tex]m_{t}[/tex] - Masses of arrow and target, measured in kilograms.

[tex]v_{a,o}[/tex], [tex]v_{a,f}[/tex] - Initial and final speeds of the arrow, measured in meters per second.

[tex]v_{t,o}[/tex], [tex]v_{t,f}[/tex] - Initial and final speeds of the target, measured in meters per second.

The final speed of the arrow is now cleared:

[tex]m_{a} \cdot v_{a,f} = m_{a} \cdot v_{a,o} + m_{t}\cdot (v_{t,o}-v_{t,f})[/tex]

[tex]v_{a,f} = v_{a,o} + \frac{m_{t}}{m_{a}} \cdot (v_{t,o}-v_{t,f})[/tex]

If [tex]v_{a,o} = 2.1\,\frac{m}{s}[/tex], [tex]m_{t} = 0.3\,kg[/tex], [tex]m_{a} = 0.0225\,kg[/tex], [tex]v_{t,o} = 2.10\,\frac{m}{s}[/tex] and [tex]v_{t,f} = 0\,\frac{m}{s}[/tex], the speed of the arrow after passing through the target is:

[tex]v_{a,f} = 2.1\,\frac{m}{s} + \frac{0.3\,kg}{0.0225\,kg}\cdot (2.10\,\frac{m}{s} - 0\,\frac{m}{s} )[/tex]

[tex]v_{a,f} = 30.1\,\frac{m}{s}[/tex]

The speed of the arrow after passing through the target is 30.1 meters per second.

Now moving horizontally, the skier crosses a patch of soft snow, where the coefficient of friction is μk = 0.160. If the patch is of width 62.0 m and the average force of air resistance on the skier is 160 N , how fast is she going after crossing the patch?

Answers

Answer:

14.1 m/s

Explanation:

From the question,

μk = a/g...................... Equation 1

Where μk = coefficient of kinetic friction, a= acceleration of the skier, g = acceleration due to gravity.

make a the subject of the equation

a = μk(g).................. Equation 2

Given: μk = 0.160, g = 9.8 m/s²

Substitute into equation 2

a = 0.16(9.8)

a = 1.568 m/s²

Using,

F = ma

Where F = force, m = mass.

Make m the subject of the equation

m = F/a................... Equation 3

m = 160/1.568

m = 102.04 kg.

Note: The work done against air resistance by the skier+ work done against friction is equal to the kinetic energy after cross the patch.

Assuming the initial velocity of the skier to be zero

Fd+mgμ = 1/2mv²........................Equation 4

Where v = speed of the skier after crossing the patch, d = distance/width of the patch.

v = √2(Fd+mgμ)/m)................ Equation 5

Given: F = 160 N, m = 102.04 kg, d = 62 m, g = 9.8 m/s, μk = 0.16

Substitute these values into equation 5

v = √[2[(160×62)+(102.04×9.8×0.16)]/102.04]

v = √197.57

v = 14.1 m/s

v = 9.86 m/s

If the velocity of a pitched ball has a magnitude of 47.0 m/s and the batted ball's velocity is 55.0 m/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.

Answers

Answer:

14.79 kgm/s

Explanation:

Data provided in the question

Let us assume the mass of baseball =  m = 0.145 kg

The Initial velocity of pitched ball = [tex]v_i[/tex] = 47 m/s

Final velocity of batted ball in the opposite direction = [tex]v_f[/tex]= -55m/s

Based on the above information, the change in momentum is

[tex]\Delta P = m(v_f -v_i)[/tex]

[tex]= 0.145 kg(-55m/s - 47m/s)[/tex]    

= 14.79 kgm/s

Hence, the magnitude of the change in momentum of the ball is 14.79 kg m/s

Find the average value of position x, momentump, and square of the mometum p2 for the ground and first excited states of the particle-in-a-box with mass m and box length L.

Answers

Answer:

Explanation:

Find the average value of position x, momentump, and square of the mometum p2 for the ground and first excited states of the particle-in-a-box with mass m and box length L.

A ball is thrown horizontally from the top of a 41 m vertical cliff and lands 112 m from the base of the cliff. How fast is the ball thrown horizontally from the top of the cliff?

Answers

Answer:

4.78 second

Explanation:

given data

vertical cliff = 41 m

height = 112 m

solution

we know here time taken to fall vertically from the cliff =  time taken to move horizontally   ..........................1

so we use here vertical component of ball

and that is accelerated motion with initial velocity = 0

so we can solve for it as

height = 0.5 ×  g ×  t²     ........................2

put here value

112 = 0.5 ×  9.8 ×  t²    

solve it we get

t²   = 22.857

t = 4.78 second

ball thrown horizontally from the top of the cliff in 4.78 second

Two radio antennas A and B radiate in phase. Antenna B is 120 m to the right of antenna A. Consider point Q along the extension of the line connecting the antennas, a horizontal distance of 40 m to the right of antenna B. The frequency, and hence the wavelength, of the emitted waves can be varied.
(a) What is the longest wavelength for which there will be destructive interference at point Q?
(b) What is the longest wavelength for which there will be constructive interference at point Q?

Answers

Answer:

a. for destructive interference

λmax= 240m

b. for constructive interference

λmax = 120m

Explanation:

Which statement describes a disadvantage of using natural gas as an energy source? It is expensive to use. It is hard to stop using. It is a renewable resource. It is scarce in some parts of the world.

Answers

Answer:

B : It is hard to stop using.

Explanation:

just took the quiz ! hope this helps with anyone who needs it !

Due to the dependency on natural gas as a fuel, it is hard to stop using.

What is natural gas?

Natural gas is a fossil fuel which is obtained from the ground in association with petroleum.

Natural gas consists mainly of petroleum.

It is a non-renewable energy source.

Natural gas use contributes to global warming

However, due to the dependency on natural gas as a fuel, it is hard to stop using.

Learn more about natural gas at: https://brainly.com/question/815922

help me
Describe the different types of non contact forces.​

Answers

Answer:

the correct answer is

All four known fundamental interactions are non-contact forces: Gravity, the force of attraction that exists among all bodies that have mass. ... Examples of this force include: electricity, magnetism, radio waves, microwaves, infrared, visible light, X-rays and gamma rays.

Explanation:

hope this helps you!!!!

Other Questions
How many different 2-digit numbers are there with the following property: each of them has at least one digit 7? "it is a waste of time to search into the darkness of the African past for an African civilization, forget the chaotic and barbaric past of the African continent" criticize any three negative effects of such a eurocentric conception on Africans. A chemical reaction has the equation 2AgNO3 (aq) + Zn (s) > 2Ag (s) + Zn(NO3)2 (aq). What type of reaction occurs between AgNo3 and Zn?A. SynthesisB. Double displacementC. DecompositionD. Single displacement And every night, about midnight, I turned the latch of his door and opened itoh so gently! And then, when I had made an opening sufficient for my head, I put in a dark lantern, all closed, closed, that no light shone out, and then I thrust in my head. Oh, you would have laughed to see how cunningly I thrust it in! I moved it slowlyvery, very slowly, so that I might not disturb the old man's sleep. It took me an hour to place my whole head within the opening so far that I could see him as he lay upon his bed. Ha! Would a madman have been so wise as this? By visualizing the scene the reader can conclude that the narrator is gleeful. indifferent. irritated. curious. Calculate the pH of mixing 24 mL of 1M acetic acid with 76 mL of 1M sodium acetate. For the purpose of this calculation, assume the Ka of acetic acid is 1.8 X 10-5. You must include units to obtain full credit. You must show all your work to obtain any credit. Help me - About English How do you solve 36 times [tex]\sqrt{3}[/tex] I NEED HELP PLEASE, THANKS! :) Read and choose the option with the correct word or words that complete the sentence.Esen Canad. Empieza a nevar. Vas a necesitar la bufanda y el abrigo.inviernoveranotiempocalor duties of an office clerk An anti-aircraft gun fires at an elevation of 60 at an enemy aircraft at 10000m above the ground At what speed must the cannon be shot to hit the plane at that height?(g=10m/s^2) A rabbit breeder has rabbits that exhibit three different coat colors: dark gray, chinchilla (a lighter gray), and albino. When cross breeding rabbits with these different coat colors, he finds that dark gray is dominant to chinchilla and albino, whereas chinchilla is dominant to albino. These phenotypic outcomes indicate that there are more than two alleles of rabbit coat-color genes and that they exhibit Read each dialogue carefully, and then conjugate the verb in parentheses using formal commands (Ud. or Uds.) to provide the solution/answer to the problem/question. You may need to change the position of the pronouns. Sr. Estrada:No me gusta el trabajo. Sra. Oro: _______(buscar) otro trabajo. 2) Hugo y Luis:No nos sentimos bien. Nos duele todo el cuerpo. Juan: _______ (ir) a la clnica. 3) Sr. Pea: Tengo problemas legales. Sr. Mendoza: ________(hablar) con un abogado. 4) Sr. Campos:Estoy muy cansado y tengo mucho sueo. Sr. Arce:_______ (dormir) ms esta noche. 5) Estudiantes:Sacamos malas notas en esta clase. Profesor:_________ (estudiar) ms. 6) Empleado:Dnde dejo los documentos? Secretaria: ________(ponerlos) en mi escritorio, por favor. 7) Secretario:Le traigo el caf ahora? Jefe: Si,_________(traermelo) en este momento. 8) Nios:Tenemos mucha hambre. Mam: ______(comer) el pan en la cocina. 9) Ta: Estoy gorda y quiero bajar de peso. Sobrina:_______ (hacer) ms ejercicio. 10) Sr. Lpez: A qu hora paso por Ud. esta noche? Sra. Snchez:______(venir) a recogerme a las siete, por favor. Solve the inequality.C - 12 > -1 In 2010, the United States conducted a census to count all citizens in each state. The results wereused to reassess the number of seats each state was awarded in the House of Representatives. Stateswhose populations had increased, like Texas and Florida, gained seats in Congress, while states whosepopulations had decreased, like New York and Ohio, lost seats.Explain which constitutional principle this scenario illustrates. options are: popular sovereignty, republicanism, rule of law, limited government, federalism, separation of powers, or checks and balances. Drag each label to the correct category.Identify each source as either a primary source or a secondary source.- the ships logbook of explorer Vasco da Gama,1497- an article about the age of exploration inSmithsonian magazine - the autobiography My Early Life by WinstonChurchill The Last Lion: Winston Spencer Churchill byWilliam Manchester and Paul Reid - The Letters of John and Abigail Adams, PenguinClassics, 2003- the PBS documentary John and Abigail- Congressional Record, Daily Digest of SenateCommittee Meetings -The American Senate: An Insiders History byNeil McNeil and Richard A. Baker Divide. Simplify(or reduce) 32 dived by seven eights 3. What is the balance sheet equation? Determine the two z-scores that separate the middle 96% of the distribution from the area in the tails of the standard normal distribution. The owner of a building supply company has requested a cash budget for June. After examining the records of the company, you find the following: A. Cash balance on June 1 is $736. B. Actual sales for April and May are as follows: April May Cash sales $10,000 $18,000 Credit sales 28,900 35,000 Total sales $38,900 $53,000C. Credit sales are collected over a three-month period: 40% in the month of sale, 30% in the second month, and 20% in the third month. The sales collected in the third month are subject to a 2% late fee, which is paid by those customers in addition to what they owe. The remaining sales are uncollectible. D. Inventory purchases average 64% of a month's total sales. Of those purchases, 20% are paid for in the month of purchase. The remaining 80% are paid for in the following month. E. Salaries and wages total $11,750 per month, including a $4,500 salary paid to the owner. F. Rent is $4,100 per month. G. Taxes to be paid in June are $6,780. The owner also tells you that he expects cash sales of $18,600 and credit sales of $54,000 for June. No minimum cash balance is required. The owner of the company doesn't have access to short-term loans. Prepare a cash budget for June. Include supporting schedules for cash collections and cash payments. Round calculations and final answers to the nearest dollar.